
On some heuristic method for optimal database
workload reconstruction

Marcin Zimniak1, Marta Burzańska2, and Bogdan Franczyk1

1 Information Systems Institute
Leipzig University, Germany

{zimniak,franczyk}@wifa.uni-leipzig.de
2 Faculty of Mathematics and Computer Science
Nicolaus Copernicus University, Toruń, Poland

quintria@mat.umk.pl

Abstract. The paper deals with the problem of database workload and
its reconstruction. It is partially related to workload as a sequence of SQL
statements in physical database design problem. An efficient algorithm
based on greedy heuristic method for workload reconstruction using pe-
riodic patterns is provided. The quality of reconstruction is estimated by
proposed reconstruction quality indicator.

Keywords: workload and workload reconstruction · periodic patterns·
periodic patterns discovery· heuristic methods · optimization in physical
database design .

1 Introduction

The problem of physical database design and tuning often requires detailed work-
load analysis. The paper ”Automatic physical design tuning: workload as a se-
quence” [1] published in 2006 defines the structure of the workload as a sequence
of SQL queries. This paper influenced a lot of research on workload, however, the
topic of studying workload on an abstract plane to boost the performance of a
database management system has not been fully addressed. The following paper
introduces a new approach to the database workload based on the multiset con-
cept. In this approach we do not analyze a sequence of SQL queries, instead, we
take into account the multisets of queries abstract syntax trees (AST). Query
syntax tree is viewed as the implementation of the SQL query under specific
conditions at a specific time in a DBMS. Through the use of the AST concept,
the problem of the equivalence of SQL queries in the process of generating the
workload has been avoided. Similar problems have been discussed in previous
papers [11, 12]. Both dealt with application of periodic patterns methods to a
series of SQL queries. However, despite analyzing the workload on a physical
level, both papers lack (among other things) the analysis of transition cost be-
tween queries and DBMS states. Such costs are important when working with
bigger workloads and calculating their total cost, which then is used in various
recommendation systems.

2 Marcin Zimniak et al.

Prediction and reconstruction of the workload can become a useful tool for
optimizing recommendation modules. At a later stage, they can be used in the
development of some form of automated physical database design tools.
The following paper presents a new concept for the reconstruction of the work-
load. This concept is a result of combining of the data mining of periodic patterns
with elements of physical database design. Those elements include cost models
used in DBMS optimization. The aim of the article is to provide an effective
heuristic method to search for the optimal workload reconstruction and also
to provide the reconstruction quality measure. Both elements will be used in
workload prediction and determination of the workload prediction degree.

This paper is organized as follows. The second section presents the concept
of workload, including cost issues related to the physical workload model. The
third section deals with defining periodic patterns and their derivation rules. This
section also defines the workload reconstruction and reconstruction quality mea-
sure proposal. Section 4 introduces the algorithm which uses one of the heuristic
methods in order to generate an optimal reconstruction. Section 5 concludes and
discusses further research plans.

2 Workload

The article examines the workload on two essentially independent planes. On the
abstract plane, we do not include cost relations between database objects and
costs resulting from the transition from one database configuration to another.
As for the physical workload model, it reflects the behavior of the database
system for a given time period during which the aforementioned costs are taken
into account.

2.1 Database processing model

We consider a typical relational database system where the relational model of
data is used to represent data containers. Let x be a nonempty set of attribute
names later on called as a relational schema and let dom(a) denotes a domain
of attribute a ∈ x. A tuple t defined over a schema x is a full mapping t : x →⋃

a∈x dom(a) and such that ∀a ∈ x, t(a) ∈ dom(a). A relational table r created
on a schema x is a set of tuples over a schema x.

Query processor transforms SQL statements submitted by the user applica-
tions into the query execution plans formulated as the expressions of extended
relational algebra. The operations of extended relational algebra include the im-
plementation dependent variants of operations of standard relational algebra
such as selection, projection, join, antijoin, set operations, and other operations
like grouping, sorting, and aggregate functions. Due to the different implementa-
tion techniques, the operations included in the basic system of relational algebra,
e.g. selection or join contribute to an number of different elementary operations
depending on their implementations, e.g. index based selection, full scan selec-
tion, hash based join, index based join, etc.

On some heuristic method.. 3

2.2 Abstract workload model

k SQL statements submitted by M users within the user applications a1, . . . ,
an are recorded in an application trace. A trace of an application ai is a finite
sequence of pairs <ci:tci , si1 :ti1 , . . . , sin :tin , di:tdi

> where ci is a connect state-
ment, tci is a timestamp when the statement has been processed, each sij is
SQL statement with a timestamps tij attached, and di is a disconnect statement
with its timestamp tdi . Processing of an application ai starts from processing of
a connect statement ci, the processing of SQL statements sij , and it finally ends
with processing of a disconnect statement di.

An audit trail is a sequence of interleaved trails of user applications. For ex-
ample, a sequence <ci:tci , si1 :ti1 , cj :tcj , sj1 :tj1 , si2 :ti2 , di:tdi dj :tdj> is a sample
audit trail from the processing of applications ai, and aj .

In the subsequent text the implementation record of each of the k SQL
queries is placed within a non-empty period of time [a,b] comming from M
users . It follows that syntactically equivalent SELECT queries can have different
implementations. The problem of SQL query equivalence is a complex problem
[3, 2].

We can circumvent this problem by using query execution plans accessible
through the use of mentioned EXPLAIN PLAN command. Such plans usually take
the form of enhanced syntax trees and are treated as query implementations.
SELECT query analysis on a non-empty period of time [a,b] results in extraction
of the syntax trees which are then placed in a syntax tree table [12]. This table
contains a complete and compressed information about the syntax trees of SQL
statements and the number of their occurrences in the analyzed workload. The
paper [12] contains detailed information about the construction of such tables. It
is worth noting, that a syntax tree is represented in a syntax tree table only once,
no matter how many times it is included in the other syntax trees as a subtree.
The cases of shared subtrees resulted in the adoption of the multisets theory. In
the following text we define a multiset M is defined as a pair <S, f> where S is
a set of values and f : S → N+ is a function that determines multiplicity of each
element in S and N+ is a set of positive integers [9]. We also assume that the
syntax trees have been unambiguously labeled by the letters of a fixed alphabet
- a set of natural numbers.

For simplicity in further definitions, we assume the condition that the exe-
cution time of each query together with the generated load was recorded unam-
biguously for a given workload.

For the given time period [a, b] and the number of analyzed SQL queries k,
let n ≤ k be a minimal number of the time period’s equal divisions such that
the total execution time for each of the queries (including all implementational
costs) fits in exactly one time segment with the length |[a, b]/n|. Such time period
division generates n time segments of equal length called the time units. Each
time unit has its established length and a start point in time [12].

Let U be a nonempty sequence of n disjoint time units over which a workload
of k queries is recorded and let |U | = n denote the total number of time units in
U . Then U [m] denotes the m-th time unit in U for m = 1..n. Let V be a mapping

4 Marcin Zimniak et al.

of a subset 1..k of natural numbers representing workload queries (or more pre-
cisely query syntax trees) into a subset 1..n of natural numbers representing time
units. This syntax tree-to-time unit mapping allows for registrations of syntax
trees in syntax tree tables. Those tables are later used to locate similar syntax
trees whose location in the [a,b] only slightly differs from the ”ideal” periodicity.

Let L be a set of all syntax trees (including all syntax subtrees) generated
from a given set of k SQL queries executed in a specified time period [a, b] with
a given sequence of time units U . For each T ∈ L, a workload trace of a syntax
tree T is a multiset WT of time units such that WT [i] =<{T}, fi> and fi(T) is
equal to the total number of times the syntax tree T was processed in the i-th
time unit U [i].

In addition, let the syntax tree table comprising all syntax trees and subtrees
be given. A workload of the set L is denoted by WL and WL =

⊎
T∈L

WT

2.3 Physical workload model

In this paper, the aforementioned WL structure was used instead of the ear-
lier model of the physical workload considered in [1]. In addition, the following
extension was adopted. Instead of the sequence of SELECT expressions, the se-
quences of multisets of syntax trees were used. Due to the use of the SQL query
execution plans it was possible to register on-the-fly: operations, containers and
access paths with costs (and workloads) at the level of each operation in the
execution plan.

Let the enumeration of the syntax trees be monotonic through the set of
natural numbers with accordance with the timestamp values. Let {Sk} be a
multiset of syntax trees with a given U(t). Let (S1, S2, ..., SN) be a sequence of
N multisets registered in WL.

There are many methods for registering the SELECT queries in relational
databases. An example of such a method in the Oracle DBMS is the so-called
audit trail applied in [12]. In addition, there are built-in workload logging tools
(eg. Profiler tool in Microsoft SQL Server). A physical structureshould be un-
derstood as any access path supported by the database server. Those structures
include, among others: indexes, materialized views, multidimensional clustering
of tables, etc. A configuration of the workload WL is the set of possible-to-use
physical database structures that can be materialized. A physical structure is
considered significant if it can potentially be used in the execution plan of a
SELECT query (even if it was not used in the final execution plan at the defined
time period [a, b]). The topic of costs in database systems is a very broad subject,
simplified in this paper. In order to have comprehensive knowledge about costs,
eg. in the Oracle database system, we refer the reader to [6].

The following notation was used in the further part of the work. COST ({S},
C) means the total cost of operations in the EXPLAIN PLAN expression encoded
with the appropriate syntactic trees at the given C database configuration. Let
TRANSITION-COST (Ci, Cj) be the minimum cost of the transition between
the Ci and Cj configurations. These costs include costs related to the creation /

On some heuristic method.. 5

removal of indexes and other physical structures. We assume the available opti-
mization mechanisms that estimate costs on an ongoing basis, perform without
unnecessary overhead using built-in extensions such as what-if, etc.

Representation of the ({S1}, {S2}...{SN}) sequence execution is defined as
a sequence (C1, {S1}, C2, {S2} ... CN , {SN}, CN+1). It is a sequence in which
each multiset of syntax trees has a pre-configuration and post-configuration (we
allow for empty configurations).

We define the sequence execution cost <C1, {S1}, C2, {S2}...CN , {SN},
CN+1 >, as

∑N
k=1 (COST ({Sk}, Ck) + TRANSITION-COST (Ck−1, Ck))+

TRANSITION-COST (CN , CN+1).
The zero state C0 can be, for example, the initial state of the database or its
value can be set by built-in what-if applications. All the costs discussed so far
are accompanied by workloads and time units. In the further part of the arti-
cle, we assume that in each U(i), i = 1, 2, ..., n, the total workload is directly
proportional to the total costs, treating the concepts of costs and workloads
interchangeably.

3 Workload reconstruction using periodic pattern theory

Workload reconstruction plays an important role in the automated physical
database design and in physical design optimization mechanisms. In this pa-
per out of all possible reconstructions, we investigate only those most probable
and, at the same time, the most acceptable when it comes to costs. It means we
study those WL into WL mappings for which the total costs during reconstruc-
tion does not exceed initial total workload costs. Those mappings maintain the
consistency of the subsequences implemented through a minimal set of periodic
patterns with an emphasis on maximizing quality indicators of periodic patterns

3.1 Periodic patterns

The theory and applications of the concept of periodic patterns to the workload
prediction problem were discussed in the previous works of one of the authors
[11, 12]. The theory of periodic patterns is well known. It grew out of, among
others, the periodic sets [7] as well as periodic events [8].

Let the workload WL and the sequence of time units U be given. The se-
quences C,C ′ ⊆ WL of the same length are called equivalent if C = C ′ occurs
for all corresponding coordinates.

A periodic pattern in a workload WL is a tuple <C, f , t, p, > where:

1. the carrier C determines a non empty subsequence C ⊆WL

2. f is a number of time unit in U where the repetitions of C start
3. t is a total number of occurrences of equivalent sequences C ⊆ WL, such

that p denotes the number of consecutive time unit elements after which the
t pairs of neighboring sequences are equivalent.

4. Parameters f , t, p satisfy the following inequality: f, t ≥ 1, p ≥ 0, f + (t −
1) ∗ p + |C| − 1 ≤ |U |

6 Marcin Zimniak et al.

Also, if t = 1 then p = 0 and the pattern <C,f, 1, 0> is called the trivial periodic
pattern (trivial pattern)

Let <C, f , t, p, > be a periodic patterns in WL with a given U .
A trace of a carrier C is a subsequence C ⊆ WL, denoted tr(C, f, n), in which
the first f − 1 elements are the empty multisets.
A trace of a periodic pattern <C, f , t, p, > over the time unit sequence U , under
the condition f + (t− 1) ∗ p+ |C| − 1 ≤ n, is a subsequence TR(< C, f, t, p >, n)
of a sequence WL such, that TR(< C, f, t, p >, n) = tr(C, f, n)] tr(C, f + p, n)
] . . .] tr(C, f + (t− 1) ∗ p, n)

3.2 Derivation rules

According to the work [4], for the periodic patterns we define the derivation rules
by means of which new periodic patterns can be generated. Given the WL and
U , the following rules take place:
Rule 0 (Triviality) Let C be a submultiset, such that C ⊆ WL[f] for f ∈
{1, .., n}. Then <C,f, 1, 0> is a (trivial) periodic pattern in WL. This rule states
that in any non-empty workload WL , you can find all the trivial patterns of the
form <C,f, 1, 0>.
Rule 1 (Normalization) Let <C,f ,t,p> be a periodic pattern in WL. Then
<C ′,f ′,t,p>, where f ′ = f + i, is a periodic pattern in WL, such that C ′ is
formed from C by the elimination of all of the i-empty multisets preceding C
and/or the elimination of all of the empty multisets trailing C.
Rule 2 (Exclusion/Duality) Let <C,f ,t,p> be a periodic pattern in WL. If
fsplit = f + i ∗ p for 0 ≤ i ≤ t − 1, then only one of the following patterns is a
periodic pattern: a) P =<C,f ,i−1,p> with WL = WL \ TR(P ′, n) is a periodic
pattern in WL such that P ′ = < C, fsplit, t − i + 1, p>, b) P ′= <C, fsplit,
t− i + 1, p> with WL = WL \ TR(P, n) is a periodic pattern in WL such that
P =<C,f ,i− 1,p>

Contrary to the previously mentioned research, in this paper we omit the
concept of periodic patterns ”validity”. As a result, the process of building and
applying derivation rules may result in ”depletion” of the workload that takes
place in the Exclusion/Duality rule
Rule 3 (Elimination) Let <C,fi,ti,pi>, <C,fj ,tj ,pj> be periodic patterns in
WL, such that fi < fj . Then the following cases hold:

(1) If ti = tj = 1 then 〈C, fi,2, fj − fi〉 cannot be a periodic pattern in WL

(the carrier C starting from position fi can occur a maximum of 1 time in
WL - in accordance with the definition. The following sub-rules stating the
maximum of ti, tj times starting from fi, fj respectively)

(2) If ti = 1, tj > 1 and fj − fi = pj , then 〈C, fi,tj + 1, pj〉 is not a periodic
pattern in WL.

(3) If tj = 1, ti > 1 and fj = fi + ti ∗ pi, then 〈C, fi,ti + 1, pi〉 is not a periodic
pattern in WL.

(4) If tj 6= 1, ti 6= 1, pi = pj and fj = fi + ti ∗ pi, then 〈C, fi,ti + tj , pi〉 is not a
periodic pattern in WL.

On some heuristic method.. 7

Rule 4 (Decomposition) Let <C,f ,t,p> be a periodic pattern in WL. Then
〈C ′, f ,t, p〉, where a carrier C ′ is a subsequence of a carrier C, is a periodic
pattern in WL.
Rule 5 (Composition) Let <Ci,fi,t,p>, <Cj ,fj ,t,p> be periodic patterns in
WL, such that fi ≤ fj and]s∈{i,j}TR(< Cs, fs, t, p >, n) ⊆WL. Then 〈Ck, fi,t,
p〉 is a periodic pattern in WL such that Ck = tr(Ci, 1, fj−fi+ |Cj |)]tr(Cj , fj−
fi, fj − fi + |Cj |).

For example, given the periodic patterns 〈TV 2,1,3,4〉 and 〈T ,4,3,4〉 in a work-
load WL with given U then 〈TV 2∅T , 1,3, 4〉 is a periodic pattern in WL as well.

3.3 Reconstruction and workload reconstruction quality measure

The model theory, in George Polya’s view, deals with the equivalence classes of
similar periodic sequences. The motivation behind the reconstruction concept is
the fact that for each sequence of determined processes (and with such we are
working) there exists a period and pre-period [5]. The theory of shifts, in terms of
periodic patterns for sequences, makes it possible to indicate the minimal sets of
generators and their calculation is possible with the help of efficient algorithms.
The problem raised in the work relates to parallel processes that interact with
each other in real time. The study of the periodicity of such structures is close
to the study of symbolic dynamics in particular of groups of automorphisms of
similar structures.

Let R be a non-empty set of periodic pattens in a WL given time unit sequence
U(n). We say that R is a reconstruction of the workload WL in U(n) if:

i.]|R|s=1TR(< Cs, fs, ts, ps >,n) = WL

ii. all TRs implementing connect-disconnect processes remain consistent in re-
lation to each other. We allow duplication of database connect/disconnect
processes in case of hypothetical processes, assuming that logging in and
logging out does not involve costs.

As a quality measure of the reconstruction R is a real value 0 ≤ mR < 1
defined as:
mR = 1− (1/

∑|R|
i=1(‖Ci‖ ∗ ti))1/|R|

where ‖Ci‖ is the length of the carrier Ci, |R| is the cardinality of R. When
R = R0 = {< WL, 1, 1, 0 >} we assume that mR0

= 0.
Let the Ri, Rj be reconstructions in WL with a given U(n). We say that the

reconstruction Ri is better (more feasible) than the reconstruction Rj (denoted
Ri > Rj) if:

a) mRi ≥ mRj ,
b) |Ri| ≤ |Rj |
c) the total sum of the sequence execution costs in Ri is not greater than the

total sum of the sequence execution costs in Rj .
d) The number of the corresponding predictive patterns quality measures in

the reconstruction Ri is greater than the respective number of measures in
Rj , with at least one quality measure being taken into account.

8 Marcin Zimniak et al.

The predictive patterns quality measures have been described in [4] and may
easily be adapted to the generalized concept of predictive patterns described in
[10].

There is one more qualitative measure of periodic patterns. Namely, the ab-
solute number of different syntax trees in the C carrier of the given periodic
pattern. If we have two different periodic patters P and P ′ generating the same
costs, with P being more feasible then P ′ for most of the quality measures from
[4], we say that P dominates over P ′ if |supp({CP })| > |supp({CP ′})| where
{CP } is a multiset of the carrier C in a periodic pattern P.
The total cost of sequence execution in a reconstruction is the sum of the costs
generated by the sequence of traces of all periodic patterns of the given recon-
struction.

The concept of the database workload reconstruction presented in this paper
was developed to predict the future database load. The benefits of estimating
the optimal prediction are the databases optimization possibilities. Based on the
database load forecast, one can create, for example, indexes, materialized views,
etc. These structures can then be used at the right time in the future in such a
way that, with their help, one can reconfigure significant structures even better
than those proposed by existing advisory devices. Another possible application
of the database workload reconstruction is the prediction of configuration. The
encoding of SELECT queries using execution plan syntax trees enabled the current
registration of important physical structures used in the query implementations.
Using this fact at a further stage, it is possible to reconstruct the configuration
in the given WL, and thus to assess the quality of selection of physical structures
used in the configurations.

The optimization issue for the reconstruction and thus for the estimation of
optimal prediction is to determine the best reconstruction in the sense of the >
relationship described above.

Example 1. Let WL = < {1}, {12}, {212}, {21}, {2} >. We may have a triv-
ial reconstruction R0 = << {1}, {12}, {212}, {21}, {2} >, 1, 1, 0 > along with
another cardinality 1 reconstruction R1 = << {1}, {1}, {2} >, 1, 3, 1 >. Then
mR0

= 0 < 8
9 = mR1 , wherein the traces of the reconstructions R0 and R1

are identical and thus the total costs of the sequence execution overlap in both
reconstructions. From this it follows that R1 is better than R0 reconstruction.

Example 2. Let WL = < {1}, {12}, {212}, {21}, {2} > be a workload with a
given U(n) and a pair of indexes I1 and I2 used in the implementation of certain
SELECT queries stored as syntax trees 1 and 2. The coded information in the
syntactic tree is, among others, the access path, i.e. a complete set of relevant
physical structures used in implementations. In this example it means that in the
trees 1 and 2 the indexes I1, I2 were used respectively. In addition, we assume
that the database storage is not affected in any time unit U(i). Assume that the
costs of creating indexes I1, I2 are the same regardless of where they are created.
In addition, assume that based on the value of costs stored in the syntactic
tree table, the costs of implementing the syntactic trees 1, 2 are respectively
3: 4. The deviation of this ratio does not exceed 10% if the expressions are

On some heuristic method.. 9

performed together in the same U(i). In the case when the syntax trees 1 and 2
are executed separately (ie in different U(i), U(j)) then the cost of the syntax tree
1 is twice as high as the cost of the syntax tree 2 with a deviation not exceeding
5%. The benefits of using both indexes are the same for both syntactic trees
regardless of whether 1 or 2 are executed together or separately. In addition,
the costs of removing indexes I1 and I2 are equal 0. The calculations of the
total reconstruction sequence costs show that the sum of the execution costs of
the periodic patterns sequence in R1 = {<< {1}, {1}, {2} >, 1, 3, 1 >} is lesser
than a respective sum in R2 = {<< {1} >, 1, 3, 1 >} {<< {1}, {2} >, 2, 3, 1 >}.
Moreover the conditions a) mR0 = 8

9 > 2
3 = mR1 with b) bring that R1 > R2.

4 Greedy heuristic method for workload reconstruction

The goal of the presented heuristic is to find the optimal, in the sense of the
aforementioned relation >, reconstruction R in a set of all reconstructions for
a given WL workload (not exceeding actual costs) at the given U(n). In the
algorithm, the input data is: WL in the form of sequences of natural numbers
multisets, generally understood implementation costs of all of the syntax trees
registered in WL, as well as the transition costs between individual neighboring
configurations. It is further assumed that the WL coding is given by a sequence
of multisets of natural numbers.

The motivation for the heuristic algorithm adaptation for configurations for
WL heuristic reconstruction was the observation that in the physical workload
structure, each multiset is inextricably linked to a certain configuration. As
shown by the numerous tests in the paper [1], heuristic solutions for configu-
rations are sub-optimal. It can, therefore, be expected that the heuristics for
reconstruction will proceed in the same way. Below we present a heuristic algo-
rithm for reconstruction.
The Algorithm
1. Let S = {s1, .., sM} be a set of physical structures in a given workload WL.
Using the exhaustive method to find the shortest path in the cost edge graph
[1], a set of optimal solutions P for each of the si is calculated separately. As a
result, we get a set P = {p1, .., pM}. Let pi =< ai1 ,WL[1], ..,WL[n], aiN+1

>.
1.1. Let R := ∅, while (WL <> {∅}) do:

for i: = 1 to n do:

for each j ∈ supp({WL}) do:
1.1.1. < WL[i..n], i, 1, 0 >:=< WL[i..n] \ {stij}, i, 1, 0 > ∪ < {stij}, i, 1, 0 >,

< WL[1..n + 1 − i], i, 1, 0 >:=< WL[1..n + 1 − i] \ {stn+1−i
j }, n + 1 − i, 1, 0 >

∪ < {stn+1−i
j }, n + 1 − i, 1, 0 > where stij is j-support element at WL[i] and

WL[i..n] :=< WL[i],WL[i + 1], ..,WL[n] >.
In each 1.1.1 execute as follows: Ri := ∅. For each (pairwise) disjoint se-

quences (represented by the traces of the corresponding trivial periodic pat-
terns), use (for individual sequences (traces) respectively): decomposition rule
which is a preserving cost-based pruning technique and then apply any of the
rules of: composition and/or exclusion and/or elimination. Proceed in such a way

10 Marcin Zimniak et al.

that in the final result of this step you get a minimal set of periodic patterns
Ri with the minimum total value of the sequence execution costs. This set takes
into account the optimal ”path” of the solutions given by the current pi and the
maximum value of the quality reconstruction measure mRi .
2. Let C be the set of all configurations over the pi elements.
3. Greedy heuristics for R runs as follows:

3.1. Let r=< c1,WL[i], ..., cN ,WL[n], cN+1 > be the best configuration in P
in terms of the total costs. Let rr be the best reconstruction in terms of a quality
measure in R and such that its cost is the closest to the cost of configuration r.
Then P := P \ {r}, R := R \ {rr}. Let C := C ∪ {c1, ..., cN+1} .

3.2. Select the element s from the set P such that t = UnionPair(r,s) (de-
fined in [1]) is a configuration such that its value in terms of the total sequence
execution costs among all P configuration is the smallest. Similarly, find in R a
reconstruction Rs which is the smallest in R in terms of total costs. In addition,
the cost of executing the sequence for the configuration t is smaller than the cor-
responding costs for the configuration r. Parallel, find in R such a reconstruction
Rt which in terms of total costs is closest to configuration t (costs are not greater
than t). If there is no s element, then proceed to step 4. Assign P := P \ {s} ,
P :=P ∪ {t}, R := R \ {Rs}, R :=R ∪ {Rt}. Go to step 3.1.

4. Create a graph for all configurations with C at each level (for every
support-element in every WL[i]). Find the shortest path in this graph. From the
set R, return the reconstruction that corresponds to the shortest path in this
graph.

5 Conclusions and future work

The paper presents a new concept of the workload reconstruction along with a
measure of reconstruction quality and an efficient algorithm for generating op-
timal workload reconstruction, thus estimating the workload prediction quality.
Unlike previous periodic pattern detection techniques based on the top-down
methodology, the presented recursive approach accelerates the periodic pattern
detection algorithm through a different derivation system. This system is mostly
based on the reducing derivation rules. This results in reduction of the work-
load elements that need to be analyzed, which influences the speed of workload
analysis.

The search for new heuristics, comparative tests, accuracy, and testing the
properties of the proposed measure of quality is the next stage of research.
Searching for the proposals for other quality measures and thus new criteria for
reconstruction is also included in that stage. In order to verify the efficiency and
quality of the presented algorithm, an implementation based on a ”live” load
course is planned. However, acquiring real companies strategic data is extremely
difficult. Currently, the development phase includes an extended implementa-
tion including cost optimization. Lastly, more extensive research on workloads
containing SQL-99 recursive queries should be conducted.

On some heuristic method.. 11

References

1. Agrawal, S., Chu, E., Narasayya, V.R.: Automatic physical design tuning: workload
as a sequence. In: Proceedings of the 2006 ACM SIGMOD International Conference
on Management of Data. pp. 683–694 (2006)

2. von Bültzingsloewen, G.: Optimierung von sql-anfragen für parallele bearbeitung.
In: Grundlagen von Datenbanken. pp. 20–22 (1990)

3. Ceri, S., Gottlob, G.: Translating sql into relational algebra: Optimization, seman-
tics, and equivalence of sql queries. IEEE Transactions on software engineering
11(4), 324–345 (1985)

4. Getta, J.R., Zimniak, M., Benn, W.: Mining periodic patterns from nested event
logs. In: Proceedings of the 2014 IEEE International Conference on Computer and
Information Technology. pp. 160–167. IEEE Computer Society (2014)

5. Goles, E., Mart́ınez, S.: Neural and automata networks: dynamical behavior and
applications, vol. 58. Springer Science & Business Media (2013)

6. Lewis, J.: Cost-Based Oracle Fundamentals. Springer (India) Pvt. Limited (2006),
https://books.google.pl/books?id=85iWawYUsVsC

7. Matos, A.B.: Periodic sets of integers. Theoretical Computer Science 127(2), 287–
312 (1994)

8. Serafini, P., Ukovich, W.: A mathematical model for periodic scheduling problems.
SIAM Journal on Discrete Mathematics 2(4), 550–581 (1989)

9. Simovici, D.A., Djeraba, C.: Mathematical tools for data mining : set theory, partial
orders, combinatorics. Advanced information and knowledge processing, Springer,
London (2008), http://opac.inria.fr/record=b1133711

10. Zimniak, M., Getta, J.R.: On systematic approach to discovering periodic patterns
in event logs. In: International Conference on Computational Collective Intelli-
gence. pp. 249–259. Springer (2016)

11. Zimniak, M., Getta, J.R., Benn, W.: Deriving composite periodic patterns from
database audit trails. In: Asian Conference on Intelligent Information and Database
Systems. pp. 310–321. Springer (2014)

12. Zimniak, M., Getta, J.R., Benn, W.: Predicting database workloads through mining
periodic patterns in database audit trails. Vietnam Journal of Computer Science
2(4), 201–211 (2015)

