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Before formulation of some extensions of elementary cause-effect (c-e) struc-
tures (see References), let us outline their concept by examples. A c-e struc-
ture (both elementary - a counterpart of 1-safe Petri nets - and extended)
is a directed graph with predecessors and successors of every vertex (node)
grouped into families of sets, as shows left graph in Fig.1: predecessors of e:
{{a, b}, {b, c}, {d}}, successors: {{f, g}, {h}}. In the right graph, the node sym-

Fig. 1. left: graph with encircled families of predecessors and successors of e; right:
graph with subscripted and superscripted symbols of nodes.

bols are subscripted and superscripted with expressions called formal polyno-
mials, that determine the grouping, so that the ”operator of multiplication •”
collects the arguments into a group, whereas ”operator of addition +” sepa-
rates the groups. Symbol θ denotes the empty family. Thus, this graph is the
set {aθe, bθe, cθe, dθe, ea•b+b•c+df•g+h , feθ , g

e
θ , h

e
θ}. Each c-e structure can be represented

by a set of such annotated nodes. The arrows, though helpful to understand its
dynamics, are a superfluous information. Informally, the dynamics is a ”token
game”: node e can receive signals (represented by tokens) simultaneously from
a and b or simultaneously from b and c or only from d, and send signals simul-
taneously to f and g or only to h. Thus, the operator ”•” means simultaneity,
while ”+” - exclusive choice. As a realistic example, consider the c-e structure
ROAD in Fig.2, describing a traffic through the bridge B on the two-lane road,
each lane for vehicles heading in the opposite directions. The bridge can hold
only one vehicle at a time.



Fig. 2. c-e structure ROAD. Traffic from the East: E′ → E → B → e → e′ and
from the West: W ′ → W → B → w → w′. Nodes r and l prevent the U-turn on the
bridge: a token in r makes impossible move E → B → w, while in l - impossible move
W → B → e.

Thus, in the set-like notation,
ROAD = {E′θE , EE

′

B , BE•r+W•le•r+w•l , r
B
B , e

B
e′ , e

′e
θ , W

′θ
W , W

W ′

B , lBB , w
B
w′ , w′wθ }.

Anticipating the formal definitions, notice that this is a combination ROAD =
EW •R+WE • L, where EW = {E′θE , EE

′

B , BEe , e
B
e′ , e

′e
θ },

WE = {W ′θW ,WW ′

B , BWw , wBw′ , w′wθ }, r = {rBB ,Brr}, l = {lBB ,Bll}, or pictorially,
a combination of the c-e structures in Fig.3. So, the ”multiplication” and ”ad-

Fig. 3. traffic East → West and West → East, and no-U-turn control.

dition” are now extended from the formal polynomials onto c-e structures, so
that ”•” and ”+” mean making union of sets being their arguments, with formal
product and sum of subscripts/superscripts of nodes identically named in both
sets. Now, the formal definitions.

Definition 1 (set F [X], quasi semiring of formal polynomials)

Let X be a non-empty enumerable set. Their elements, called nodes, are coun-
terparts of places in Petri nets [Rei 85]. Let θ /∈ X be a symbol called neutral.
It will play a role of neutral element for operations on expressions, called formal
polynomials over X. The names of nodes, symbol θ, operators +, • and paren-
theses are symbols out of which formal polynomials are formed in the usual



(infix) way. Their set is denoted by F [X]. Stronger binding of • than +, allows
for dropping some parentheses. Addition and multiplication of K,L ∈F [X] is
defined as follows: K ⊕ L = (K + L), K � L = (K • L). Let us use + and •
instead of ⊕ and �. It is required that the system 〈F [X],+, •, θ〉 obeys the
following equality axioms for all K,L,M ∈ F [X], x ∈ X:

(+) θ +K = K + θ = K (•) θ •K = K • θ = K
(++) K +K = K (••) x • x = x
(+++) K + L = L+K (• • •) K • L = L •K
(++++) K + (L+M) = (K + L) +M (• • ••) K • (L •M) = (K • L) •M
(+•) If L 6= θ ⇔M 6= θ then K • (L+M) = K • L+K •M
Algebraic system which obeys these axioms will be referred to as a quasi-semiring
of formal polynomials.3 �

The system 〈F [X],+, •, θ〉 has a ”family of sets” model shown above, thus is
consistent. Its peculiarity, in contrast to the ordinary semiring, is axiom (+•) -
the conditional distributivity of multiplication over addition, and the neutral θ
for both operations. These assumptions make c-e structures behaviourally equiv-
alent to Petri nets.

Definition 2 (cause-effect structure, carrier, set CE)

A cause-effect structure (c-e structure) over X is a pair U = (C,E) of total and
injective functions:

C: X→ F [X] (cause function; nodes occuring in C(x) are causes of x)
E: X→ F [X] (effect function; nodes occuring in E(x) are effects of x)

such that x occurs in the formal polynomial C(y) iff y occurs in E(x). Carrier
of U is the set car(U) = {x ∈ X : C(x) 6= θ∨ E(x) 6= θ}. U is of finite carrier
iff |car(U)| <∞ (| ... | denotes cardinality). The set of all c-e structures over X
is denoted by CE [X]. Since X is fixed, we write CE - wherever this makes no
confusion. �

Since functions C and E are total, each c-e structure comprises all nodes from X,
also the isolated ones - those from outside of its carrier. Presenting c-e structures
graphically, only their carriers are pictured.

Definition 3 (addition and multiplication, monomial c-e structure)

For c-e structures U = (CU , EU ), V = (CV , EV ) define:
U + V = (CU+V , EU+V ) = (CU + CV , EU + EV ) where
(CU + CV )(x) = CU (x) + CV (x)
U • V = (CU•V , EU•V ) = (CU • CV , EU • EV ) where
(CU • CV )(x) = CU (x) • CV (x)

3 In the early papers on cause-effect structures, the term ”near-semiring” has been
used. But in the meantime some authors used it in different meaning, so, we use
term ”quasi-semiring” for this axiomatic system.



(The same symbol is used for multiplication of c-e structures, functions and
polynomials)

U is a monomial c-e structure iff each polynomial CU (x) and EU (x) is a mono-
mial, i.e. does not comprise non-reducible “+“. �

Evidently U + V ∈ CE and U • V ∈CE that is, in the resulting structures,
x occurs in CU+V (y) iff y occurs in EU+V (x) and the same for U • V . Thus,
addition and multiplication of c-e structures yield correct c-e structures.

The set CE with addition, multiplication and a distinguished element de-
noted also by θ and understood as the empty c-e structure (θ, θ), where θ is a
constant function θ(x) = θ for all x ∈ X, makes an algebraic system similar to
that in Definition 1.

Proposition 1 (quasi semiring of c-e structures)

The system 〈CE [X],+, •, θ〉 obeys the following equations for all
U, V,W ∈ CE [X], x, y ∈ X:

(+) θ + U = U + θ = U (•) θ • U = U • θ = U
(++) U+U = U (••) (x→ y)•(x→ y) = x→ y
(+++) U + V = U + V (• • •) U • V = V • U
(++++) U+(V +W ) = (U+V )+W (••••) U • (V •W ) = (U •V )•W
(+•) If CV (x) 6= θ ⇔ CW (x) 6= θ and EV (x) 6= θ ⇔ EW (x) 6= θ then

U • (V +W ) = U • V + U •W �

This follows directly from definition of c-e structures and definitions of adding
and multiplying c-e structures. The operations on c-e structures make possible
to combine small c-e structures into large ones.

Definition 4 (partial order ≤; substructure, set SUB [V ])

For U, V ∈ CE let U ≤ V ⇔ V = U + V ; obviously, ≤ is a partial order in
CE. If U ≤ V then U is a substructure of V ; SUB [V ]= {U : U ≤ V } is the
set of all substructures of V . For A ⊆CE : V ∈ A is minimal (w.r.t. ≤) in A iff
∀W ∈ A: (W ≤ V ⇒W = V ) �

The crucial notion for behaviour of c-e structures is firing component, a coun-
terpart of transition in Petri nets, i.e. a state transformer. It is, however, not a
primitive notion but derived from the definition of c-e structures, and is intro-
duced regardless of any particular c-e structure:

Definition 5 (firing component, set FC, pre-set and post-set)

A minimal in CE\{θ} c-e structure Q = (CQ, EQ) is a firing component iff Q
is a monomial c-e structure and CQ(x) = θ ⇔ EQ(x) 6= θ for any x ∈ car(Q).
The set of all firing components is denoted by FC, thus the set of all firing



components of U ∈CE is FC [U ] = SUB [U ] ∩ FC. Following the standard
Petri net notation, let for Q ∈ FC and G ⊆ FC :
•Q = {x ∈ car(Q) : CQ(x) = θ} (pre-set of Q)
Q• = {x ∈ car(Q) : EQ(x) = θ} (post-set of Q)
•Q• = •Q ∪Q• �

So, the firing component is a connected graph, due to the required minimality.
Elements of the pre-set are its causes and elements of the post-set are its effects.
Of many conclusions from above definitions, some are worth to point out:

Proposition 2

(a) U1 ≤ V1 ∧ U2 ≤ V2 ⇒ U1 + U2 ≤ V1 + V2 (monotonicity of +)
(b) U • (V +W ) ≤ U • V + U •W but equality not always holds
(c) U ≤ V ⇒FC [U ] ⊆ FC [V ] but converse implication not always holds
(d) FC [U ]∪FC [V ] ⊆ FC [U + V ] but converse inclusion not always holds

Point (d) states that new firing components may appear when summing up c-e
structures. For instance, let U = {ax+y, bx•y, xa•b, ya•b}, V = {ax•y, xa, ya},
thus FC[U ] = ∅, FC[V ] = {V },
FC[U + V ] = {{ax, xa}, {ay, ya}, V, {ax•y, bx•y, xa•b, ya•b}}, thus
FC[U ]∪FC [V ] 6=FC[U + V ]. The phenomenon of creation new firing compo-
nents when assembling c-e structures from smaller parts, reflects a general ob-
servation: compound systems may sometimes reveal behaviours absent in their
parts.

Definition 6 (state of c-e structure)

A state of c-e structure U is a total injective function s : car(U)→ Nω, thus a
multiset over car(U) (Nω = N ∪ {ω}, where ω symbolises infinity, that is ω > n
for each n ∈ N; N is the set of natural numbers, with 0). The set of all states of
U is denoted by S. �

Definition 7 (weights of monomials and capacity of nodes)

Given a c-e structure U = (C,E) and its firing component Q ∈FC [U ], let along
with the pre-set •Q and post-set Q• of Q, some multisets •Q: •Q → Nω\{0}
and Q•: Q• → Nω\{0} be given as additional information. The value •Q(x) is
called a weight (or multiplicity) of monomial EQ(x) and the value Q•(x) - a
weight (or multiplicity) of monomial CQ(x). Let cap be a total injective function
cap : car(U) → Nω, assigning a capacity to each node in the set car(U). A c-e
structure with such enhanced firing components is called a c-e structure-with-
weights of monomials and capacity of nodes. �

Definition 8 (firing components enabled and with inhibitors)

For a firing component Q ∈FC [U ], the set inh[Q] = {x ∈ •Q : •Q(x) = ω} is
the collection of nodes in the pre-set of Q, whose effect monomials EQ(x) are of
weight ω. The nodes in inh[Q] will play role of inhibiting nodes of firing compo-

nent Q, as follows. For Q and state s let us define the formula: enabled[Q](s)
def⇔



∀x ∈ inh[Q] : s(x) = 0∧
∀x ∈ •Q\inh[Q] : •Q(x) ≤ s(x) ≤ cap(x)∧
∀x ∈ Q• : Q•(x) + s(x) ≤ cap(x) �

So, Q is enabled at the state s iff none of inhibiting nodes x ∈ •Q contains
a token and each remaining node in •Q does, with no fewer tokens than is
the weight of its effect monomial EQ(x) and no more than capacity of each
x ∈ •Q. Moreover, none of x ∈ Q• holds more tokens than their number, when
increased by the weight of its cause monomial CQ(x), exceedes capacity of x.
The inhibiting nodes of a firing components will be called its inhibitors.

Fig.4(a) shows a firing component Q with weighted (multiplied) effect monomials
EQ(a) = 5 ⊗ x, EQ(b) = ω ⊗ (x • y), EQ(c) = 3 ⊗ y and weighted cause
monomials CQ(x) = 2⊗ (a • b), CQ(y) = 4⊗ (b • c). The inhibitor of Q is node
b. Fig.4(b) shows the behaviourally equivalent single transition in Petri net with
weights and inhibitor arrow.

Fig. 4. (a) Firing component Q with weights; 2 ⊗ (a • b), ω ⊗ (x • y), etc. denote
multiplicity of the product a • b by the factor 2 = Q•(x) and product x • y by factor
ω =•Q(b). (b) Behaviourally equivalent Petri net transition.

Definition 9 (semantics [[ ]] of c-e structures with inhibitors)

For Q ∈FC [U ] , let [[Q]] ⊆ S× S be a binary relation defined as:

(s, t) ∈ [[Q]] iff enabled[Q](s) ∧ t = (s− •Q) +Q• ≤ cap (Q transforms state
s into t). Semantics [[U ]] of U ∈CE is [[U ]] =

⋃
Q∈FC [U ]

[[Q]]. Closure,

reachability and computation: (s, t) ∈ [[U ]]∗ iff s = t or there is a sequence
of states s0, s1, ..., sn with s = s0, t = sn and (sj , sj+1) ∈ [[U ]] for
j = 0, 1, ..., n−1. State t is reachable from s in semantics [[ ]] and the sequenece
s0, s1, ..., sn is a computation in U . �

In the c-e structure which presents a ride throught the bridge B, the priority
ride from the East can be enforced using inhibitor, i.e. node E in the pre-set of
firing component {W θ

B , E
θ
ω⊗B , l

θ
B , B

W•E•l
θ }, as shown in Fig.5.

Firing components {EθB , rθB , BE•rθ } and {W θ
B , E

θ
ω⊗B , l

θ
B , B

W•E•l
θ } of the c-

e structure in Fig.5 have Petri nets (with inhibitor arcs) counterparts as two
transitions shown in Fig.6.



Fig. 5. If at E and W are vehicles (tokens) and none at B, then only the one in E
will get entry permit at B, since only firing component {Eθ

B , r
θ
B , B

E•r
θ } can fire in

such state, not this one: {W θ
B , E

θ
ω⊗B , l

θ
B , B

W•E•l
θ } - due to its inhibiting node E if it

contains a token.

Fig. 6. Petri net counterpart of two firing components with place B of c-e structure
shown in Fig.3.2. Inhibitor arc leads from place E to the left transition.

Example (the Readers/Writers problem)

A set of n sequential agents run concurrently under constraint: writing to a
common file by the j th (j = 1, 2, ..., n) agent prevents all remaining from reading
and writing, but not from their private (internal) activity. Reading may proceed
in parallel. Fig.7 shows three agents with the following meaning of nodes: Aj -
agent of number j = 1, 2, 3 is active (holds a token) if it is neither reading nor
writing; Rj - is active if the j th agent is reading; Wj - is active if the j th agent
is writing. Wj and Rj play both roles: of the ordinary nodes or of the inhibitors,
dependently which firing component they belong to.

A few semantic properties of c-e structures are in:

Proposition 3

For any c-e structures U, V ∈CE :

(a) U ≤ V ⇒FC [U ] ⊆FC [V ]⇒ [[U ]] ⊆ [[V ]]⇒ [[U ]]∗ ⊆ [[V ]]∗

(b) [[U ]] ∪ [[V ]] ⊆ [[U + V ]], but the reverse inclusion not always holds

(c) FC [U ]∪FC [V ] =FC [U + V ]⇒ [[U ]]∪ [[V ]] = [[U + V ]] but not conversely.

(d) FC [U ]∪FC [V ] =FC [U + V ] and [[U ]]∗ ∪ [[V ]]∗ = [[U + V ]]∗

are unrelated by implication. �



Fig. 7. Three agents’ Readers/Writers system as a c-e structure RW with inhibitors;
the dashed arrows denote usage of inhibitors. Initially, the agents are neither reading
nor writing (tokens in A1, A2, A3).

Another extension: c-e structures with time.

Time models are different from those in Petri nets with time, where time is
usually treated as necessary or admissible period of activity of a node (site or
action). Here, the minimal time model is considered, where capacity of nodes
equal 1, and with each node a time period of mandatory stay of a token is
associated. This is the shortest time during which the node must hold the
token. On expiry of this period, the token can leave the node (if other necessary
conditions for this ”move” are met). Lapse of time may be related either to
individual firing components or to the whole c-e structure. The period of a
token stay at a node is set up on entering this token into it and decreases by one
time unit (”tick”) of the timer referred to by the node, until permission to leave
this node. On expiry of the mandatory residing time at this node, the token can
leave it if all other conditions for this action are met. Any c-e structure with
the minimal time model can be simulated (”implemented”) by a c-e structure
without time but with some additional nodes associated with every original node.
A number of these supplementing and linearly ordered nodes represent duration
of mandatory stay of a token in the original node.

Definition 10 (min-time c-e structure, set TminCE)

U = 〈C,E, Tmin〉 is a minimal-time c-e structure iff 〈C,E〉 c-e structure with
capacity of nodes equal 1, and Tmin: car(U) → N\{0} is a minimal time
function of the meaning: Tmin(x) is the least number of time units indicated
by a timer referred to by the node x, during which a token must stay at x since
its appearance. The timer is associated to a particular node. The set of all the
min-time c-e structures over is denoted by TminCE �



Definition 11 (state of min-time c-e structure)

State is a function s : X → N with the informal meaning: s(x) = 0 if there
is no token at the node x and s(x) > 1 is a remaining time (a number of
ticks of the timer referred to by x) during which the token must remain at
x; s(x) = 1 indicates that the time of compulsory residence of a token at
the node x, prescribed by Tmin(x) has elapsed, thus, the token can be moved
further - if other conditions for this are satisfied. The set of all states is S = NX

(state-space). �

So, now, the s(x) is not a number of tokens residing at the node, but a current
time lapse.

Definition 12 (min-time semantics: a firing rule)

For Q ∈FC [U ], let [[Q]] ⊆ S×S be a binary relation defined as: (s, t) ∈ [[Q]]
if and only if:

∀x ∈ •Q : [s(x) = 1 ∧ t(x) = 0 ∧ ∀y ∈ Q• : [s(y) = 0 ∧ t(y) = Tmin(y)]∨
∃x ∈ •Q• : [s(x) > 1 ∧ t(x) = s(x)− 1]

Semantics [[U ]] of U ∈ TminCE is the union of relations [[U ]] =
⋃

Q∈FC [U ]

[[Q]].

[[U ]]∗ is the reflexive and transitive closure of [[U ]] �

The formula ∃x ∈ •Q• : [s(x) > 1 ∧ t(x) = s(x) − 1] expresses decrease by
one time unit of token’s stay at a certain node x of Q, if the minimal time of
this token has not expired in the state s. The minimal time can be simulated
by c-e structures without time constraints. An exemplary simulation of the c-e
structure in Fig.8 (firing component) depicts Fig.9.

Fig. 8. c-e structure (a firing component) with min-time assigned to nodes.

If the time is taken from a timer common to all nodes (violation of distributed
systems’ principles!), the semantics is re-interpreted: the decreasing elapse of
time now concerns all nodes in car(U), not only a given firing component. Thus,
the formula ∃x ∈ •Q• : [s(x) > 1 ∧ t(x) = s(x) − 1] would be replaced with
∃x ∈ car(Q) : [s(x) > 1∧ t(x) = s(x)− 1]. An example of this case, taken from
music, is in Fig.10.



Fig. 9. A possible simulation of the c-e structure in Fig.8 with the minimal time of
nodes, by means of no-time c-e structure. The separate timer (each with perhaps diverse
progress rate of time) is associated with every node. The counterclockwise direction of
a token’s motion inside the timers, simulates elapse of time controlled by the timers
associated with nodes a, b, x, y.

Fig. 10. First bar of the score of Prelude c-minor by Chopin, in the form of the min-
time c-e-structure. The notes are represented as nodes with assigned duration periods,
implemented by the control mechanism above the music text. The chords are accom-
plished by synchronization vertical notes, using multiplication “•”



The graphic examples have been tested by a computer program comprising
editor and simulator of the cause-effect structures [Chm 2003].

A number of problems and properties of extended c-e structures, not pre-
sented in this short note, can be transferred from elementary c-e structures (see
References). For instance such issues as:

– Decomposition of c-e structures
– Relation to Petri nets and to other models of concurrency
– C-e structures as lattices - their lattice properties
– Processes generated by c-e structures, monoid of processes
– Formal languages of c-e structure processes: the analysis and synthesis prob-

lems

Summarizing: the main motivation to develop the algebra (the quasi semir-
ing) of c-e structures, was to combine structuring mechanism and transformation
rules it provides, with appeal of simple pictorial and animated presentation of
modelled real life systems. This algebra is a formal background for combining
small c-e structures of easy to understand behaviour, into large system mod-
els, whose behavioral properties might be inferred from behaviour of their small
parts. Such feature is called a compositionality (here conditional) - a counter-
part of the extensionality in formal logic. Also, absence of explicit appearance
of transitions and adjacent arrows - as is the case of Petri nets - provides more
monitor space for graphic presentation.
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