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Abstract. In this paper guinea pig classification using deep learning
imaging methods was performed on the Nvidia DIGITS 6. Models capa-
ble of distinguishing skinny, abyssinian and crested fur types were cre-
ated in the process. To increase the classification accuracy empty images
(with only the background) were added to the data set. Upon evaluation,
the created model recognized the animals correctly from images taken in
various household backgrounds.

Keywords: deep learning - animal recognition - robotics

1 Introduction

Robotic systems are nowadays increasingly appearing in various industries. This
trend is also represented in various animal care facilities like farms, daries, shel-
ters [1,2] and more. New robotic systems are created, that fill the public space as
well as connect to the personal home environment. With the growing need of au-
tomating work more software and hardware platforms are employed to increase
the ease of life.

In this work, deep learning techniques were utilized to create a classification
model of guinea pigs in different home environments (living room, office, corridor,
etc.), to explore the possibilities of bringing such systems into the world of
household animals. Creating such a model was important, to understand how
machine learning algorithms would adapt to live creatures, while keeping a high
accuracy of the prediction and short inference times needed in robotics.

To address these problems GooglLeNet was used. The pre-trained model con-
nects various techniques known from Deep Learning like convolutions, pooling,
adding softmax and more [3], to distinguish all the objects that are present in
the image. It implements so called Inception modules, that range from 245 filters
to 1024 in top inception modules. The consequence of this is the possibility to
remove fully connected layers on top completly [4].

Gathered results, will perform as a base for future projects of animal social
and care systems. Example appliances could include:

— automatic feeding and cleaning systems,
— automatic pet door management,



— illness and status detectors,
— or mobile, home robots allowing the owners to check on their pets using
mobile software.

1.1 Related Works

Related works about animal classification were published in regard of wild animal
monitoring [5]. The authors used convolutional neural networks to create a model
from the Serengeti National Park camera-trap database snapshot containing
179683 images. Then they tested the set using popular topologies like AlexNet,
VGGNet, GoogleNet and finally ResNets.

Similarly convolutional neural networks were used to recognize 20 species
common in North America [6] over a 14346 image training data set. The im-
agery data from motion triggered cameras was automatically segmented using
the graph-cut algorithm.

Another approach was taken for classifying different animals for automated
species recognition [7]. The authors enforced ScSPM (Sparse coding Spatial
Pyramid Matching) [8] to extract and classify animal species over a 7 thou-
sand image data set. After that multi-class pre-trained SVMs were applied to
classify global features of animal species.

All mentioned authors follow a similar pattern when using machine learning
for image classification, but none of them concern household animals. All pre-
sented projects face different problems from those, that could be encountered in
a safe, indoor environment. Hence, different data acquisition techniques had to
be used.

1.2 Nvidia DIGITS

DIGITS (Nvidia Deep Learning GPU Training System) was used in this project.
It is an open-source project for training deep neural networks (DNNs). The soft-
ware simplifies common deep learning tasks such as managing data, designing
and training neural networks and monitoring performance in real time. [9,10].

The solution comes with pre-trained models (but it allows usage of self created
ones) for example:

— GoogLeNet (Inception),
AlexNet,

UNET,

— and more.

In this paper GooglLeNet was used as the model of choice.



2 Background / Formulation

Deep Learning (DL) is a machine learning technique growing in popularity over
the past few years. It is connected to the fact that it becomes more useful than
before thanks to the amount of available training data and advances in computer
hardware/software [11]. It allows to create models that perform the following
tasks:

— computer vision,

— speech recognition,

— natural language processing,
— recommendation systems,

— and more.

To understand how DL works, we should first define what learning actually
is. A simple definition was provided by Mitchell [12] as follows:

Definition 1. A computer program is said to learn from experience E with re-
spect to some class of tasks T and performance measure P, if its performance at
task in T, as measured by P, improves with experience E.

This can apply to different kind of tasks, performance measures and expe-
riences. In this paper we will focus on the task of object classification using
computer vision.

Classification of objects is based on describing to what category a given input
belongs. This can be used in robotics for tasks like delivering foods and drinks
to clients by the Willow Garage PR2 robot [13]. The general rule is to create an
algorithm that produces the funcion: f: IR"™ — {1,...,k}, where the category is
assigned when y = f(z) for input z.

This paper focused on supervised learning, which means that all data set
items were associated with a label (each guinea pig image was added to a specific
category). In practice, it means that the algorithm knew how to classify certain
objects with similary properties from the start.

2.1 Machine learning and neural networks

Articial neural networks are a subgroup of algirthms that are used for machine
learning. The main idea behind them is creating artificial neurons, wchich are
implemented as a non-linear function over a linear combination of input features.
Each neuron generally consist of one to multiple inputs with wages, activation
function, bias and one output.

In neural network algorithms we can tweak several parameters, that will
greately impact the final output: number of epochs, learning rate, solver type
and many more.

— Epoch - one complete pass of the data in the data set. The amount of epochs
should be determined through tests. Small number of epochs often leads to
bad predictions, while a big number leads to overfitting.



— Learning rate - describes the rate at which the network abandons old
beliefs, for new ones to take their place. The value must be correct, values
that are too big or too small may lead to bad predictions.

— Solver type - contains information about how the weights are updated for
the network. This project used Stochastic Gradient Descent (SGD) [14] and
Adam.

When working with machine learning algorithms, we can encounter two prob-
lems, that are the result of our actions - underfitting and overfitting.

Overfitting takes place, when the model is training the data too well. That
happens when noise, details or random fluctuations are taken into consideration,
which negatively impacts the performance of the model on any new data. In such
case, the parameters should be adjusted to constrain the amount of detail that
the model learns.

Underfitting on the other hand is usually the result of big learning rates.
The model becomes too general, which in the end gives bad results for object
classification. To provide a solution to the problem, usually adjusting parameters
or using different ML algorithms should be used.

2.2 Optimizers used in the project

Stochastic Gradient Descent (SGD) is one of the most popular algorithms
in DL. It is an extension to the first-order optimization algorithm: Gradient
Descent. In SGD, the gradient is an expectation, which may be estimated even
using a small set of samples. SGD has proven to work very well with deep learning
models. While it doesn’t guarantee finding the local minimum, it usually finds
a very low value of the cost funcion quickly.

The estimate from the example x minibatch m’ can be written as follows:
g = Z;ilL(xi,yi,H), where the loss is L (z,y,0) = —logp (y|z;0) for
each example.

Adam is an optimization algorithm that is used for iteratively updating the net-
work weights based on the training data. The algorithm combines two extensions
of the SGD: Adaptive Gradient Algorithm (AdaGrad) and Root Mean Square
Propagation(RMSProp). Instead of adapting the parameter learning rates based
on the average first moment (the mean) as in RMSProp, Adam also makes use
of the average of the second moments of the gradients (the uncentered variance).

2.3 Convolutional Networks

Convolutional Neural Networks (CNNs) are used for data, that has a known
grid-like topology. The name comes from the fact, that it employs an operation
called convolution, which is a kind of linear operation (instead of general matrix
multiplication).

Convolutions are operations on two functions of a real value argument. The
convolution can be represented as s(t) = (x * w)(t), where x is a single input, w



is a valid probability density function and ¢ is time. It leverages three important
ideas that can improve machine learning systems: sparse interactions, parameter
sharing and equivariant representations [11]. The output of the function is often
called the feature map.

Each layer of CNNs consists of three distinguishable stages: producing sets of
linear activations, detector stage and pooling. Pooling is a method that instead
of giving the output of the neural net, provides a summary statistic of all nearby
outputs. This is especially helpful, if images of variable size are given as an input.
Moreover it helps with feature extraction (as it is known, neural networks loose
data over time, with each layer) from convolutional layers.

2.4 GoogLeNet

GoogLeNet was introduced at ILSVRC 2014 competition, where it took first
place with a result of 6.67% error rate (which is close to human level perfor-
mance). The architecture consisted of 22 layers (27 with pooling) of the Deep
CNN reducing the number of parameters to 4 million (60 million compared from
AlexNet).

The main innovation between normal CNNs and GooglLeNet was the imple-
mentation of Inception modules. The modules ran several small convolutions in
order to reduce the number of parameters. Moreover batch normalization, RM-
Sprop and image distortions were used. Data from the previous layer was run
over four 1x1 convolutions, one 3x3 convolution and one 5x5 convolution, with
a 3x3 pooling added simultaneously. You can see the network presented on the
graph on Fig. 1.

The Inception module 3x3 and 5x5 condolutions ratio increases as higher
layers are achieved. This is due to the fact, that stacking Inception modules on
top of each other produces an effect where as features of higher abstraction are
captured by higher layers, their spatial concentration is expected to decrease [15].

The highest pro of the network is high inference speeds. GoogLeNet was
designed to be computational efficient, so that it could be run on devices with
limited computational power or low-memory footprint, making it a good choice
for robotics and its applications.

2.5 Deep Learning downsides

While Deep Learning is performing well for many cases of image classification, it
still has disadvantages, that should be considered when picking the right method.
The most known cons of the method are:

— small data sets can produce bad results,

long calculation time is a big factor,

— debugging is extremly hard,

picking good neural net parameters takes practice,
— it’s hard to gather the logic behind results.

With recent advantages in Deep Learning some of the factors are less limiting.
The learning duration for example, is being decreased using parallellization.
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Fig. 1. GoogLeNet 22 Convolutional Neural Network architecture featuring inception
layers.

3 Data Acquisition

The data was collected by recording a square video of each guinea pig over a
period of 30 seconds in different environments and then extracting frames as an
image. Each frame was then lowered in resolution to 256x256 px in order to fit
GoogLeNet requirements. Example images taken from the data set can be seen
in Fig. 2.

The entire data set consisted of 1098 images. From the initial data set - 25%
(274) images were excluded for model validation and 10% (110) were excluded to
calculate the test data loss and accuracy. Moreover 32 photos in different envi-
ronments (animal cage, sleepingroom, guestroom, balcony and bathroom) were
taken after the training to test the model behaviour. The visual representation
of the training data set can be seen on Fig. 3.

To ensure good accuracy of the model, images for each guinea pig had to
cover the whole anatomy of the animal. To achieve that, the following camera
positions were covered:

— facing the mouth,

— both sides front and back facing,

— rear view of the animal,

— top view with different distances to the guinea pig.

Moreover empty images (without guinea pigs) were added with the same
room backgrounds where previous photos were taken, to increase classification
accuracy in distinguishing wanted objects. This set contained 191 images mixed
with the guinea pig data set.

Guinea pigs phenotype highly depends on their breed. Therefore three different
subjects of diverese ages were used in the experiment:



Fig. 2. Example images for crested, abyssinian and skinny guinea pigs from the pro-
vided data set.

— Fifi (4 years, abyssinian),
— Rey (2 years, crested),
— Asajj (2 years, skinny).

Using the data, four labels were produced and assigned to the following neural
network classes, which provided a base for further classification:

— None - when there is no guinea pig in the image,
— Abyssinian, Crested and Skinny - fur type.

Image Count
I
8
I

Categary

Fig. 3. Data representation in the training data set. Category labels from left: crested,
skinny, abyssinian, none.



Finally the data was processed by the neural network, on different settings.
Two parameters were changed during testing: learning rate and optimizer used,
while the epoch count remained at 15. The settings can be seen below:

1. First test:
— Epoch count: 15,
— Learning rate: 0.001 with fixed policy,
— Optimizer: Stochastic Gradient Descent.
2. Second test:
— Epoch count: 15,
— Learning rate: 0.001 with step down policy,
— Optimizer: Adam.
3. Third test:
— Epoch count: 15,
— Learning rate: 0.01 with step down policy,
— Optimizer: Stochastic Gradient Descent.

4 Results

Final results for classification models were gathered from the neural networks
described in the previous section.

Performing the first test gave good results, although overfitting was discov-
ered around epoch 13, with accuracy of 98,95% and loss of 0.04. Later epochs
drastically fell in value, producing an accuracy of 65,63% and loss of 1.03. Over-
fitting appeared because of the low learning rate from the very start, which
should have been avoided.

Second test, using Adam as the solver type, provided the best results. The
final acurracy and loss after 15 epochs were 99.31% and 0.04 respectfully. A
different training rate (0.01) was also tested, but it didn’t provide any useful
results.

The final test gave good results, but not satisfactory - it produced an accuracy
of 87,15% and loss of 0.32. That was not enough to be used for the guinea pig
classification system (the predictions would give false-positives).

The final classification model that was selected for further use and testing,
was taken from test number two, using the Adam optimizer. Over 15 epochs
with a learning rate of 0.001 ran on the GoogLeNet model on Nvidia DIGITS,
it has provided the best results. Using more epochs and a different learning rate
was tested afterwards, but it led to overfitting of the data. You can see the final
result on Fig. 4.

4.1 Manual image test results

After the model was created, a series of tests were performed to check, if the
inference is correct. The first set of tests consisted of images from the previously
gathered data set. The prediction was always right for provided images, with the
value between 70%-95%. You can see an example result on Fig. 5.
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Fig. 4. Graph showing the final accuracy (orange) and loss (green) of the second test
running Adam optimizer.

Moreover, as soon as acquiring enough information from predictions was
done, tests on new images were performed (different environments, same guinea
pigs) giving satisfactory results - guinea pigs were classified correctly on each
provided picture containing the animal. Example result one such case can be
seen on Fig. 6.

One failed prediction was encountered, when a picture of a background with
a cat was used. The cat was badly classified as an abyssinian guinea pig. This
happened due to the fact, that the data set didn’t contain images that were in
any case similar to the cat picture used. More cases like that can be produced
with the provided model, as it was trained on specific data in the first place.

Predictions
skinny [ 70.53% ]
crested
none [ 3.38% )
abyssinian [ 0.4% ]

Fig. 5. Example correct prediction results (79.53%) using previously captured images
in selected environments.
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Fig. 6. Example correct prediction results (94.0%) using post-model captured images
in animal cage environment.

5 Conclusion / Future work

Modern robotics highly depend on sensor readings of the surrounding environ-
ment. They often use camera input as one of the parameters to perceive the
world. Due to that, imaging methods for decision-making were introduced.

In this paper Deep Learning was implemented for guinea pig classification
in order to explore the possibilities of introducing household animal care using
robotics and automation, while keeping them safe.

The provided GoogleNet model from Nvidia DIGITS has proven successful
in identifying the guinea pigs in different environments, even when taking images
that weren’t originally added to the data set. Some errors were observed (false-
positives) when no guinea pigs were present in the tested image. The model
will behave poorly when other animals are present in the pictures, since the
classification was based purely on guinea pigs.

Increasing the accuracy of the model, can greately improve the robot-animal
interactions, allowing to tailor behaviours to specific beings. This could be achieved
by using modifying the learning rate, using more images, creating more labels or
finally using a different optimizer or pre-built model. There are many possible
variables to take into consideration, when building a model for a defined task.

The guinea pig classification model after building with GoogLeNet, was able
to provide results almost instantly. This is important, if used for robotics, because
while waiting for an action, the environment can change quite drasticly. More-
over, such model are built to be deployed on an autonomous platform (Raspberry,
Jetson TX2 or any other), so the memory usage will be limited, increasing the
inference calculation time.

The created model proves that guinea pig fur recognition for robotic systems
is possible. The project gave good results - the created model recognized the
animals correctly from images taken in various household backgrounds. The
prediction was acquired fast making the inference time low. This is especially
important for robotic systems that deal with live animals, because the reaction
times need to be rapid.



Future work might include robotic systems that monitor the state of specific
animals, adjust food distribution depending on image readings or alert when the
guinea pig suffers from any kind of illness.

Moreover, different types of models can be employed to see, which one fits
the needs the most. The project shouldn’t be limited to GoogLeNet.
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