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Abstract. Following our comparison of the efficiency of SAT-solvers [19, 20],
we analyse DIMACS input files previously generated for benchmarking purposes
in an attempt to pinpoint some common characteristics for the CNF formulas
that were relatively easier to process, i.e., were verified faster than comparable
instances of the same size.

1 Introduction

Since the early 1970s, when Cooke first proved it to be NP-complete, the Boolean
satisfiability problem, or SAT, has undergone a dramatic rise in importance. From the
subject of purely theoretical research in the area of computational complexity, SAT-
solving algorithms have become the cornerstone of a broad range of important practical
applications that rely on their efficiency. They include, but are not limited to: verification
[1, 2], (un)bounded model checking [5, 7, 13, 24, 25], planning [15], and composition of
web services [18]. It is equally important to note that the theoretical aspects of SAT also
remain the subject of keen scientific interest.

In our recent papers [19–21], we presented notable SAT-solvers, both state-of-the-
art and historical, comparing their efficiency at several computational problems of vary-
ing complexity: from P-complete chess problems to EXPTIME-complete Towers of
Hanoi puzzle. One obvious observation stemming from our comparison is that no sin-
gle SAT-solver is superior to others in the sense that it always performs faster regardless
of the input. In other words, solving SAT remains a considerable challenge: despite the
incredible progress made, especially in the last fifteen years, the potential for further
improvement is as large as ever.

The focus of this paper is not on SAT-solvers as such, but rather, on the input
Boolean formulas themselves. Specifically, we will investigate CNF formulas that are
comparatively easier or harder to verify compared to other generated instances of the
same size, attempting to identify some common patterns in their properties. Given that
this area that has not really been previously explored, this work is aiming to be an initial,
small step rather than an exhaustive investigation.

The rest of this paper is organized as follows. The next section summarises existing
work related to the subject. Section 3 shortly presents DIMACS, the standardised input
format used by SAT-solvers, as well as details the generation and analysis of input
CNF formulas. In Section 4 experimental results are compared and discussed. The final
section contains conclusions.



2 Theoretical Overview and Related Work

In this section we discuss prior research into the difficulty of randomly generated in-
stances of NP-complete problems.

Many well-known, classical computational problems, though NP-complete, are rel-
atively easy to solve when it comes to typical instances [6]. The graph k-coloring prob-
lem, for example, was found to be solvable in logarithmic time in the vast majority
of cases [23]. On the other hand, since their complexity was proven in Karp’s seminal
1972 paper [14], we are bound to encounter hard instances eventually. This brings about
the question of whether there is any pattern to be found in the distribution of difficulty
in a set of randomly generated instances, which has been the subject of research since at
least the early 1990s. In the rest of this paper, we will focus on the Boolean satisfiability
problem (SAT), since it serves as the convenient ’common denominator’ to which other
hard problems are often translated.

It has been long observed that certain specific instances of SAT pose an unusu-
ally significant challenge to the the DPLL algorithm, contrary to perceived average
difficulty. In [6] Cheeseman, Kanefsky and Taylor summarise classical NP-complete
problems using ’order parameters’. For example, a set of instances of the Hamiltonian
path problem can be ordered by the average connectivity of their respective graphs: the
higher the connectivity, the higher the chance for a Hamiltonian path to exist. Further-
more, the authors show the existence of a phase transition at the boundary marked by
some critical value of the order parameter, which separates two distinct regions of likely
satisfiable and likely unsatisfiable instances, both of which are comparatively easy to
verify. It is at the boundary that the hardest instances occur.

This phase transition is investigated further by Gent and Walsh in [11]. Their ex-
perimental results confirm the association of hardest instances of problems with the
boundary, and that median problem difficulty generally follows the expected easy-hard-
easy pattern. However, they also show that the distribution of difficulty is significantly
more complex, and in particular note the presence of a region where instances can be
extraordinarily difficult, sometimes orders of magnitude harder than those closest to the
phase transition.

Gent and Walsh postulate the ’constraint gap’ to cause such unexpectedly hard prob-
lems to occur in an otherwise satisfiable region. In the DPLL algorithm, neither unit
propagation nor pure literal elimination ever branch out the search, leaving splitting
(i.e., the choice of the branching literal) as the only critical point which can potentially
result in an exponential blow-up in the number of explored assignments. This naturally
leads to the conclusion that the harder the instance, the more the algorithm is forced to
use the splitting rule compared to the other two. In other words, the hardest instances
are ’constrained’ in the sense they have just enough constraints to be unsatisfiable, but
very few more (or even none), forcing DPLL to utilize heuristics-based branching and
thus increasing verification time dramatically.

These results were further experimentally confirmed in other papers, including anal-
yses for 3-SAT formulas by Larrabee and Tsuji [16] and by Crawford and Auton [8],
with the latter work focusing on how the percentage of satisfiable instances changes as
a function of the clause/variable ratio of the formula.
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3 The Input Format, Formulas and Analysis

In this section we present the DIMACS input format commonly used by SAT-solvers,
discuss the input files used for our analysis and the factors taken into account during
the latter.

The renewed scientific interest in the Boolean satisfiability problem, and in partic-
ular the emergence of SAT Competitions in the early 2000s, resulted in the need of a
single, unified input file format. DIMACS has become such a standard.

The format uses plain text to represent a Boolean formula in conjunctive normal
form (CNF). Following an optional comment line and a header containing the number
of clauses and literals in the formula, each subsequent line corresponds to a new clause.
Variables are represented by subsequent natural numbers, with the minus sign denot-
ing negation. Spaces separate literals in clauses, and zeroes signal end of clause. An
example of a very simple CNF formula in the DIMACS format is shown below.

Listing 1.1. The input file corresponding to a simple formula (x1 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ ¬x1)
c Example DIMACS i n p u t
p c n f 3 2
1 −3 0
2 3 −1 0

The input files contain formulas resulting from the translations to SAT of several
NP-complete problems, including classical graph problems (vertex coloring, vertex
cover, Hamiltonian path) [14], as well as the extended string-to-string correction prob-
lem (ESCP). They were originally created as benchmarks for our previous work, i.e., a
comparison of SAT-solvers [19, 20].

For the purposes of this analysis, we have identified and separated groups of the
most and least difficult instances for each of the aforementioned problems, that is, the
input files whose processing required the most and the least time, respectively. When
calculating verification time, the average of individual solvers’ processing times was
considered. The solvers used were the same as in the aforementioned comparison: Lin-
geling and Plingeling [4], Glucose and Glucose-syrup [3], Clasp [10], Minisat [22],
ManySAT [12] and Microsoft Z3 [9]. However, zChaff [17] was excluded due to its age
and inability to process many instances in reasonable time, which would have consid-
erably skewed the average.

The DIMACS files in both groups were subsequently analysed and compared w.r.t.
factors such as total number of literals and clauses, average and maximum clause length,
percentage of negative literals and percentage of Horn clauses.

4 Results

In this section we discuss and compare the results of our analysis.
In Tab. 1, several characteristics are compared between the groups of easiest and

hardest generated instances of vertex k-colouring and vertex k-cover. For the former,
parameters of n = 100 (graph size) and k = 10 (number of colours) were set. For the
latter, graphs of size n = 50 were generated, with the vertex cover size at k = 30.
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Vertex k-colouring Vertex k-cover
Easier instances Harder instances Easier instances Harder instances

Avg running time 0.018 s 364.759 s 0.108 s 38.941 s
Avg number of clauses 24507 36007 36774 36994
Avg number of literals 49813 72813 74967 88127
Avg clause size 2.033 2.022 2.039 2.382
Longest clause 10 10 60 60
Negative literals 97.96% 98.63% 98.04% 83.41%
Horn clauses 0% 0% 99.03% 99.34%

Table 1. Comparison of characteristics between easier and harder instances of the vertex k-
colouring and k-cover problems.

Hamiltonian path String correction
Easier instances Harder instances Easier instances Harder instances

Avg running time 4.810 s 34.101 s 0.538 s 42.968 s
Avg number of clauses 8000200 8000200 49808 49808
Avg number of literals 20135132 17115771 318476 318476
Avg clause size 2.517 2.139 6.394 6.394
Longest clause 200 200 66 66
Negative literals 80.66% 93.25% 19.67% 19.67%
Horn clauses 0% 0% 0% 0.01%

Table 2. Comparison of characteristics between easier and harder instances of the Hamiltonian
path problem and ESCP.
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It can be observed that the characteristics of hard instances depend primarily on
the computational problem and its specific translation to SAT. For instance, in the ver-
tex k-colouring problem, they have up to 50% more literals and clauses. This in turn
can be attributed to the randomly generated input graphs for these instances having
significantly more edges, and as such requiring more constraints in the form of clauses.
Notably, despite the overwhelming majority of literals in both groups of instances being
negative, there are no Horn clauses, again due to the specifics of the SAT encoding.

On the other hand, for vertex k-cover the average number of clauses is roughly the
same in easy and hard instances. However, the number of literals, and thus average
clause length, is generally higher (up to 15%) in the latter group. Furthermore, an even
more noteworthy difference is in the percentage of negative literals, which is also around
15% lower, suggesting that the extra literals in hard instances are positive.

In the same way, Tab. 2 compares instances of the Hamiltonian path problem and the
extended string-to-string correction problem (ESCP). For the former, generated graphs
were of size n = 200, whereas the parameters for ESCP were set as n = 20 (length of
input strings), k = 15 (maximum number of operations) and l = 5 (alphabet size).

In the case of the Hamiltonian path problem, the harder instances actually have less
literals and thus, on average, shorter clauses. This, too, is consistent with the nature
of the problem in question: fewer edges (and thus shorter conditional clauses in the
resultant formula) make for a graph that is harder to find a Hamiltonian path, while the
most trivial satisfiable instance is actually one in which all possible edges exist.

Finally, in the comparison of ESCP instances, all analysed characteristics are vir-
tually identical, further emphasising the lack of any clear pattern behind the relative
difficulty of specific instances of SAT.

It is important to note that our analysis is not yet another attempt to back up the the
findings previously described in Section 2, i.e., the existence of a phase transition and a
’constraint gap’ at the boundary between regions of expected (un)satisfiability. Instead
of considering the distribution of difficulty across some order parameter, we took into
account benchmarks generated using the same settings, i.e., the same order parameter,
in an attempt to pinpoint patterns related to the composition of the formulas themselves.
However, it clearly appears that the differences are related to the specific characteristics
of computational problems translated to SAT.

5 Conclusions

We have analysed Boolean formulas in CNF, representing translations of well-known
NP-complete problems to SAT. The input files were grouped depending on their average
processing time by SAT-solvers, and compared on several factors, including average
clause length and percentage of Horn clauses, between the easiest and most difficult
instances.

There do not appear to be easily noticeable global characteristics of CNF formu-
las representing harder instances of NP-complete problems. Depending on the specific
problem and its translation to SAT, the formulas whose processing takes longer can, for
instance, have longer clauses, or conversely, more clauses of similar average length to
that in the ’easier’ group. Similarly, the percentage of negative literals or Horn clauses
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are also dependent on the NP-complete problem translated to SAT, and not some pattern
prevalent across all comparatively easier or harder instances.

These observations seem in line with SAT being NP-complete, and as such, a dif-
ficult computational problem. Just as there is not a single SAT-solver always offering
superior performance, no single factor contributes to a particular instance of SAT being
comparatively easier or harder to verify than others of same size. This was most evi-
dent in the ESCP comparison: characteristics of both groups of instances were nearly
identical, clearly showing that we cannot expect easy answers when it comes to hard
computational problems. At least, not yet.
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