
Automatic validation of big data classifiers on multiple di

verse datasets

Automated testing of big data classifiers

Przemysław Czaus

Department of Mathematical Methods of Computer Science, Faculty of Mathematics and

Computer Science, University of Warmia and Mazury in Olsztyn, Słoneczna 54, 10-710

Olsztyn, Poland

czaus@matman.uwm.edu.pl

Abstract. While working on data mining applications the main questions are:

what do we want to know based on the given data and is the result worth the

additional computing power designated for the task. Given the diversity of data

and implementations, it is important to select the best-optimized solution for the

given task. Every algorithm can behave better or worse when implemented in

different languages or even deployed on different architectures. With the expan-

sion of cloud services, distributed programming solutions and containers, opti-

mization even on system level is possible with less effort. The main problem is

knowing if the selected solution is better than what was used before. Having the

possibility of optimizing the system, algorithm, implementing the solution in a

different language or even cleaning the data a different way may give a signifi-

cant advantage. Most of the published results compare two similar algorithms,

on a single machine, written in the same language. The tests differ between sci-

entific manuscripts, sometimes using the same datasets, but without providing

the resulting cleansed dataset. That makes the context of the results very narrow

and hard to interpret in a bigger scope. The root problem is running unified tests

on a variety of solutions and optimization.

Allocation of more resources for the same task sometimes isn't possible and can

lead to data loss. Given the scale of some datasets, it is more practical to know

if the changes are economically justified. That makes testing some changes on

production environments difficult or even impossible. When selecting classifi-

ers, one must first run his own tests using datasets, the same or similar to the

production data. Simplifying the process shortens the time from an idea to se-

lecting the best solution for the given job. My main focus is to ensure that every

solution is being tested with regard to all of the most important parameters. This

way we can measure the impact of changes in the same algorithm as well as the

differences between classifiers using the same datasets. Giving a mechanism for

standardized tests of new cleansing algorithms, classifiers, language implemen-

tations may result in a dynamic progress in a field of data mining. This way one

mailto:czaus@matman.uwm.edu.pl

can find the best solution and the main differences in a matter of minutes de-

pending on the computing parameters defined for the system.

The main purpose of our study is to build an automated system based on a dis-

tributed architecture. Instead of testing the solutions on a single local machine

we use a cluster of machines. Those machines can have different hardware.

Comparing test results from a base machine with a machine added to the cluster

may allow to calculate an accurate difference in processing power so running

the same tests on machines with the same architecture shouldn't be needed. For

now, the cluster is built on Rancher, that allows deployment of new versions in

a matter of seconds. The application consists of loosely coupled modules for da-

taset storage and cleansing, classifier storage, test generator and automated test

runner. Datasets are stored with all their cleansed and test versions. That allows

us to monitor the differences between the generated datasets and the result of

filtering the data. Tests are generated based on a single cleansed dataset, this

way we can see how one data cleaning algorithm impacts the tested implemen-

tation. Classifiers are stored in containers, and saved in a container database.

The main focus is to ensure every container implements the basic interfaces for

communicating with the application (for learning, visualisation and validation).

The application communicates with containers asynchronously sending a job to

the container and waiting for a response on a designated endpoint. Every classi-

fier has its container version, and new versions are being generated with the

given dataset. This way we don't need to teach the classifier when changing any

of the system parameters or the processor architecture. Using the container eco-

system gives us the possibility to set some of the system restrictions like a

number of processor cores, the size of the memory or even control the number

of containers running at the same time. All the containers used for tests are be-

ing run in a dedicated cluster. This gives control over the load for the whole

system and makes the results more reliable. Adding new architectures and serv-

ers to the system is easy and can be done while the application is running. If the

whole architecture isn't used some of the servers can be turned off to ensure low

maintenance costs of the architecture.

For an example, we want to add a new classifier to the database. We want to

test the classifier using already defined standardized tests. First, we have to pre-

pare a container containing a REST API that is implementing basic interfaces

used by the application and the classifier that those interfaces send data to. We

define what tests to run and we add this job to the queue. If some jobs are cur-

rently running we must wait for the processes to finish. The first step is to start

the containers and try to teach them with the datasets. If everything is finished

we store a snapshot of the container with the data loaded into the database. Eve-

ry container that finished this process is terminated and the application waits for

every container to finish. The next step is to run tests on the previously prepared

containers. Every cluster has it's calculated limits and we can run as many cop-

ies of the apps at the same time as far as we don't exceed the limit. Every test

has its own dataset for learning and for validation. To start the tests we send a

package with validation data, this way the test is run locally and we don't have

any network delays during the tests. The container measures the time it started

and begins to run the tests. When it finishes it sends the results back to the serv-

er, where it is stored and prepared for analysis and publication.

For now, the application can store multiple datasets and their versions with re-

gard to the used cleaning algorithms. One can define default automated tests for

new classifier implementations. An advantage for active development is a pos-

sibility to build a graph of versions, allowing to analyze what changes generated

better results at different datasets. Additionally, we can queue our tests and

check the results after everything has been generated.

 This solution may be a great way to unify the testing of new classifiers or any

algorithms working on cleaning the datasets. Giving everybody a way for fast

validation of results of their work. Publishing test results may additionally help

many people choose the best solution for a certain task.

Keywords: big data, datasets, classifiers, automated tests

