
Semantic Matching Using Deep Multi-Perception
Semantic Matching Model with Stacking

Xu Cao?, Xinran Liu?, Binjun Zhu?, Qingliang Miao, Changjian Hu, Feiyu Xu

Building H, No.6, West Shangdi Road, Haidian District Beijing, China
{caoxu3,liuxr7,zhubj4,miaoql1,hucj1,fxu}@lenovo.com

Abstract. Semantic matching is one of the most basic tasks of Natural Lan-
guage Processing(NLP). It is of great importance for various NLP tasks such as
automatic question answering, chat bot, information retrieval, and machine trans-
lation. This work is an integrated solution for CCKS 2018’s Task 3 matching
the question intent for the real customer service corpus in Chinese. The Deep
Multi-Perception Semantic Matching (DMPSM) model is proposed for this task.
In addition, we implement various machine learning and deep learning models.
And the stacking technology is applied to model fusion and the final result pre-
diction. DMPSM got the best performance, which reached the 0.838 F1 score in
develop data set. After the model fusion, the ensemble learning method improved
the F1 score to 0.855, which is a significantly enhanced evaluation.

Keywords: Semantic Equivalence Identification, Paraphrase Identification, Sen-
tence Pair Matching, Deep Learning, Model Fusion

1 Introduction

Sentence Pair Matching is a common task in NLP domain. The challenging of the se-
mantic matching is that the matching requirements are different, and the definition of
matching can be also flexible. Existing semantic models, such as Word2Vec, LDA, etc.,
can determine the similarity between text. But it is difficult to say whether the two
paragraphs of text are saying ”the same thing”. For example, when we try to solve the
classic sentence retelling problem, it is necessary to judge whether the two sentences
are merely different in expression, but the meaning is the same.

However, as Quora question-matching corpus is published, a large number of sen-
tence matching research work carried out the definition of the corpus publisher, which is
called semantic equivalence discrimination, semantic equivalence judgment, or equiva-
lent, rather than directly judge whether the two sentences have the same semantics, the
core problem turn into the intent match of the sentence.

The Task 3 of China Conference on Knowledge Graph and Semantic Computing
(CCKS) 2018 is closer to the actual needs of NLP tasks such as smart customer service
due to the data source is coming from real Q&A corpus. Given two sentences, the solu-
tion is supposed to determine whether the intentions are the same or similar. All corpora
come from the real intelligent bank customer service log and have been screened and
manually intent-matched.
? Equal contribute

2 X. Cao et al.

In this paper, we not only implement various of deep semantic models, but also
propose a new architecture to solve this problem, called DMPSM model. In detail, our
model obtains multi-perception information, whole sentence’s semantic meaning and
words interaction feature, which help achieving the best score.

2 Related Work

2.1 Sentence Pair Modeling

Sentence pair modeling has attracted lots of attention in the past decades. Many tasks
can be reduced to a semantic text matching problem. In the past decade, various models
has been proposed to work on these tasks, and they can be divided into two types:
sentence encoding models and sentence pair interaction models.

InferSent[1] uses row max pooling on hidden state sequence after Bi-directional
LSTM (Bi-LSTM) to represent the semantic meaning of a sentence. Shortcut-stacked
Sentence Encoder Model (SSE) based on the structure of InferSent. The additional
shortcut connection between LSTM layers helps it to model deep semantic meaning
avoiding training error accumulation. These two models represent sentence in a fixed
vector and calculate the semantic relationship between sentences based on vector dis-
tance[2], belong to sentence encoding type. As for interaction models, the Decom-
posable Attention model (DecAtt)[3] is one of the earliest models to use attention-
based alignment for sentence pair modeling. The Enhanced Sequential Inference Model
(ESIM)[4] is closely related to the DecAtt model with some improvement. First, Chen et
al[4] demonstrated that using Bi-LSTM to encode sequential contexts is important. Sec-
ond, instead of using Multi-Layer Perception (MLP), ESIM also adapts the time-step
model to model the information after alignment. MatchPyramid[5] model was proposed
to model text matching as the problem of image recognition. It can successfully identify
salient signals such as N-gram and N-term matching. MatchPyramid model is based on
hard alignment which is different from the soft alignment used in DecAtt and ESIM. Bi-
lateral Multi-Perspective Matching model (Bi-MPM) was proposed by Wang et al[6].
This model focuses on the bi-directional alignment and invents a new way to obtain
multi-perspective cosine similarity which helps it achieve state-of-the-art performance.

2.2 Model Fusion

For each machine learning algorithm, the perspective to solve the problem is slightly
different, which leads to different results they give for the same task. In this case, we
introduce the concept of ensemble learning, or model fusion, to determine which result
we would take as the final answer in an explicable way.

Voting Many techniques that aim to combine multiple results into a singular prediction
are based on voting. Majority voting, or hard voting, consists in using the generated
output from the different model and comparing them. The final decision about the clas-
sification is taking regarding the result with the majority votes. In other words, the
minority is subject to the majority. In this work, we take the results of voting at first,

Title Suppressed Due to Excessive Length 3

and achieved better performance than singular method, this allows us to consider more
alternatives idea of ensemble learning.

Stacking Another idea of model fusion is stacking, which can be considered as a
method of meta-learning, or learning about learning. Stacking, or stacked generaliza-
tion[7] is an approach for constructing classifier ensembles. The first step is to collect
the output of each model into a new set of data. For each instance in the original train-
ing set, this dataset represents every model’s prediction of that instance’s class, along
with its true classification. During this step, care is taken to ensure that the models are
formed from a batch of training data that does not include the instance in question, in
just the same way as ordinary cross-validation. The new data is treated as the data for
another learning problem. In the second step, a learning algorithm is employed to solve
this problem. K.M Ting’s work[8] indicates that for successful stacked generalization it
is necessary to use output class probabilities rather than class predictions. In our work,
we combine multiple classifiers to induce a higher-level classifier with improved per-
formance. The higher-level classifier can be thought of as the president of a committee
with the ground-level classifiers as members. Ground-level classifiers often make dif-
ferent classification errors. Hence, a president that has successfully learned when to
trust each of the members can improve overall performance.

3 Data Preprocessing and Feature Engineering

3.1 Data Preprocessing

Word Segmentation As we are supposed to deal with Chinese text, the problem of
segmentation is unavoidable. Here we simply implement ”Jieba”1 Chinese text segmen-
tation, known as the best Python Chinese word segmentation module. We take accurate
mode that attempts to cut the sentence into the most accurate segmentation, which is
suitable for text analysis. Besides, we also add the segmentation of character-level in
the end of each sentence, since the individual characters can also be deemed as words
and involve abundant information in Chinese.

Synonyms and Typos In the process of data cleaning and checking, we find that there
are appreciable quantity of synonymous and typos. Beyond that, simplified and tradi-
tional Chinese also appear blended. Therefore, we unify the expression standard and
correct the typos while data preprocessing, to ensure the reliability of follow-up feature
extraction.

Special Word Transform For some words with similar sense but in various form,
we transform the words into special tag, like ”15”→”[dig]”, ”what”→”[inter what]”.
All the digit and 8 kinds of interrogative (how, what, when, why, where, who, quality,
whether) in the text are transformed into the specific tag.

1 https://github.com/fxsjy/jieba

4 X. Cao et al.

3.2 Feature Engineering

Statistical Features

Sentence Length Although normal sentences with similar meaning can have various
length, however, in the real customer service records, people tend to use relatively brief
description to state their issues. It is necessary to consider the how the length of two
sentence are different. We extract the feature of sentence length by following formula:

|length of sentence1 − length of sentence2|
2× (length of sentence1 + length of sentence2)

(1)

Special question words One of anther distinguishing feature of these sentences is the
utilization of special question words. Wh-questions in English have an extensive ap-
plication, but with their varied structures, while as for Chinese, the words can indicate
some kinds of question type very specifically. We give these special words identification
codes and add them to the feature vector for each sentence.

BLEU Score with N-gram Bilingual Evaluation Understudy (BLEU)[9] is an evaluation
score comparing the candidate text translation with one or more other reference trans-
lations proposed by K. Papineni in 2001. Although BLEU was originally developed for
translation work, it can also be used to evaluate the quality of text generated for a set of
natural language processing tasks. In our task, we consider BLEU as a way to compar-
ing the similarity of the sentence pair. A perfect match has a score of 1, and a complete
not match has a score of 0. This evaluation method counts the matching N-gram words
or phrases in one sentence and another, a word (called 1-gram or uni-gram) compares
each word, and a bi-gram will compare every word pair. This comparison is regardless
of the order of the words.
We add the clipped N-gram counts for one sentence and divide by the number of can-
didate N-grams in the other sentence to compute a modified precision score pn.

pn =

∑
Ngram∈Sentence 1 Countclip(Ngram)∑
Ngram′∈Sentence 2 Count(Ngram′)

(2)

and the final BLEU score is the average of pn of N-gram

Overlap Words We also take the co-occurrence words into consideration by counting
how many words are same and how many words are unique in each sentence pair. After
eliminate the effects of synonymous and two kinds of Chinese expression by data pre-
processing we mentioned before, we can gain more overlap words information.

N-gram Distance The items of N-gram in a word sequence of a sentence would be
transformed into binary vector. For two sentences, the distance of N-gram vector pairs
can reflect the similarity. The cosine distance and L1, L2 distance are applied to calcu-
late the distance.

Title Suppressed Due to Excessive Length 5

Fuzzy Wuzzy Matching Fuzzy Wuzzy matching is a python package to calculate the dif-
ferences between sequences. The degree of closeness between two strings is measured
using Levenshtein Distance, also known as edit distance. There are four popular types
of fuzzy matching logic supported by Fuzzy Wuzzy package: Ratio (uses pure Lev-
enshtein Distance based matching), Partial Ratio (matches based on best sub-strings),
Token Sort Ratio (tokenizes the strings and sorts them alphabetically before matching),
Token Set Ratio (tokenizes the strings and compared the intersection and remainder).

Text Features

Sentence Embedding Our sentence embedding is based on word embedding trained
by Word2Vec[10], TF-IDF scores, in addition to other features we introduced above.
We train the word vector using training data set provided by CCKS, and the sentence
vector is calculated by summing up the product of each word’s vector and its TF-IDF
score. In the end, we add the feature list to the sentence vector as the final embedding
of sentence.

LSI Embedding Latent Semantic Indexing (LSI) is an indexing and retrieval method
that uses a mathematical technique called singular value decomposition (SVD) to iden-
tify patterns in the relationships between the terms and concepts contained in an un-
structured collection of text. LSI is based on the principle that words that are used in
the same contexts tend to have similar meanings. A key feature of LSI is its ability to
extract the conceptual content of a body of text by establishing associations between
those terms that occur in similar contexts. All the text corpus is used to train a LSI
model, and each query text can be convert into an LSI embedding.

LDA Embedding Latent Dirichlet Allocation (LDA) is a generative statistical model
that allows sets of observations to be explained by unobserved groups that explain why
some parts of the data are similar. For example, if observations are words collected into
documents, it posits that each document is a mixture of a small number of topics and
that each word’s creation is attributable to one of the document’s topics. This model is
also been trained by all the text corpus. And the topics value of one query are regards
as a feature vector.

Similarity Features

Cosine Distance Since we have already acquired the embedding of the sentence in
each pair, we firstly compute the cosine distance as a preliminary estimate of their
similarity. Although we have plenty of complicated method to determined whether the
two sentences is semantic matching, the basic judgment of mathematical way can be
also useful as a important feature.

L1, L2 Distance L1 Distance (Manhattan Distance), L2 Distance (Euclidean distance)
are two metrics to calculate the distance between two points in Euclidean space. The
Minkowski Distance is a metric in a normed vector space which can be considered as a

6 X. Cao et al.

generalization of both the L1 Distance and the L2 Distance. The Minkowski Distance
is defined as:

D(X,Y) =

(
n∑

i=1

|xi − yi|p
) 1

p

(3)

Minkowski distance is typically used with p being 1 or 2, which correspond to the
L1 Distance and L2 Distance.

Edit Distance Edit distance is a way of quantifying how dissimilar two strings or words
are to one another by counting the minimum number of operations required to trans-
form one string into the other. Different definitions of an edit distance use different sets
of string operations. In this work, we use the Levenshtein distance operations, which
contains removal, insertion, or substitution of a character in the string[11].

4 Method

4.1 Traditional Machine Learning Model

Logistic Regression Logistic Regression (LR) is the appropriate regression analysis
to conduct when the dependent variable is dichotomous (binary). Like all regression
analyses, the logistic regression is a predictive analysis. Logistic regression is used to
describe data and to explain the relationship between one dependent binary variable and
one or more nominal, ordinal, interval or ratio-level independent variables.

Random Forest Random Forests (RF)[12] is an ensemble learning method for classifi-
cation and regression tasks. The model construct a multitude of decision trees at training
time and output the class or regression value. The result is calculated by classes voting
(classification) or mean prediction (regression) of the individual trees. The training al-
gorithm for random forests applies bagging technique to escape over-fitting.

XGBoost XGBoost (XGB) [13] is an optimized distributed gradient boosting library
designed to be highly efficient, flexible and portable. It implements machine learning
algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree
boosting that solve many data science problems in a fast and accurate way. The same
code runs on major distributed environment (Hadoop, SGE, MPI) and can solve prob-
lems beyond billions of examples.

LightGBM LightGBM (LGB) [14] is a gradient boosting framework that uses tree
based learning algorithms developed by Microsoft. The framework is fast and was de-
signed for distributed training. It supports large-scale datasets and training on the GPU.
In many cases LightGBM has been found to be more accurate and faster than XGBoost,
though this is problem dependent. By default LightGBM will train a Gradient Boosted
Decision Tree (GBDT), but it also supports random forests, Dropouts meet Multiple
Additive Regression Trees (DART), and Gradient Based One-Side Sampling (Goss).

Title Suppressed Due to Excessive Length 7

4.2 Deep Learning Models

MPCNN Multi-Perspective Convolutional Neural Networks was proposed by Hua He
et al.[15] in 2015. It is a model for comparing sentences that uses a multiplicity of
perspectives. They first model each sentence using a convolutional neural network that
extracts features at multiple levels of granularity and uses multiple types of pooling, and
then compare our sentence representations at several granularities using multiple sim-
ilarity metrics. Based on the original model, we made improvements specially aimed
at this task. We use the pre-trained word vector instead of random initialization vec-
tor, and extract features from characters, words and text level. Particularly, we add an
attention-based input layer between the embedding layer and the multi-perspective sen-
tence modeling layer. The reason for this modification is that in the MPCNN model, the
two sentences are processed independently of each other, and have no interaction until
the full-connected layer, which will lose a lot of useful information. The attention-based
layer fuses the word embedding matrix of two sentences, and the new ”word vector”
has the information of both sentences, which can better represent their interrelationship.

Bi-LSTM Bidirectional Recurrent Neural Network (BRNN) was invented in 1997 by
Schuster and Paliwal[16], The basic idea of BRNNs is to connect two hidden layers of
opposite directions to the same output. By this structure, the output layer can get infor-
mation from past and future states. Long short-term memory (LSTM) units (or blocks)
are a building unit for layers of a RNN, proposed in 1997 by Sepp Hochreiter and Jrgen
Schmidhuber[17] and improved in 2000 by Felix Gers’ team[18]. The problem with
unidirectional RNN or LSTM is that it is processing from left to right, which results
in the latter words being more important than the previous words. It is not reasonable
for the task of sentence comprehension since each word should be equal, hence the
Bi-LSTM that combines the both-way directional results.

Bi-MPM Bilateral Multi-Perspective Matching model (Bi-MPM) was proposed by
Wang et al[6]. It is a model which uses some sorts of word alignment mechanisms(e.g.,
attention) then aggregate inter-sentence interactions, essentially belongs to the ”matching-
aggregation” framework. Bi-MPM focuses on the bi-direction matching of two sen-
tences and defines a new function to calculate the similarity of vectors. As for the
function, Wang’s method can obtain meanings of similarity in different ways, called
multiple perspectives cosine similarity.
Bi-MPM pays attention to the matching module which is used to obtain the similarity
of the two sentence in time-steps. Moreover, the matching is bi-directional, means that
the left sentence and the right sentence will matching each other and get the matching
information from their respective.

InferSent&SSE Different from MPCNN and Bi-MPM InferSent[1] and SSE[19] be-
long to framework ”Sentence encoding model” framework. Sentence encoding models
focus on learning vector representations of individual sentences and then calculate the
semantic relationship between sentences based on vector distance. InferSent model is

8 X. Cao et al.

invented by Facebook and is a model trained on the Stanford Natural Language In-
ference (SNLI) data set for transfer learning. They find that an encoder based on a
Bi-LSTM architecture with max pooling is the best way to obtain the semantic infor-
mation of a sentence. SSE model follows the work of InferSent. The encoder of SSE
model is based on stacked Bi-LSTM with shortcut connections and fine-tuning of word
embeddings (we make it fixed). Shortcut connection of LSTM layer can obtain deep se-
mantic meaning, void training error accumulation and also help to improve the re-flow
of gradient.

4.3 Deep Multi-Perception Semantic Matching Model

The existing model is either concerned about the information of encoding, or the in-
teraction between words. In this case, we propose a new architecture that can sense
the overall semantics of a sentence pair without neglecting the matching information
between words called Deep Multi-Perception Semantic Matching (DMPSM) model.
Fig. 1 shows the detail of the combined model. DMPSM achieves better performance
due to the multi-perception module. We use row maxpooling[1] to capture the spe-
cific semantic meaning of the two sentences as −→u , −→v . Abs(−→u - −→v) and −→u * −→v are
performed to represent the semantic distance. Moreover, interaction information is cal-
culated by multi-perspective cosine similarity as [6]. These two perception of semantic
information will be concated for aggregating.

... ...

我 要 贷 款想

h1 h2 h3 h4 h5

h1 h2 h3 h4 h5

h1 h2 h3 h4 h5

w1 w2 w3 w4 w5

我 要 借 款想

h1 h2 h3 h4 h5

h1 h2 h3 h4 h5

h1 h2 h3 h4 h5

w1 w2 w3 w4 w5

x x x x xx x x x x

u v

abs(u - v) u * v

SoftMax

Pr (y | P, Q)

row
max

pooling

Shortcut-Stacked
Bi-LSTM

Bi-LSTM

MLP

Fig. 1. Deep Multi-Perception Semantic Matching Model

Title Suppressed Due to Excessive Length 9

5 Experiment and Result

5.1 Data set

We propose a multi-model fusion approach to this semantic matching task and experi-
mented on standard data set provided by CCKS, which includes 100,000 pairs of train-
ing sentences and 10,000 pairs of development data set, and finally we test our approach
on a 100,000 pairs of test sentences. Each pair of data contains two Chinese sentences
which were selected from the real customer service record by CCKS. In addition to
sentence pair, training data give each pair of data a 0/1 label to classify these sentences
are semantic matching or not.

5.2 Training Details and Implementation

Data Partition Five-fold cross-validation is preformed on this data set. In each fold,
one part is held-out for validation, another part is held-out for testing and the learning
algorithm is trained on the remaining data. (see Fig. 2)

Parameters (1) Word Vector (Fixed in Training): We use open source Gensim toolkit2

and set the embedding dimension is 100, mincount is 3. Moreover, the vector is trained
on word & char data set for multi-granularity information. (2) Bi-LSTM: This layer is
commonly used in our deep models such as Bi-LSTM, InferSent, SSE and Bi-MPM,
we think 100 dim is suitable. (3) Dropout: It is important to use dropout in deep model,
in Bi-MPM dropout rate is setted at 0.1 for better result. (4) Highway: In order to make
the training process faster and avoid gradient vanishing, highway network are used as a
trick for training deep models. We add this layer on both embedding layer and aggregate
layer in Bi-MPM & DMPSM.

Stacking We conduct sentence pair modeling experiments on all the models showed on
Fig1 level 0. For stacking, the models in level 1 are trained by the outputs of the models
in level 0 combined with its real labels. Every models’ (level 0) prediction on test set
will be a feature to the models which we have trained in level 1. So after stacking, we
will get three results predicted by LR, XGB and MLP and the final result is the average
of these three models.

5.3 Result & Discussion

Because of the limited submission number, we only submitted and saved some deep
model with better results. Other simple models with synthetic feature like Logistic Re-
gression, Random Forest, XGBoost, LightGBM and also deep model InferSent are used
in stacking to get better performance. Table 1 illustrates the results of different ap-
proaches.The analysis focus on two perspectives and it will help us find the best single
model architecture.

2 https://github.com/RaRe-Technologies/gensim

10 X. Cao et al.

S1’

S2’

S3’

S4’

S5’

DevFold 3

DevFold 4

DevFold 5

DevFold 1

DevFold 2

Model 1

Model n

Model 2
……

……

Test

S1

S2

S3

S4

S5 S1

S2

S3

S4

S5 S1

S2

S3

S4

S5 S1

S2

S3

S4

S5

Train Valid

Training Data

5-Fold Stack

Level 0

RF

XGB

LGB

InferSent

LR

SSE

Bi-LSTM

Bi-MPM

MPCNN

Traditional
Model

Deep
Learning
Model

Model 1 …… Model n

DMPSM

S1’

S2’

S3’

S4’

S5’

DevAVG_n

Model 1

Train

XGB

LR

MLP

Model

DevMLP

DevLR

DevXGB

Test

DevAVG

Prediction

Level 1

…

…

…

…

…

…

…

S1’

S2’

S3’

S4’

S5’

DevAVG_n

Model n

Fig. 2. Stacking

Title Suppressed Due to Excessive Length 11

Table 1. Result of Different Approaches (Dev Set)

Model F1 Precision Accuracy Recall
MPCNN 0.7882 0.7357 0.7719 0.8488
Bi-LSTM 0.8209 0.8236 0.8215 0.8182
Bi-MPM 0.8244 0.8242 0.8244 0.8246

SSE 0.8187 0.8252 0.8202 0.8124
DMPSM 0.8387 0.8708 0.8445 0.809
Stacking 0.8559 0.8288 0.851 0.8848

Which kinds of model can better obtain the semantic meaning of word se-
quence?CNN can conveniently captures N-gram feature by multi-size kernels which
will help matching sentence in different granularities. It looks at a sentence from a vi-
sual point of view, and ignores the sequence relationship of words to some extent. In
contrast, LSTM is often used for language model, and good at modeling sequence in-
formation. We can find that MPCNN get lower score than Bi-MPM Bi-LSTM or SSE,
and as lan et al[2] indicates that encoding sequential context information with LSTM is
critical.

Which kinds of model is better, Sentence encoding model or Interaction model?
SSE model score is slightly lower than Bi-MPM, and it can be seen from the lan et
al[2]’s analysis that the interactive model is generally better than encoding based model.
However, we can ignore which one is better. These two types of models solve problems
from different angles, we combine the two ideas and propose the DMPSM model.

For better performance, we perform stacking on these deep models with some sim-
ple models (LR, RF, XGB, LGB). Experiments show that setting the threshold to 0.25
can balanced the 0/1 results and gives the best results.

6 Conclusion and Future Work

Matching natural language text semantically is a key task for many applications in NLP.
Different from semantic matching tasks based on common public data sets, our work
pays more attention to the processing and understanding of real customer service data.
With the in-depth study, we attempt multiple perspectives and ideas, which makes our
research more practical and theoretical supported. Meanwhile, the implement of model
fusion technique blends the viewpoint of different methods, from the experimental re-
sults, the method that this thesis puts forward comes to the result of our expectation.
Despite our many attempts and efforts, there is still room for improvement in accuracy.
Because of restrictions on data usage rules, we only train the word vector base on given
training corpus, which led to the lacking of prior knowledge of professional field. In
the future work, the introduction of knowledge graph of special domain may enhance
the training efficiency. Furthermore, the other idea is taking advantage of model or
knowledge from other areas and making more reasonable usage of these scarce data by
transfer learning.

12 X. Cao et al.

References

1. Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic Barrault, and Antoine Bordes. Super-
vised learning of universal sentence representations from natural language inference data.
arXiv preprint arXiv:1705.02364, 2017.

2. Wuwei Lan and Wei Xu. Neural network models for paraphrase identification, semantic
textual similarity, natural language inference, and question answering. In Proceedings of
COLING 2018, 2018.

3. Ankur Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. A decomposable at-
tention model for natural language inference. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2016.

4. Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, Hui Jiang, and Diana Inkpen. Enhanced
LSTM for natural language inference. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (ACL), 2017.

5. Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengxian Wan, and Xueqi Cheng. Text
matching as image recognition. . In Proceedings of the thirtieth AAAI Conference on Artifi-
cial Intelligence (AAAI), 2016.

6. Zhiguo Wang, Wael Hamza, and Radu Florian. Bilateral multi-perspective matching for
natural language sentences. arXiv preprint arXiv:1702.03814, 2017.

7. David H Wolpert. Stacked generalization. Neural Networks, 5(2):241–259, 1992.
8. Ming Ting Kai and Ian H. Witten. Stacked generalization: when does it work? In Fifteenth

International Joint Conference on Artifical Intelligence, pages 866–871, 1997.
9. Papineni, Kishore, Roukos, Salim, Ward, Todd, Zhu, and WeiJing. Bleu: a method for auto-

matic evaluation of machine translation. Acl, 4(4):307–318, 2001.
10. Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word

representations in vector space. Computer Science, 2013.
11. Gonzalo Navarro. A guided tour to approximate string matching. Acm Computing Surveys,

33(1):31–88, 2001.
12. Andy Liaw, Matthew Wiener, et al. Classification and regression by randomforest. R news,

2(3):18–22, 2002.
13. Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings

of the 22nd acm sigkdd international conference on knowledge discovery and data mining,
pages 785–794. ACM, 2016.

14. Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In Advances in
Neural Information Processing Systems, pages 3146–3154, 2017.

15. Hua He, Kevin Gimpel, and Jimmy Lin. Multi-perspective sentence similarity modeling with
convolutional neural networks. In Conference on Empirical Methods in Natural Language
Processing, pages 1576–1586, 2015.

16. Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE Press,
1997.

17. Alex Graves. Long Short-Term Memory. Springer Berlin Heidelberg, 2012.
18. Felix A. Gers, Jrgen Schmidhuber, and Fred Cummins. Learning to forget: Continual predic-

tion with lstm. neural computation 12(10): 2451-2471. Neural Computation, 12(10):2451–
2471, 2000.

19. Yixin Nie and Mohit Bansal. Shortcut-stacked sentence encoders for multi-domain inference.
arXiv.org, pp. arXiv:1708.02312, 2017.

