CEUR-WS.org/Vol-2240/paperld.pdf

Compositional Expressiveness of Hybrid
Automata

Jafar Akhundov, Michael Reifiner, and Matthias Werner

Operating Systems Group, TU Chemnitz, Germany
jafar.akhundov | michael.reissner | matthias.werner@cs.tu-chemnitz.de

Abstract. Linear time-invariant hybrid automata (LTI-HA) have been
introduced to model space missions in early design phases. One of LTI-
HA’s main objectives was therefore to allow a composition of (sub) mod-
els. In this paper, we evaluate the expressiveness of the composition in
LTI-HA. To compare their expressiveness with the existing hybrid au-
tomata formalisms, this work proposes a formal notion of compositional
expressiveness. In contrast to the more traditional proofs using simula-
tion relations or bisimilarity to compare single models or their respective
behavioral expressiveness or equivalence, compositional expressiveness
relies on the complexity of the models and the composition operators
enabling the engineer to invest less effort in the modeling process. The
following text provides a comparative study of the LTI-HA and several
other hybrid formalisms, such as linear hybrid automata and the hy-
brid I/O automata, with respect to their compositional expressiveness.
Specifically, adequacy of their application is discussed based on the case
study in space mission feasibility verification.

1 Introduction

Most of the real systems consist of a set of subsystems brought together e.g. by
physical aspects or function. A compositional approach to modeling and analysis
of such a system relies exclusively on the models of the subsystems, without any
holistic information about the composed system, an approach that was first
formalized by Gottlob Frege in 1923 [FP93] [Fre05].

For describing space systems during early design phases, a hybrid formalism
was proposed in [ATW16] [ASGW16] [ATW15] - Linear Time-Invariant Hybrid
Automata (LTI-HA). The adequacy of LTI-HA was demonstrated in [ARW17]
by providing an operational semantics for the space mission domain-specific lan-
guage proposed by Schaus et. al [STFT13]. LTI-HA address the issue of combin-
ing continuous dynamics of different discrete states by applying the superposition
principle in the composition operator which is extensively applied in the classical
control theory as well as the theory of hybrid systems [LA14].

While expressiveness is usually considered from the point of view of behav-
ioral comparison of two formalisms on a meta level, comparison of expressive-
ness from the compositional point of view lacks the deserved attention [Cas05]
[BCH'13] [SA06]. Although many extensions for compositional semantics exist

for hybrid formalisms, only few of them are discussed in terms of expressiveness
of models [SY96] [Sif99] [BS00]. Although not desirable, this is an understand-
able state of affairs since compositional expressiveness of a modeling method is
rather a question of taste and usability.

The contribution of the following paper lies in the introduction of the notion
of compositional expressiveness and its application for comparison of LTI-HA
with other hybrid automata (HA) formalisms, such as linear hybrid automata
and hybrid I/O automata. The formal considerations in this work are supported
by an use-case based comparison of expressive power of the LTI-HA.

The remaining paper is structured as follows: the next section discusses some
of the related work, followed by several supporting definitions in section 3. Sec-
tion 4 is the core of this paper. First, two motivational examples are provided
from the application domain of early spacecraft modeling. Then, several formal
metrics are introduced to support the formal definition of the compositional ex-
pressiveness which is immediately applied to the LTI-HA formalism with respect
to hybrid I/O automata (HIOA) and linear as well as rectangular HA (LHA and
RHA, respectively). The paper is finalized with a discussion of behavioral ex-
pressiveness of LTI-HA models and some concluding remarks.

2 Related Work

As such, LTI-HA are closely related to the switched, piecewise affine and comple-
mentarity systems [LA14]. In [GT04], a class of piecewise affine automata with
superposition support is briefly introduced to be immediately applied for mod-
eling biological protein regulatory networks. However, as discussed in [ATW16]
and [ATW18], support for invariants and discrete resets could be problematic
for the composition. The composition operator has also not been formally intro-
duced for this promising formalism [GT04].

The general framework for timed compositional modeling formalism - timed
automata with deadlines where invariants of the classical timed automata are
replaced with the notion of deadlines - taken by Sifakis and Yovine [SY96] was
extended to hybrid systems in [BS00] by Bornot and Sifakis. They discuss the
possible compositional semantics of actions for hybrid systems. It is also assumed
that compatible automata operate on disjunct state spaces [BS00].

Van der Shaft and Schumacher [SS01] investigate compositionality from the
point of view of dynamic systems and discuss some important properties of the
composition operator such as commutativity and associativity.

3 Definitions

The following definitions capture the essential terms necessary for the later dis-
cussions [ATW18].

Definition 1 (LTI-HA). A linear time-invariant hybrid automaton H is a tu-
ple (L, X,S1,S0,T,F), where:

— L={L1,...,L,} is a set of discrete locations (or modes);

— X is a set of continuous real-valued variables, called state variables. Time
in this context refers to a designated variable t € X .

— 81 and Sp are two disjoint sets of input and output events, respectively,
which define the event signature of the automaton;

— T C L x20W) x 251 x 250 x L is a guarded (not necessarily complete)
transition relation, where x denotes a Cartesian product and C(X) is a
set of all possible constraints over X. The guard is thus a triple (C,E,A)
with a set of constraints C € 2°X) q set of input events £ € 251 and a
set of output events A € 29°. The locations along with the transitions (with
possible loops) constitute the control graph representing the structure of the
given hybrid automaton;

— The change of any x € X, except for the time reference t, at any time point is
described by the flow function fi, of the currently active location describing
the continuous change of system state x;(t) = fz, 0(t). We are restricting
the flow functions only to those which are valid solutions for ordinary linear
time-invariant differential equations of some order k > 1. This restriction
guarantees that flow functions fulfill the superposition property. Therefore,
for two simultaneously active locations L1 and Lo of two concurrent hybrid
automata the resulting rate of change of a global continuous variable x; is
defined as z;(t) = fu, 1, (t)+ fz,; 1, (t). Let F denote the set of flow functions
for every location in £ and t =1 for all L € L.

Definition 2 (Initial configuration). Z is the initial state/configuration
of the system o(ty) = (Lz,Vz), where Ly € L is the initial active mode, Vz :
X — R is the initial valuation of all the variables in X and Vz(t) = to.

Definition 3 (Composition operator). Any two LTI-HA H' and H? for
which holds Vo € X' N X? : V}(z) = VZ(z) are called compatible. Given two
compatible hybrid automata, the parallel composition H!||H? produces a new
hybrid automaton H® = (L%, X°,S8F,8§,T°, F°) with the initial configuration
Z¢, where the components are defined as follows:

1. L¢= LY x L2 ={(L},L3),..., (L}Ll,Lflz)} =
{L§17L§27 Tt 7Lin27 T ’Lngng}
xe=xtua?
S5 = (5}\83) U (S\5b)
S5 =8 US3
V transitions (LY, C*,E%, A, LY), (L}, CY, &Y, AY, L]):
(a) if E*NSYH =0:VL € £Y: I((L¥,L),C*, &%, A%, (L}, L)) € TC,
(b) I(L;ij, CTUCY,ET U (EY\AT), AU AY, Ly) € T¢,
if (EYNA* =EYNSE) and (S NE* =0))
or (E*NSE =0) and (EYNSEH =10))

where either x = 1,y = 2, or vice versa.

Guds o b0

6. vfl’k,Li (t) € fl?fl']ij (t) SV fwk,Lij (t) = fl'k,Li (t) =+ fIIij (t)
7. 76 2 (15,7, Vi UVD)

The operator is not defined for not compatible LTI-HA.

4 Compositional Expressiveness

The following section provides two motivational examples: one informally dis-
cusses a use case when set-based directional event semantics is more expressive
than any semantics based on a singleton labels, and the second shows how su-
perposition principle allows a modeling engineer to apply the divide and conquer
approach more effectively and therefore reduces modeling effort.

4.1 Example 1

I I I I I
1 A 1 1 1
1 | I I I
1 1 I 3 1 I
| el . {a} ! | €2 : {a,b} 1
1 Al ! ‘ ‘ 1 A3 1 | 1
1 . 1 1 {z > 10} 1 1
1 1 1 1 !
1 1 1 1 !
1 | 1 1 1
I I I I I
HL H? a3 HY

Fig. 1. Expressiveness of the LTI-HA set-based directional event semantics

Consider the interaction patterns between the four transitions in the four
LTI-HA depicted in Figure 1. The automata are representing, from left to right:
a downlink module of a satellite moving on a Low Earth Orbit(LEO), primary
ground station A, synchronization module and the secondary ground station B.
Without loss of generality, we are only considering the parts of the automata rep-
resenting interactions with one another and not the specifics of their dynamics.
Synchronization events a and b represent availability of the ground stations A
and B, respectively. Synchronization module is responsible for synchronizing the
clocks of the satellite, a procedure carried out only when both ground stations
are available. This is done to eliminate possible synchronization faults (see, for
example, [DHSS95] or [LMSS86]).

It is clear that transitions j — [and o — p can be taken independently,
while the transitions ¢ — k£ and m — n cannot. The transition m — n can only
be taken simultaneously with the both enabled transitions j — [and o — p.
The transition ¢ — k will only be synchronized with the transition 7 — [. The
paths of non-zero length from [to j and p to o are represented with thick dotted
arrows. If the locations j and o can simultaneously be active with valuations
{¢ > 10,d < 5} and {¢ > 10,d > 5}, then, obviously, transitions j — [and
0 — p are not always taken synchronously.

For HIOA or structured HIOA (SHIOA [MLLO6] [Mit07]) to model this sys-
tem, a relabling procedure consisting of two modifications may be performed:
first, both ground stations have to be modeled as a single automaton; second,
the transition with two events being simultaneous, a new event has to be intro-
duced, e = {a, b} which would synchronize with the m — n transition. The same
holds for the timed automata if the continous dynamics could be modeled with
only clock variables [BY04].

Set-based undirectional hybrid automata formalism like [RTP96] may be suit-
able for modeling the system described in Figure 1. However, the composition
operator in [RTP96] only considers synchronous actions in case when there is a
non-empty intersection between them. Let us assume that the transitions ¢ — £,
m — nand o — p are labeled with X, _,;, = {a}, X\,,—,», = {a, b} and X,_,, = {b},
respectively. The above interaction is indeed preserved. However, if we first com-
pose H! with #* and only then with H3, the information about possible simul-
taneity of events a and b is lost. Since composition operator in [RTP96, p.7] only
considers the labeled dependencies between transitions pairwise, transition with
Ym—n = {a,b} will never be enabled. However, merging m — n first with either
i — k or o — p solves the problem. Hence, composition operator in [RTP96, p.7]
is not associative. Our composition operation is both associative and supports
event directions making them more intuitional.

Obviously, not set-based undirectional based are less expressive than the
last two discussed methods. This clearly demonstrates the advantage of the
directional set-based event synchronization: directionality makes events more
intuitional while assigning more than one label to a transition, more complex
communication patterns are possible.

4.2 Example 2

As a second example, consider the two automata from [ATW18] in Figure 2.

Sending
s=cy(t—*t)
= —cy(t —1)
= —co(t — 1)

Not ondi
ot Sending \ ;5 o ¢ > CRITICAL}, { gs_visible }, { a })

{d=0}{}.{b})
({}, { gs_not_visible },{ ¢ })

({¢ > CRITICAL},{ event_visible },{ d }) s=3
d = c3(t —t)
c= —cy(t—1%)

({ }.,{ event_not_visible },{ f })
({d = LIMIT},{},{ e})

Fig. 2. Downlink Satellite Component and Experimental Payload (Camera)

In the early conceptual phase of development, the satellite downlink module
which sends gathered information back to Earth is modeled as having only two
distinct states: Sending, when a ground station is visible and there is data to
send, or Not Sending, when either no ground station is available or there is no

data to be sent (or both). In the Sending state the rate of change of available
data and sent data is the same with opposite signs, whereas in the Not Sending
state both parameters remain constant.

The valuable data which is sent back to Earth comes from a camera which
can rotate and fix on the events of interest. Hence, depending on whether an
event is visible or not, the camera can also be in two states: On and Off. The
data can only be written if there is enough free storage, therefore the constant
LIMIT represents the maximum data that can be stored at any instance. The
constant CRITICAL stands for the lowest level of battery charge needed for any
of the components to start.

The continuous variables s, d, ¢ stand for the amount of data sent, the data
still stored on the satellites storage unit and the battery charge, respectively. c¢;-
¢4 are some predefined constants. The downlink component can only be activated
when a ground station is visible which is represented by the gs wisible event.

Since LTI-HA explicitly support the superposition principle for flow func-
tions, output trajectories do not need to be exclusive. This allows to combine
effects of both automata on the same continuous variable, in this case all three
of them: s, d, ¢ by the composition operator [ATW18].

(S)HIOA explicitly forbid superposition of the output trajectories [LSVO03,
p.131,p.141] [Mit07, p.35]. That is, for any formalism without support for su-
perposition to model a system where some of the components have overlapping
continuous output trajectories, it is necessary to model all of those components
as a single automaton with the cartesian product of all of the corresponding
locations.

Other hybrid automata formalisms follow either the same strategy as (S)HIOA
or imply an agreement of flow conditions between the locations [ATW18]. Thus,
they would also require an engineer to explicitly specify all of the possible com-
binations of flows thus eliminating the advantages of compositional analysis al-
together.

4.3 Generalization and Metrics

Transitions Given m LTI hybrid automata H!,...,H™, we define a synchro-
nization function sync: 7, — 27 that maps the transition 7° to the set of all
transitions which synchronize with it:

{77 o, =0.j,5#]} for non-directional event semantics
(LHA [ACHH93] [NOSY93] [Hen00],
RHA [Ras05] [PV94] [Hen00], HA [Ab12])
) {Tj\ETi NL; =X _jNL;#0,i#j} for set-based non-directional event semantics
sync(T") = A (LHA [RTP96])
{m'lo, i =0, 5,1 # 37} for directional event semantics
(HIOA [LSV03], TA [BY04])
{T7AiNE ; =S5 NE ; #0,i# j} for set-based event semantics
(LTL-HA [ATW18])

where 7, = U
i

i1 7" with 7% from H*, o, is the label on the transition
in the automaton H', o, ,i,0, .+ are the input and output labels on the

transition 7 in the automaton H®. X,: is a set of labels assigned to transition
7% respectively. L; is the set of labels of the LHA i [RTP96]. 7% is any transition
out of 7. Without loss of generality, we assume that for the directional event
semantics, there is always only a single automaton generating every consumable
event [ATW18] [LSVO03].

The function rsync : T, — 279 maps the set of all transitions 7° to the set
of all transitions which generate the necessary inputs for the transition at hand:

same as sync(T?) for non-directional event semantics
(LHA [ACHHO93] [NOSY93] [Hen00],
RHA [Ras05] [PV94] [Hen00], HA [Ab12])
) same as sync(7*) for set-based non-directional event semantics
rsync(TZ) = v (LHA [RTPY6))
{r? \ami =0, 5,1 % i} for directional event semantics
(HIOA, TA)
{7'”571- NA; =£E.:N Sé #0,i# j} for set-based event semantics
(LTI-HA)

Therefore, rsync defines a different set of values in the cases of directional
event semantics. Table 1 provides a comparative study of compositional proper-
ties defined below for HA depending on the types of event semantics: directional
or non-directional, set-based or singular (singleton).

|sync(t?)| provides the number of transitions from other automata with
whom the given transition may synchronize. For the directed event semantics,
output events are usually observable by any other automata [LSV03] [ATW18].
Obviously, for all the formalisms, this number is greater equal than zero.

The |rsync(7?)|-row represents the number of transitions having as outputs
the inputs of 7. Since the inverse function is defined in the same way as the
original for the undirectional event semantics, no change is observed here.

Vi [{r9|77 € rsync(r?),Er N A C Ers NHYY is the number of transitions
which possibly generate the necessary input for the given transition but do not
have all the events generated by the automaton containing them. This is a critical
condition to be fulfilled during composition, if there is a single producer for each
event. It is guaranteed by the condition 5b for the composition operator of LTI-
HA and the condition (3) for the event synchronization in [RTP96, p.7].

[{s|s C rsync(7?),V77, 7% € s : j = k,Bs’ C rsync(r?) with 7' € &, 3r; €
s : j = l}| is the number of hybrid automata generating the necessary events
for a given transition. In the case of singular directional event semantics it is
only possible to synchronize with a single producer of an event for the HIOA
[LSV03] [Mit07]. Timed automata in the UPPAAL [BLP*96] allow for several
generators of a single event. This row is emphasized since this is a case of an
increased expressiveness of set-based labeling formalisms in contrast to singular
labeling mechanisms.

max (|s|s C rsync(7%), V77,78 € s j = k, Bs’ C rsync(r?) with 7! € ', 3r; €
s:j =1}]) represents the maximum number of transitions generating the neces-
sary events for the given transition, per automaton. For all the cases, the number
of those transitions can be non-zero, however, for the cases of set-based labelings,

the events should be exactly those which lie in the intersection set of the whole
automaton and the given transition 7¢, since synchronization (and structural
merging during composition) only occur pairwise in the existing formalisms.

The following row is another case where set-based approaches have a definite
advantage with respect to singular cases: it represents the number of possible
transitions from other automata which can consume subsets of the given event
label. Obviously, no such thing exists for singular cases, and only those having
strictly the same labeling will be able to sychronize.

Event Non-directional Directional
Semantics| Singular |Set-based| Singular Set-based
Properties
[ACHH93] [LSV03]
Examples [NOSY93]| [RTP96] [Mit07] [ATW18]
[Hen00] [BY04]
|syne(r")| >0 >0 >0 >0
[rsync(T%)] >0 >0 >0 >
Vit [{r9|79 € rsync(r?),E_; NA_; CE ﬂSé}| - 0 - 0
i ik L 1
\{s|sCrsync(‘r),Vl"r , TV €s:j =k, Oor 1 >0 0 or >0
#s’ C rsync(r?) with 7' € s/, 37; € s: j = 1}| (> 0 [BY04])
9, vrd, ok =k
max (|s|s CArsync(T l), T, TV €5] , >0 >0 >0 >0
As’ C rsync(r?) with 7! € s, Ir; €s:5=1})
VA® G JJAY > 1
. A from 7" €70, AT > 10 0 >0 0 >0
|77 from H7, j # i with s = & N A* C A", s # 0]
Circular event dependencies no no yes yes
Stutter transitions yes yes no E=0,A"=0,C'=0

Table 1. Event semantics properties (B £ Blocking, NB £ Non-blocking)

Before we discuss the next row of the table, the following definitions are due.

Definition 4 (Event Dependency of Guards). Two guards - g1 = (C1,&1, A1)
from HY, go = (Ca, &, As) from H? - are said to be event-dependent iff £ N
Ay 0V ENAL # 0. The guard g, is said to be event-dependent on the
second automaton iff £ NSE # 0.

Event (in)dependency of guards consequently implies event-(in)dependency of
the corresponding transitions. It is clear from the constraint S; N Sp = @ that
those two guards cannot be in the same automaton.

Definition 5 (Cycle of Event Dependencies for a Set of Guards). A set
of guards G of size k > 2 has a cycle of event dependencies if there is a sequence
of these guards (go, ..., gr—1), such that Vi,0 <i <k : A; N E41)mod k 7 V-

Clearly, circular event dependencies are only possible for the directional cases.
The last row shows wether the formalism has an explicit support for stutter
transitions. HIOA have eliminated them in the later redefinitions to avoid com-
positionality issues [LSV03]. LTT-HA do not have implicit stutter transitions.
However, they can be explicitly defined, as provided in the Table 1. These tran-
sitions, however, are always enabled and will be taken immediately when their

start-location is entered. They also pose a danger of introducing time locks (time
convergence), should there be a cycle containing only stutter transitions.

The relabling procedure discussed in the first example of this section, can be
formalized as follows:

vt from H' where |€.:

>1: VHI with ShNEx #0: || (1)
HI

The labeled event set £,: will be then renamed to a single letter in the composed
automaton. Although we do not account here for the cascading dependencies
of the events, it should be clear that in the worst case all of the automata
H7, j = 1..m will have to be combined with each other by the user. E.g. consider
the scenario where one LTI-HA consumes all of the events generated by other
LTI-HA over a single transition. Furthermore, for any set of event labels A, all
of the possible subset of those events can be consumed by a different automaton.
That is, for every possible set from 24, a new transition has to be introduced in
the automaton containing a transition labeled with A.

Locations As discussed in the second example of this section, the modeling
engineer has to account for all of the possible combinations of continuous flows
which could become exponential in the minimum number of states of the HA, if
for all |£?] holds |£| > 2. That is, for 10 LTI-HA with three states per automa-
ton, 30 locations would be required to model in any formalism not supporting
superposition: i.e. (S)HIOA, LHA, RHA, HA, etc.

Formally, in the worst case for a set of m LTI hybrid automata ', ..., H™:

if IX C Xy, Xy =) A7 where Vo € X,VL}: iy #0 (2)

1=1..m

m m
then L = X L%, |L| = H L]
i=1

=1

where L is the total set of the composed locations.

Definition of Compositional Expressiveness Considering the above met-
rics, we can now define the notion of compositional expressiveness for hybrid
automata. It amounts to the information a modeling engineer uses to describe
the system components before the composed system is built. Clearly, since the
composition operator has exponential run-time and produces a structure with
an exponential number of nodes, it is desirable to shift the modeling complexity
into the ”pre-composition phase” since the modeling effort is then linear in the
number of nodes and edges.

We rely on the number of edges (7) as well as the number of vertices (£)
needed to describe a system S. We assume that for both formalisms under com-
parison, a minimal representation can be achieved, and that there is some be-
havioral equivalence satisfied for models of S in the respective formalisms (e.g.
bisimilarity).

Definition 6 (Compositional Expressiveness). A modeling formalism A is
compositionally more expressive than a modeling formalism B (A B) if, for
describing a system S (or a family of systems):

1. TA(S) < TB(S)
2. LA(S) < Lp(S)

for a minimal representations of S in A, Ha(S), and B, Hp(S), respectively.

Proposition 1. For a family of systems where the the condition from the equa-
tion (2) holds or 31" from T, with |E.:| > 1, linear time-invariant hybrid au-
tomata are compositionally more expressive than HIOA.

Proof. The proof follows from the discussions and metrics from the this section.

5 Discussion

This paper has introduced an initial approach at formalizing the notion of com-
positional expressiveness in terms of events labeling and continuous flow combi-
nations. It has been directly applied to demonstrate the superior compositional
expressiveness of LTI-HA with respect to HIOA.

Timing of transitions was never considered in this work, as well as the modal
extensions of guards [SY96, p.5]. In the extended version of this work, we plan
to include timeliness of events as well as the modalities for combining the guards
which are assigned to the transitions into the notion of compositional expres-
siveness. We also intend to adopt the notion of HA comparability of Lynch et.
al. [LSV03] and put the LTI-HA in the context of other formalisms in terms of
behavioral expressiveness.

Associativity is an important property for composition of discrete event sys-
tems in general and hybrid automata in particular [SS01] [CL10]. Proving it for
LTI-HA is not trivial due to the complex event semantics and remains as a future
challenge.

The relabling procedure discussed in section 4 can potentially be extended
to a full algorithm which would transform a system of LTI-HA into a system
of HIOA which is a powerful modeling method with tool support [Fre05]. This
algorithm would also require a behavioral expressiveness relation established
between the two formalisms which we also intend as a future work. A formal
meta-language that could be used to define simulation relations could be the
extension theorem [BS00] [SY96] or timed transition systems [Cas05] [BCH™13].

References

[ACHH93] Rajeev Alur, Costas Courcoubetis, Thomas A Henzinger, and Pei-Hsin
Ho. Hybrid automata: An algorithmic approach to the specification and
verification of hybrid systems. In Hybrid systems, pages 209—229. Springer,
1993.

[ARW17]

[ASGW16)

[ATW15]

[ATW16]

[ATW18]

[BCH'13]

[BLP96]

[BSO0]

[BY04]

[Cas05]

[CL10]

[DHSS95]

[FP93]
[Fre05]

[GTO04]

Jafar Akhundov, Michael Reifiner, and Matthias Werner. Using Hybrid Au-
tomata for Early Spacecraft Design Evaluation. In Proceedings of the 26th
International Workshop on Concurrency, Specification and Programming,
Warsaw, Poland, September 2017.

Jafar Akhundov, Volker Schaus, Andreas Gerndt, and Matthias Werner.
Using Timed Automata to Check Space Mission Feasibility in the Early
Design Phases. In IEEE Aerospace 2016 Proceedings, Big Sky, Montana,
USA, March 2016.

Jafar Akhundov, Peter Troger, and Matthias Werner. Considering Con-
currency in Early Spacecraft Design Studies. In CS&P 2015 Proceedings,
pages 22-30, Rzeszow, Poland, 2015.

Jafar Akhundov, Peter Troger, and Matthias Werner. Superposition Prin-
ciple in the Composable Hybrid Automata. In Proceedings of the 25th
International Workshop on Concurrency, Specification and Programming,
pages 125-140, Rostock, Germany, September 2016.

Jafar Akhundov, Peter Troger, and Matthias Werner. Superposition Princi-
ple in Composable Hybrid Automata. Fundamenta Informaticae, 157(Con-
currency, Specification, and Programming: Special Issue of Selected Papers
of CS&P 2016):321-339, 2018.

B. Bérard, F. Cassez, S. Haddad, D. Lime, and O.H. Roux. The expressive
power of time Petri nets. Theoretical Computer Science, 474:1-20, February
2013.

Johan Bengtsson, Fredrik Larsson, Paul Pettersson, Wang Yi, Palle Chris-
tensen, Jesper Jensen, Per Jensen, Kim Larsen, and Thomas Sorensen.
UPPAAL: a Tool Suite for Validation and Verification of Real-Time Sys-
tems. 1996.

Sébastien Bornot and Joseph Sifakis. On the Composition of Hybrid Sys-
tems. In M. Kemal Inan and Robert P. Kurshan, editors, Verification of
Digital and Hybrid Systems, pages 293-322. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2000.

Johan Bengtsson and Wang Yi. Timed Automata: Semantics, Algorithms
and Tools. In Jorg Desel, Wolfgang Reisig, and Grzegorz Rozenberg, ed-
itors, Lectures on Concurrency and Petri Nets: Advances in Petri Nets,
pages 87—124. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

B. Bérard F. Cassez. Comparison of the expressiveness of timed automata
and time Petri nets. In In Proc. FORMATS 05, vol. 3829 of LNCS, pages
211-225. Springer, 2005.

Christos G. Cassandras and Stephane Lafortune. Introduction to Discrete
FEvent Systems. Springer Publishing Company, Incorporated, 2nd edition,
2010.

Danny Dolev, Joseph Y. Halpern, Barbara Simons, and Ray Strong. Dy-
namic fault-tolerant clock synchronization. J. ACM, 42(1):143-185, Jan-
uary 1995.

G. Frege and G. Patzig. Logische Untersuchungen. Kleine Reihe Vanden-
hoeck und Ruprecht. Vandenhoeck & Ruprecht, 1993.

Goran Fedja Frehse. Compositional verification of hybrid systems using
simulation relations. [Sl: sn], 2005.

R. Ghosh and C. Tomlin. Symbolic reachable set computation of piecewise
affine hybrid automata and its application to biological modelling: Delta-
notch protein signalling. IEE Proceedings - Systems Biology, 1(1):170-183,
June 2004.

[Hen00]

[LA14]

[LMS86]
[LSV03]

[Mit07]

[MLLO6]

[NOSY93)

[PV94]

[Ras05]

[RTP96]

[SA06]

[Sif99]

[$S01]
[STF*13]

[SY96]

[Ab12]

ThomasA. Henzinger. The Theory of Hybrid Automata. In M.Kemal
Inan and RobertP. Kurshan, editors, Verification of Digital and Hybrid
Systems, volume 170 of NATO ASI Series, pages 265—292. Springer Berlin
Heidelberg, 2000.

Hai Lin and Panos J. Antsaklis. Hybrid Dynamical Systems: An Introduc-
tion to Control and Verification. Foundations and Trends® in Systems
and Control, 1(1):1-172, 2014.

Leslie Lamport and P. M. Melliar-Smith. Byzantine Clock Synchronization.
Operating Systems Review, 20(3):10-16, 1986.

Nancy Lynch, Roberto Segala, and Frits Vaandrager. Hybrid I/O Au-
tomata. Inf. Comput., 185(1):105-157, August 2003.

Sayan Mitra. A Verification Framework for Hybrid Systems. PhD Thesis,
Massachusetts Institute of Technology, Cambridge, MA 02139, September
2007.

Sayan Mitra, Daniel Liberzon, and Nancy Lynch. Verifying Average Dwell
Time by Solving Optimization Problems. In Ashish Tiwari and Joao P.
Hespanha, editors, Hybrid Systems: Computation and Control (HSCC 06),
LNCS, Santa Barbara, CA, March 2006. Springer.

Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. An ap-
proach to the description and analysis of hybrid systems. Hybrid Systems,
pages 149-178, 1993.

Anuj Puri and Pravin Varaiya. Decidability of hybrid systems with rect-
angular differential inclusions. In David L. Dill, editor, Computer Aided
Verification: 6th International Conference, CAV 94 Stanford, California,
USA, June 21-238, 199/ Proceedings, pages 95-104. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 1994.

Jean-Frangois Raskin. An Introduction to Hybrid Automata. In Dimitrios
Hristu-Varsakelis and William S. Levine, editors, Handbook of Networked
and Embedded Control Systems, pages 491-517. Birkhduser Boston, Boston,
MA, 2005.

R. Alur, T. A. Henzinger, and Pei-Hsin Ho. Automatic symbolic verifica-
tion of embedded systems. IEEE Transactions on Software Engineering,
22(3):181-201, March 1996.

S. Di Cairano and A. Bemporad. An Equivalence Result between Linear
Hybrid Automata and Piecewise Affine Systems. In Proceedings of the 45th
IEEE Conference on Decision and Control, pages 2631-2636, December
2006.

Joseph Sifakis. The Compositional Specification of Timed Systems - A
Tutorial. In Proceedings of the 11th International Conference on Computer
Aided Verification, CAV ’99, pages 2-7, London, UK, UK, 1999. Springer-
Verlag.

A.J. van der Schaft and J. M. Schumacher. Compositionality issues in
discrete, continuous, and hybrid systems. International Journal of Robust
and Nonlinear Control, 2001.

Volker Schaus, Michael Tiede, Philipp M. Fischer, Daniel Liidtke, and An-
dreas Gerndt. A Continuous Verification Process in Concurrent Engineer-
ing. In ATAA Space Conference, September 2013.

Joseph Sifakis and Sergio Yovine. Compositional Specification of Timed
Systems (Extended Abstract). In STACS, 1996.

Erika Abrahdm. Modeling and Analysis of Hybrid Systems: Lecture Notes.
RWTH Aachen University, April 2012.

