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Abstract. We investigate a model for rough mereology based reasoning in which things in the uni-
verse of mereology are endowed with positive masses. We define mass based rough inclusions and
establish its properties. This model does encompass inter alia set theoretical universes of finite sets
with masses as cardinalities, probability universes with masses as probabilities of possible events,
sets of satisfiable formulas with values of satisfiability. We give an abstract version of the Bayes
theorem which does extend the classical Bayes theorem as well as the Łukasiewicz logical version
of the Bayes formula. We define the mass-based rough mereological logic (m-RM logic) and we
show that m-RM logic contains as a particular case the Łukasiewicz many-valued logic and that
m-RM logic becomes the Łukasiewicz logic of probability in the case when masses are satisfiability
values of indefinite formulas. We also establish an abstract form of the betweenness relation which
has proved itself important in problems of data analysis and behavioral robotics. We point finally to
applications in clustering and in the evidence theory.
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1. Introduction

In our investigations into problems of data analysis and behavioral robotics as a model for intelligent
agents, we have come at the theory of rough mereology as a useful environment for these investigations.
Rough mereology (or, as Achille Varzi has called it, the fuzzified mereology) rests on the notion of a
rough inclusion µ(x, y, r), a relation of being a part to a degree. In our studies of rough mereology,
we have applied some forms of rough inclusions, e.g., derived from Archimedean t-norms via their
Hilbertian representations or as residua of continuous t-norms, see, e.g. [11], [12], [17]. Basic forms
of applied by us rough inclusions are linked to well-known idea of Pascal-Galileo of the relation of
the number of favourable outcomes to the number of all outcomes of a random trial, the idea which in
modern times was exploited, e.g., by Łukasiewicz [6] in assigning fractional truth values to indefinite
formulas. We apply this idea of a fractional value towards a definition of an abstract class of rough
inclusions based on a notion of a mass assigned to things in a considered universe. This idea allows us to
relate to each pair x, y of things degrees of partial containment of x in y and of y in x, a fortiori leading
to a mass-based form of the Bayes theorem. The Bayes theorem known well from Probability Calculus,
was investigated in the framework of rough set theory as well, notably by Pawlak [9] due to its ability of
relating two-sided dependencies between pairs of things.

We define the mass based rough mereological logics and show that it translates into the Łukasiewicz
logic of probability calculus in [6]. We study relations of mass based rough mereology to many-valued
logics and show that a mass based rough mereological logic offers a generalization of the Łukasiewicz
many-valued logic based on the Łukasiewicz implication and negation.

We regard this work as a preliminary study into a new area of rough mereology which offers an
enriching of the repertoire of rough inclusions with applications in Data Analysis.

2. An outline of mereology

We accept here the standard version of mereology as proposed in Leśniewski [5] in his pioneering work.
The interested reader may as well consult, e.g., Casati and Varzi [2] or Polkowski [11], [12]. Given some
collection U of things regarded as individuals in ontological sense, a relation of a part is a binary relation
π on U which is required to be

M1 Irreflexive: For each thing x, it is not true that π(x, x).
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M2 Transitive: For each triple x, y, z of things, if π(x, y) and π(y, z), then π(x, z).
The relation of a part does induce the relation of an improper part Π(x, y), defined as

Π(x, y)⇔ π(x, y) ∨ x = y, (1)

which is clearly a partial order on things in U . The basic relation involving the notion of an improper
part is the relation of overlapping, Ov(x, y) in symbols, defined as follows.

Ov(x, y)⇔ ∃z.Π(z, x) ∧Π(z, y). (2)

The notion of overlapping in turn is instrumental in definition of the class operator in the sense of
Leśniewski [5]. This operator assigns to each non-empty collection of things F in the universe (U, π) its
class, ClsF which is a thing satisfying the two conditions:

(C1) If x ∈ F then Π(x,ClsF ).
(C2) If Π(x,ClsF ) then for each y with Π(y, x) there exists z ∈ F such that Ov(y, z).
One more important fact in the thery of mereology is the Leśniewski inference rule:
(IR) for each pair x, y of things, if for each thing z such that Π(z, x) there exists a thing w such that

Π(w, y) and Ov(z, w), then Π(x, y).
From (C1-2) and (IR) it follows directly

Proposition 2.1. For each thing x, it is true that x = Cls{z : Π(z, x)}.

We are now in a position to recall here two fusion operators due to Tarski [18]. These operators are
the sum x+ y and the product x · y defined by means of

x+ y = Cls{z : Π(z, x) ∨Π(z, y)} (3)

and

x · y = Cls{z : Π(z, x) ∧Π(z, y)} (4)

The things x, y are disjoint, dis(x, y) in symbols, whenever there is no thing z such that Π(z, x)
and Π(z, y) (a fortiori, the product of x and y is not defined). Hence, dis(x, y) holds true if and only if
Ov(x, y) is false.

The difference x− y is defined as follows

x− y = Cls{z ∈ U : Π(z, x) ∧ ¬Π(z, y)}. (5)

We denote with the symbol V the thing defined as

V = ClsU. (6)

which we call the universal thing.
Helped by V , for each thing x ∈ U , we define the complement to x denoted −x as follows

−x = V − x. (7)

We recall that those operations induce in the mereological universe the structure of a complete
Boolean algebra without the null element (U,+, ·,−, V ).
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Finally, we introduce the operation denoted x ↪→ y which we call the mereological implication and
define as

x ↪→ y = −x+ y. (8)

We define the truth condition for the mereological implication by declaring that
(T) x ↪→ y holds true if and only if −x+ y = V .

3. An outline of rough mereology

Rough (fuzzified, see Varzi [20]) mereology is a theory of rough inclusions. A rough inclusion on a
mereological universe U endowed with a part relation π is the relation µ(x, y, r) on the product U ×U ×
[0, 1] cf. Polkowski and Skowron [17] and Polkowski [11],[12], Polkowski and Artiemjew [14].

Rough inclusions satisfy the following postulates, relative to a given part relation π and the induced
by π relation Π of an improper part on U :

RINC1 µ(x, y, 1) if and only if Π(x, y).
This postulate asserts that parts to degree of 1 are improper or proper parts.

RINC2 if µ(x, y, 1) then for each thing z and r ∈ [0, 1] [if µ(z, x, r) then µ(z, y, r)].

This postulate does express a feature of partial containment that a ‘bigger’ thing contains a given
thing ‘more’ than a ‘smaller’ thing. It can be called the monotonicity condition for rough inclusions.

RINC3 µ(x, y, r) and s < r then µ(x, y, s).
This postulate specifies the meaning of the phrase ‘a part to a degree at least of r’.

We mention here the fact that rough inclusions have been extensively studied from the point of view
of granular computing and granular algorithms for classification in data in Polkowski and Artiemjew
[14].

4. Mass assignment on a mereological universe. The mass based rough
mereological logic (m-RM logic)

We introduce a new scheme for inducement of rough inclusions on the mereological unverse (U,Π) by
means of the mass assignment m : (0, 1] → U which assigns the value of mass m(x) to each thing
x in U . The notion of a mass is known from the evidence theory of Dempster and Schaffer, see, e.g.,
Dempster [3], where it is also called the basic probability assignment (b.p.a.). For a general discusuion
of mass expressions see Nicolas [7].

We assume that masses on things in U are positive. We introduce the symbol 0 to denote non-existing
things and we extend the mass assignment by letting

m(0) = 0. (9)

m-RM-logic We define the logic which settles the properties of mass assignments. This logic is a
generalization, inter alia, of the logic of probability calculus in Łukasiewicz [6]. The implication symbol
⇒ is understood as the symbol of implication in propositional calculus.
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Axioms
(A1) (x = V )⇔ (m(x) = 1).
(A2) (x = 0)⇔ (m(x) = 0).
(A3) (x ↪→ y)⇒ [m(y) = m(x) +m(−x · y)].
Theses
(T1) m(V ) = 1. By substitution x/V into A1.
(T2) m(0) = 0. By substitution x/0 into A2.
(T3) (x = y) ⇒ [m(x) = m(y)]. Proof: x = y is equivalent to Π(x, y) ∧ Π(y, x), hence, to

x(↪→ y) ∧ (y ↪→ x) which implies by A3 and positiveness of m that m(y) ≥ m(x) and m(x) ≥ m(y)
and finally m(y) = m(x).

(T4) m(x) + m(−x) = 1. Proof: substitute x/V in A3. Get m(V ) = m(x) + m(−x · V ), i.e.,
1 = m(x) +m(−x) by T1.

(T5) m(x + y) = m(x) + m(−x · y). Proof: Substitute y/x + y into A3 and get m(x + y) =
m(x) +m(−x · x+−x · y) = m(x) +m(−x · y).

(T6) m(y) = m(x · y) +m(−x · y). Proof: Substitute x/x · y into A3 and obtain m(y) = m(x · y) +
m(−(x · y) · y)=m(x · y) +m((−x+−y) · y)= m(x · y) +m(−x · y).

(T7) m(x + y) = m(x) + m(y) −m(x · y). Proof: hint in Łukasiewicz [6]: subtract thesis in T5
from thesis in T6.

(T8) dis(x, y) ⇒ m(x + y) = m(x) + m(y). Proof: dis(x, y) is equivalent to x · y = 0, hence,
m(x · y) = 0 by T2 and the thesis follows by T6.

(T9) m(x+ y) = m(x) +m(y)⇒ x · y = 0. Proof: by T7, m(x · y) = 0 so by T2 x · y = 0.
(T10) m(x) + m(−x · y) = m(y) ⇒ (x ↪→ y). Proof: by T8, m(y) = m(x) + m(−x · y) =

m(x+−x · y) = m(x+ y) so −x+ y = V , i.e. x ↪→ y holds true.
We define the mass assignment of x relative to y, denoted my(x) and defined as follows

Def.1. my(x) =
m(x · y)

m(x)
. (10)

(T11) mx(V ) = m(x). Proof: mx(V ) = m(V ·x)
m(V ) = m(x)

1 = m(x).
(T12) m(x · y) = m(x) ·my(x) = m(y) ·mx(y). Proof: by definition (10)
(T13) [The Bayes theorem in mass mereology] my(x) = m(y)·mx(y)

m(x) . Proof: from T12.
Following Łukasiewicz [6](Df(2), p. 29 in Selected Works), we define independence of things as the

relation I(x, y):
Def2. I(x, y)⇔ my(x) = my(−x). (11)

(T14) I(x, y)⇔ m(x·y)
m(x) = m(−x·y)

m(−x) . Proof: by Def 2 and Def. 1.
(T15) I(x, y) ⇔ m(x · y) = m(x) · m(y). Proof: Łukasiewicz (loc.cit.) shows the most elegant

proof so we apply his idea here. From m(x·y)
m(x) = m(−x·y)

m(−x) , on assumption that I(x, y), it follows that

m(x · y)

m(x)
=
m(−x · y)

m(−x)
=
m(x · y) +m(−x · y)

m(x) +m(−x)
=
m(y)

1
= m(y).

It follows from above that mass m is additive: m(x+ y) = m(x) +m(y) when x and y are disjoint.
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5. The Bayes formula

The simple Bayes formula has been proved as T13 in the preceding section. Now, we prove its general
form

(T16) +i 6=j yi · yj = 0 ∧+iyi = V ⇒ mz(x) =
m(z)mx(z)∑k

j=1m(yj)myj (x)
.

Proposition 5.1. There exists a set Y = y1, y2, · · · , yk of things in U (the reference set) such that for
each thing x it is true that

m(x) =
k∑
j=1

m(yj)myj (x).

Proof:
Let Y be a maximal set of pairwise disjoint things. Then, +Y = V . Given an arbitrarily chosen thing
x, there exists the set Y (x) ⊆ Y such that if Ov(x, yj) then yj ∈ Y for j = 1, 2, · · · , k. We need to
establish the truth of some claims.

Claim 1. x = Cls{x · yj : yj ∈ Y (x)}.

Proof:
We recall that x = Cls{z : Π(z, x)} and we use the inference rule (IR) to establish that things on both
sides of Claim 1 are improper elements of each other, hence, they are equal.

Let Π(z, x); there exists yj in Y (x) such that z overlaps with yj and Π(z · yj , x · yj) holds true,
hence, by (IR), Π(x,Cls{x · yj : yj ∈ Y (x)}) is true.

For the converse, let Π(z, Cls{x·yj : yj ∈ Y (x)}); there exist things u, v such that Π(u, z), Π(u, v),
w = x · yp for some yp ∈ Y (x) , hence Π(w, x) and, by (IR), Π(Cls{x · yj : yj ∈ Y (x)}, x).

It follows finally that x = Cls{x · yj : yj ∈ Y (x)}. ut

Claim 2. Cls{x · yj : yj ∈ Y (x)} = +yj∈Y (x)(x · yj).

Proof:
It goes on the same lines as the proof of Claim 1. ut

Claim 3. x = +k
j=1(x · yj).

Proof:
By Claims 1 and 2. ut

By additivity of the mass m and by Claim 3 it follows that
Claim 4.

m(x) =

k∑
j=1

m(x · yj) =

k∑
j=1

m(yj) ·myj (x).

Hence, by T13 and Claim 4,

mz(x) =
m(z) ·mx(z)∑k

j=1m(yj) ·myj (x)
.

The Bayes formula is proved. ut
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6. Rough inclusions induced by mass assignments

For things in a universe U and a mass assignment m, we define the relation µm(x, y, r), where x, y ∈ U
and r ∈ [0, 1], as follows

µm(x, y, r)⇔ m(x · y)

m(x)
≥ r. (12)

Hence, µm(x, y, r) coincides on the left-hand side with already discussed relative mass my(x).We
denote with the symbol µm(x, y) the greatest value of r possible, i.e.,

µm(x, y) =
m(x · y)

m(x)
. (13)

For things x, y ∈ U , we define the notion of an improper part Π(x, y) as follows

Definition 6.1. Π(x, y)⇔ (x · y = x).

We establish the following properties of the relation Π and of function µ.
(T17) Π(x, y)⇒ µm(x, y) = 1. Proof: by definition6.1 and equation (12).
(T18) Π(x, y)∧Π(y, x)⇒ (x = y). Proof: by definition 6.1, x · y = x and x · y = y, hence, x = y.
(T19) Π(x, x). Proof: x · x = x.
(T20) Π(x, y) ∧ Π(y, z) ⇒ Π(x, z). Proof: from x · y = x and y · z = y, we obtain x · z =

(x · y) · z=x · (y · z) = x · y = x.
(T18), T(19) and (T20) show that Π is a genuine notion of an improper part and π(x, y)⇔ Π(x, y)∧

x 6= y is the corresponding notion of a part.
(T21) (µm(x, y) = 1)⇒ Π(x, y). Proof: as x · y ↪→ x, we have by A3: m(x) = m(x · y) +m(x−

x · y), hence, m(x− x · y) = 0 so x− x · y = 0, hence, x = x · y, i.e., Π(x, y).
(T22) Π(x, y)⇒ x ↪→ y. Proof: from x ·y = x, we obtain−x+y = −(x ·y)+y =−x+(−y)+y =

−x+ V = V .
(T23) (x ↪→ y)⇒ Π(x, y). Proof: from−x+y = V it follows that−x ·x+y ·x = x, i.e., y ·x = x.
(T24) Π(x, y)⇔ x ↪→ y ⇔ µm(x, y) = 1. Proof: by T17, T21, T22, T23.
(T25) Π(x, y) ⇒ m(x) ≤ m(y). Proof: by T22 and A3, we have m(y) = m(x) + m(y · (−x)),

hence, m(y) ≥ m(x).
(T26) [(µm(x, y) = 1)∧(µm(z, x) = r)]⇒ (µm(z, y) ≥ r). Proof: as Π(x, y), hence, Π(z ·x, z ·y),

T25 implies that m(z · x) ≤ m(z · y), hence, µm(z, y) ≥ µm(z, x).
T24, T26 imply that µ defined by us is a genuine rough inclusion satisfying (RINC1), (RINC2) and

in an obvious way (RINC3).
Let us recall the simple form of the Bayes theorem T13 rendered with the help of the rough inclusion

µ:
(T13)* µm(x, y) = m(y)·µm(y,x)

m(x) .
We infer from this theorem some new facts on the rough inclusion µ.
(T27) Π(x, y)⇒ µm(y, x) = m(x)

m(y) . Proof: let µm(x, y) = 1 in T13*.

(T28) µm(x,y)
µm(y,x) = m(y)

m(x) . Proof. Direct from T13*.

(T29) [Transitivity formula] µm(x,y)
µm(,x) ·

µm(y,z)
µm(z,y) = µm(x,z)

µm(z,x) . Proof: from T28.
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(T30) µm(x,−y) = 1 − µm(x, y). Proof: as x · y ↪→ x, we have by A3 that m(x) = m(x ·
y) + m(−(x · y) · x) = m(x · y) + m((−y) · x) and thus m((−y) · x) = m(x) − m(x · y). Hence,
µm(x,−y) = m((−y)·x)

m(x) =m(x)−m(x·y)
m(x) =m(x)

m(x) −
m(x·y)
m(x) =1− µm(x, y).

7. The Łukasiewicz logic of probability as a particular case of m-RM
logic. Relations of m-RM logic to many-valued logics and a general-
ization of the Łukasiewicz ‘fuzzy’ logic

In Łukasiewicz [6], the rendering of rules of probability in the logical form was proposed. This work
brought for the idea of fractional values of logical formulas, the idea applied in Computer Science,
notably in Machine Learning and Data Analysis,e.g., in the form of rough inclusions in decision sys-
tems [11], in rough mereology [17] or in definition of the rough memebership functions in Pawlak and
Skowron [10]. Łukasiewicz considered a collection of indefinite formulas of the form q(x) over a finite
universe U and for a formula q(x) he defined its value w(q) as the fraction

w(q) =
|{u ∈ U : q(u) is true}|

|U |
, (14)

where |X| denotes the cardinality of the finite set X .
We define the function tr from symbols of arguments and operations ofm−RM logic onto symbols

and operations of the logic of probability. For a thesis λ ofm−RM logic, the formula δ such that λ tr δ)
is a thesis of the logic of probability.

For symbols: x tr a, y tr b,m tr w, 1 tr 1, 0 tr 0, V tr 1.
For operations: −x tr a,−y tr b, x+ y tr a+ b, xy tr ab, µ(x, y) tr wa(b). Hence, x ↪→ y tr a > b.

7.1. Many-valued ‘fuzzy’ logics

The name for those many-valued logics comes from their importance for Artificial Intelligence and Ma-
chine Learning, see Hájek [4] for the theory of t-norms and ‘fuzzy’ logics. We recall here the ‘classical’
ones studied fom theoretical point of view and in applications.

They are induced by t-norms, respectively, the minimum t-normM(x, y), the product t-norm P (x, y)
and the Łukasiewicz t-norm L(x, y) defined as follows on the unit square [0, 1]2

M(x, y) = min{x, y}, (15)

P (x, y) = x · y, (16)

and,

L(x, y) = max{0, x+ y − 1}. (17)

Each of those t-norms does induce the implication in the form of its residuum x →T y, where T
stands for the corresponding t-norm. When x ≤ y, each residuum takes on the value 1, so only the case
x > y does require definitions:
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x→M y = y, (18)

x→P y =
y

x
, (19)

and,

x→L y = min{1, 1− x+ y}. (20)

Along with negations defined as −x = x → 0, the residua→M ,→P ,→L define logics of, respec-
tively, Goedel, Goguen, Łukasiewicz.

Each of these residua defines the corresponding rough inclusion µGoedel, µGoguen, µLukasiewicz by
the formula µ(x, y, r) if and only if x→ y ≥ r, see [11].

7.2. m-RM logic against many-valued logics

We observe the following relationships showing that m-RM logic coincides to a substantial extent with
logics of Goedel, Goguen and Łukasiewicz and it offers a generalization of the last one.

(T31) If Π(x, y) then Goedel, Goguen, Łukasiewicz rough inclusions, and, the mass based rough
inclusion all give the value 1.

(T32) If x, y are independent, i.e., m(x · y) = m(x) ·m(y), then µm(x, y) = m(y), i.e., µm(x, y) =
µGoedel(x, y) : on collections of pairwise independent things, the degree of inclusion is given by the
Goedel logic; e.g. on collections of pairwise independent events in a finite probability space (or, more
generally, on collections of pairwise independent sets).

(T33) If Π(x, y) then m(y) ≥ m(x), hence, µm(y, x) = m(x)
m(y) , i.e., µm(y, x) = µGoguen(y, x),

so when x is an improper part in y with respect to the rough inclusion µm, then the reciprocal rough
inclusion µm(y, x) of y into x is defined also by the Goguen logic.

Finally, we consider the rough mereological implication x ↪→ y. We have
(T34) (i) If Π(x, y) then m(x ↪→ y) = 1;
(ii) If Π(y, x) them m(x ↪→ y) = 1−m(x) +m(y);
(iii) If neither Π(x, y) nor Π(y, x) then m(x ↪→ y) = 1−m(x− y).
Proofs. For (i): T24. For (ii): m(x ↪→ y) = m(−x + y)=m(V − (x − y)) = 1 − m(x − y) =

1−[m(x)−m(y)]=1−m(x)+m(y). For (iii): m(x ↪→ y) = m(−x+y)=m(V −(x−y)) = 1−m(x−y).
Letting for x ∈ [0, 1]: m(x) = x, we obtain the logic of Łukasiewicz: −x = 1 − x, x →L y =

min{1, 1−x+ y}. The case (iii) was not considered by Łukasiewicz as in his case the set of values was
the linearly ordered unit interval [0,1].

8. Betweenness and granularity in mass based rough mereology

The notion of betweenness relation due to Tarski [19], modified by van Benthem [1] and adapted by
us to the needs of data analysis and behavioral robotics will acquire here an abstract formulation in the
framework of the mass mereology.

We introduce first the notion of distance δ(x, y) between two things x, y in the universe U . We let

δ(x, y) = m(x− y) +m(y − x). (21)
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We say that the thing z is between things x, y, in symbolsBtw(z, x, y), when the following condition
is satisfied

(B) For each thing w not identical to z,and for each thing u such that Π(u,w) there exists a thing t such
that Π(t, z) and either δ(t, x) < δ(u, x) or δ(t, y) < δ(u, y).

We have the following proposition

Proposition 8.1. For each pair x, y of things, the sum x+ y is the only thing between x and y.

Proof:
Proof: assume that w 6= x + y so w does not satisfy the class definition for x + y, hence, there exists a
thing u such that Π(u,w) and u does overlap neither with x nor with y. Letting v as x or y, we have:
δ(u, x) = m(u) +m(x) > 0 while δ(x, x) = 0, similarly in case of y. ut

The condition (B) as well as the notion of betweenness can be extended for finite sets of things to the
notion GBtw(z, T ), where T is a finite set of things, of the generalized betweenness relation which
holds when the codition (GB) is satisfied

(GB) For each thing w 6= z and each thing u with Π(u,w) there exist a thing v such that Π(v, z) and
a thing t ∈ T such that δ(u, t) > δ(v, t).

Remark 8.1. In particular cases, important for applications, the mereological sum acquires specific ren-
ditions in the context of betweenness.

In behavioral robotics, when mobile robots, or more generally intelligent agents, are modeled as pla-
nar rectangles,the mereological sum of two things a, b is the extent ext(a, b), i.e., the smallest rectangle
containing a and b cf. Polkowski and Ośmiałowski [15], [16]. Hence, the notion of the meeological sum
should be modified: for a given context C, the sum x + y of two things satisfying the context C is the
smallest thing satisfying the context C and such that it contains each thing being an improper part of
either x or y (smallest, containment are understood in terms of the relation Π).

In the case of information/decision systems, where things are represented by means of their informa-
tion sets, i.e., for a system with attributes in the set A and with the values of attributes in the set V , the
information set for a thing u is the set Inf(u) = {a(u) : a ∈ A}, the mereological sum of things u and v
relative to a partition P = {A1, A2} is a thingw such that Inf(w) = {a(u) : a ∈ A1}∪{a(v) : a ∈ A2}
cf. Polkowski [13].

8.1. Granular computing in mass-based rough mereology

For a thing x and a real number r ∈ [0, 1] called the granularity radius, we define the granule about x of
radius r denoted gr(x) as the class

gr(x) = Cls{y : µm(y, x) ≥ r}. (22)

From the class definition condition (C2), we obtain the following characterization of the improper part
for granules.

Proposition 8.2. Π(u, gr(x)) iff there exist things w and v with the properties that (i) µm(u,w) = m(w)
m(u)

(ii) µm(v, w) = m(w)
m(v) (iii) µm(v, x) ≥ r.
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Proof:
It does follow directly from the class definition (C1), (C2). ut

The algorithm for checking whether Π(u, gr(x)

1. Find the ordered set W (u) = {w : µm(u,w) = m(w)
m(u) = {w : m(u · w) = m(w)}.

2. For each w ∈ W (u) according to the order find the set VW (w) = {v : m(v · w) = m(w) ∧
µm(v, x) ≥ r} going in the order of the set {v : µ(v, x) ≥ r}.

3. If the first VW (w) non–empty then return YES else NO (u is not any improper part of gr(x)).

9. In search of an application: Clustering

Let us consider a possible mechanism for clustering based on mass rough inclusions. To this end, we
introduce another distance function ∆(x, y) given by the formula

∆(x, y) = |µ(x, y)− µ(y, x)| = m(x · y) · | 1

m(x)
− 1

m(y)
|. (23)

Given ε > 0, we consider the tolerance relation

τ(x, y)⇔ ∆(x, y) ≤ ε. (24)

We define clusters as tolerance classes, i.e. maximal collections of things with the property that each pair
of things in the collection are in the relation τ .

Let us provide a simple example.

Example 9.1. Consider things in a collection U being landscapes or photographs of a countryland on
which we have trees, figures of people, houses. For a particular thing x we assign the mass m(x) as the
sum m1(x)+m2(x)+m3(x), where m1(x) = if and only if there are at least 3 trees on x, m2(x) = 1 if
and only if there are at least 2 people on x, and m3(x) = 1 if and only if there is at least one house on x.
We assume that m(x) is at least 1 for each x in U . Figure 1 shows possible outcomes for pairs of things
and values of ε for which these things may fall into one cluster. We have three possible types of things:
Type I with m=3, Type II with m=2, and, Type III with m=1. We include into x · y a unit if and only if
both x, y satisfy conditions for this unit, for instance if both x, y have m1 = 1 then m1(x · y) = 1. We
do not consider in this example the sum operation.

It follows that for ε < 1
3 , clustering makes into clusters things of the same type: cluster 1 with things

of Type I, cluster 2 with things of Type II, and, cluster 3 with things of Type III.

10. In search of an application: Making evidence theory decisive

In evidence theory (cf. Dempster, loc.cit.), mass assignments are also called basic probability assign-
ments (b.p.a.’s) and they are assigned to all subsets of a set of possible outcomes called the frame of
discernment. We illustrate our approach with an example.
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Table 1. Types of mass assignment towards clustering

Type x Type y m(x · y) ∆(x, y) ε clustering

I I 3 ∆ = 0 any positive

I II 2 ∆ = 1
3 ε ≥ 1

3

I III 1 ∆ = 2
3 ε ≥ 2

3

II II 2 or 1 ∆ = 0 any positive

II III 0 excluded or 1 ∆ = 1
2

III III 40 excluded or 1 ∆ = 0 any positive

Example 10.1. Imagine a car accident - a collision at the road crossing endowed with traffic lights. It is
crucial to establish what light was on for the driver on the main road. Witnesses gave combined evidences
resulting in the following b.p.a. m:

m(red) = 0.25,
m(yellow) = 0.35,
m(green) = 0.20,
m(red or yellow) = 0.08,
m(red or green) = 0.02,
m(yellow or green) = 0.08,
m(red or yellow orgreen) = 0.02.
From this assignment, values of the belief function, Bel(A) =

∑
B⊆Am(B), are computed:

Bel(red) = 0.25,
Bel(yellow) = 0.35,
Bel(green) = 0.20,
Bel(red or yellow) = 0.68,
Bel(red or green) = 0.47,
Bel(yellow or green) = 0.63,
Bel(red or yellow or green) = 1.0.
We now compute values of rough inclusion taking as new masses for rough inclusions the computed

values of Belief function. Hence, µ(x, y) = Bel(x∩y)
Bel(x) . These computed values of rough inclusions are

collected in Figure 2. We omit the full set {r, y, g} as the least decisive.
We introduce the measure of independent evidence M(y) as the sum∑

all non−singleton sets x 6=y
µ(y, x). (25)

These values are therefore : M(red, yellow) = 0.54, M(red, green) = 1.0, M(yellow, green) =
0.85. It follows that the maximally independent, having the smallest intersection/dependence on other
sets is red, yellow. One decides that the light on the main road at the moment of crossing the crossroads
was either red or yellow. Now in this set, the proportion of evidence for red to evidence for yellow is like
0.27:0.5 so the decision is on yellow light.
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Table 2. Values of rough inclusions between sets of traffic lights

set red yellow green red, yellow red, green yellow, green

red 1.0 0.0 0.0 1.0 1.0 0.0

yellow 0.0 1.0 0.0 1.0 0.0 1.0

green 0.0 0.0 1.0 0.0 1.0 1.0

red, yellow 0.27 0.5 0.0 1.0 0.27 0.27

red, green 0.5 0.0 0.4 0.5 1.0 0.5

yellow, green 0.0 0.7 0.4 0.55 0.3 1.0

11. Conclusion

We have introduced the notion of a mass into rough mereology which has allowed us to express the
reciprocal relations of partial containment in the form characteristic to the Bayes formula in probability
theory. We have expressed the betweenness relation in an abstract mass-based framework. We proposed
an application to clustering that allows for inducing various sets of clusters dependent on the thresh-
old distance ε.We demonstrated the mass based rough mereological logic which does encompass the
Łukasiewicz logic of probability and we extended the ‘fuzzy’, i.e., many-valued logic of Łukasiewicz
to the logic based on properties of mass assignments. We hope that this abstract formulation will prove
a convenient vehicle for some forms of approximate reasoning to be developed in future. At the end,
we proposed a decision procedure involving mass based rough inclusions derived from belief values in
evidence theory.

References

[1] van Benthem, J.: The Logic of Time. Reidel. Dordrecht, 1983.

[2] Casati, R., Varzi, A.C.: Parts and Places. The Structures of Spatial Representation. MIT Press, Cambridge
MA, 1999.

[3] Dempster,A. P.: Upper and lower probabilities induced by a multivalued mapping. Annals Math. Stat. 38, pp
325-339, 1967.
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