CEUR-WS.org/Vol-2242/paperl5.pdf

Semantic Parsing for Multiple-relation Chinese
Question Answering

Jingyao Zhang, Yuncheng Hua, Guilin Qi, and Daiqing Qi

Cognitive Intelligence Lab
Southeast University, Nanjing, China
{230179123, 220174102, gqi}@seu.edu.cn

Abstract. Chinese Open-domain Question Answering is a task of CCKS
2018. For a given Chinese query, the question answering system selects
several entities or attribute values of the given knowledge base as the an-
swer to the question. In this paper, we propose a semantic parsing based
method to answer the simple and complex questions. This system resolve
the ambiguity of natural language questions when matches of query are
found. It is easy to expand and more suitable for open field questions.
The experiment shows that our system is effective against CCKS-2018
dataset, achieving averaged-F1 measure of 0.5693 which ranked third.

Keywords: Entity linking - Similarity calculation - Subgraph match-
ing - Syntactic dependency tree.

1 Introduction

As more and more structured data become available on the web, factoid ques-
tion answering (QA) over knowledge bases such as Freebase has been intensively
studied recently. Answering a question needs to require references to multiple
related facts in knowledge bases or reference to a single fact. Generally, there
are two stages in traditional semantic parsing based QA systems|[1]: question un-
derstanding and query evaluation. Existing systems translate a natural language
question into SPARQLs in the first stage, and in the second stage evaluate all
SPARQLs translated in the first stage.

In this shared task, Chinese Open-domain Question Answering(COQA) in-
troduced by CCKS 2018, for a given Chinese question, the question answering
system selects several entities or attribute values from the given knowledge base
as the answer to the question. The questions are objective facts and do not
include subjective factors. Sub-tasks such as entity identification and relation
extraction are required in the process of understanding and answering questions.

In this paper, we propose a method for the COQA shared task. We divide
the problems into two categories: simple and complex problems. Simple problem
means that the question could be mapped to one single triplet. Entity linking
and similarity calculation are key steps in the system’s processing. Meanwhile,
complex problems usually require multiple triplets to be combined in order to
get the final answer. The system will first perform a syntax tree analysis, and
then gradually find the final answer based on the subgraph matching.

2 Methods

2.1 Simple questions

Process overview Figure 1 gives an overview of our method for the simple
question “ ‘TR K AT HIR?” .we have five main steps: (1)Identify the
entity mention in the question; (2)segmentation of other parts of the question;
(3)get all the triples that contain the entity through web interface; (4)calculate
the similarity between predicates and the results of segmentation; (5)sort those
triples based on similarity results to return the correct answer;

Dﬁﬁ%&ﬁ&%%#ﬁﬁ?] iy Tinking

EEEESEARE LR ES

2. Segmention

g R R AL P v 2
FriEE < [E> 3. GetTriples

L A Wil k. =
WA | WA 2 ' ~

@ 4. CalSimlirity
L. ’

Tkt (1.30473) " EEE"

BB (107673) < S K EH]- . J

B2 (106801} <BEMIE [

BT -(102762)<H Bt 5. ReturnAnswer
B H-(0.06550)<HriE A

Fig. 1. The process of our system for simple questions.

Entity linking Given a question, the entity linker provides a set of top-N
entity candidates.In our system,we use passive entity linker[2]:First search for
entity candidates by all question words, then use returned entities to guide the
mention detection; We perform entity linking by deriving the longest consecutive
common subsequence (LCCS) between a question and entity candidates and refer
to it as §. Given a question q and all entity names from PKU-base, we perform
the following 3 steps:

1. Use each component word of ¢ to retrieve entities whose names contain this
word. We refer to the set of all these entities as C..

Semantic Parsing for Multiple-relation Chinese Question Answering

2. For each entity candidate e in Ce, compute its LCCS ¢ with the question q.
Let p be the position of the last token of § in q.

3. Compute a = |6|/|q|, b =|d|/|e| and ¢ = p/|q| where | - | is length in words.
Finally, entity candidate e is scored by the weighted sum

Se=aa+ Bb+ (1 —a—f)c (1)

Parameters a and § are tuned on training dataset. Top-N ranked entities
are kept for each question.

Similarity calculation After recognizing the entity in the question, we need
to get all the triplets Ts including the entity, then remove the entity in the query
sentence and segment it into tokens ts.

(1) The first step in calculating the similarity between predicate in Ts and to-
kens in question is to count the frequency of all triplet predicates f(w);

(2) Then calculate the similarity S between the words of predicates and tokens.
If the predicate is less than two words, the following calculation has return value:

Yo (Tsi * ts;)
\/2?21 (T's;)? *\/Z?:l (T's;)?

If the predicate such as “ZFyERHL” consists of more than two words, meanwhile
there is no return value by using the previous calculation, the predicate is then
segmented to get sub-words. Calculate the similarity between the results of seg-
mentation and question tokens. The calculation function is as follows:

S = SiMuyord =

(2)

1 subsize
S = m * E S$tMsubword (3)
=1

(3) Compute the distance D between the predicate and the token:

n
D = distance = Z EditDistance(T's;)(ts;) (4)

i=1

(4) Similarity and distance summation as sorting indicators F:

F:m*(DJFS) (5)

Hyper parameter a is tuned on training set. Using the frequency of predicate
word in all triples f(w) and a can effectively improve the calculation effect of
combined words[3].

2.2 Complex questions

Question structures Figure 2 shows that there are mainly three kinds of
complex questions: (1) Multi-hop problems;(2) Multi-entity problems;(3) Multi-
predicate problems. We use syntax dependency tree to syntactically analyze

complex questions, and then obtain the final answer by subgraph matching in
the knowledge base[4].

(o) () (o)

predicatel

| 7 I predicate1 predicate2

predicate?

l Answer l

Fig. 2. Structures of complex questions.

Syntax dependency tree The syntactic structure of a sentence is described
solely in terms of the words (or lemmas) in a sentence and an associated set of
directed binary relations that connect the words[5]. It also contains a root node
that explicitly marks the root of the tree,which is the head of the entire struc-
ture. Through generating a syntactic dependency tree, we can break a complex
question into some simple questions to answer.

Processing flow: (1) We also need to find the entity in the question first, and
then (2)backtrack to the root node according to the position of the entity in the
syntax dependent tree until the child node of a node has “[#§J” or it is a predicate,
then the backtracking is stopped. (3)Take these nodes and their children as a
sub-branch. (4) Answer this sub-branch as a simple question, replace this branch
with the answer, and make a second round of answer. If the remaining syntax
tree is an empty set after removing the stop word and the wh-word, the problem
is treated as a simple question, and only one round of processing is enough.
Figure 3 shows a typical situation of complex problem.

“Multi” rules : (1) Identifying the entity mention in the query first. If the
mention such as “H14g A\ BRFLAE" contains “F1”, the current rules do not apply.
(2) Otherwise, the query may contains two entities or two predicates. Perform
NER on the left and right clauses of “Fl1” to see if two entities can be found; if
yes, proceed to step 3, otherwise, proceed to step 6;(3) If there are two entities,
such as “B 7 and “JE Eith”, then find all relevant triples with these two entities
to form two sets of triples;(4) perform the Cartesian product on these two sets of
triples to obtain the pairwise match. If the predicate and the object of the pair
of triples are the same, it is regarded as a candidate ternary.(5) Calculate the
similarity (vector similarity combined with text distance) by using the predicate
of all candidate triples with the tokens of the non-entity part. Then sorts and
returns the answer;(6) If only one entity can be found, and the sentence is like
CERE TR A A S 24T 7, then the entity “FRiK %" and left predicate are

Semantic Parsing for Multiple-relation Chinese Question Answering

Lk

| Entity I | Entity

predicatel 1EE
=y (]
predicate2 iz

Fig. 3. Examples “ «KHATY MVEZMHEELEWE? ” for multi-hop questions.

composed of a sub-problem “FVREF I F 447, Meanwhile the entity “F3£#” and
the predicate on the right side of “ff1” are the composition of the question “Zj
WETF S 47 7. Calculate the answers to the two sub-questions separately,
merge the sub-answers and return. If no answer is found, try to answer it as a
complex query.

3 Experiments

We evaluate our system in CCKS2018 shared task four, COQA. 1200 questions
with corresponding SPARQLs and answers are provided as training data, while
another 800 questions are treated as validation data and test data. The training
and testing procedures are carried out on PKU-base. The evaluation indicators
for this task include Macro Precision, Macro Recall, and Averaged F1. The final
ranking is based on the Averaged F1 value. Let Q be the problem set, A; is
the answer set given by the player to the i-th question, and G; is the standard
answer set of the i-th question. The relevant calculation formula is as follows:

Q
1 AN,
MacroPrecision = — Z P, P = |Ai NGl (6)
Q| = A;
MacroRecall = i iR' R = M (7)
QRI&="" G

2lP ®)

AvagedF1 = x i il
Q| = Pi+ R;

Table 1 shows the proportion of simple and complex problems in the data
set. To deal with simple problems, the correct rate of the system is about 72%.

Table 1. Proportion of simple and complex problems.

simple|complex
training 0.49 0.50
validation| 0.50 0.50
test 0.50 0.50

Table 2. Results on different dataset.

Validation Test

Precision Recall AveragedF'1 | Precision Recall AveragedF'1
simple 0.713 0.726 0.719 0.709 0.732
simple—+f(w) 0.741 0.758 0.751 0.743 0.770
complex 0.305 0.347 0.327 0.316 0.342
complex+multi| 0.341 0.382 0.356 0.345 0.386
total 0.546 0.592 0.563 0.556 0.612

0.721
0.758
0.332
0.364
0.569

If the word frequency information about the predicate is used, which is marked
as “simple+f(w)” in table 2, the averaged F1 can be increased by about 0.3.
After considering the word frequency information, the result of the similarity
calculation can be effectively improved. For complex problems, our correct rate
is only about 30%. If multi-entity and multi-predicate rules are added, which is
marked as “complex4+multi” in table 2, the correct rate can be further increased
by 5%. Our final averaged F1 has a third place with 0.569.

References

1. Zhu, C., Ren, K., Liu, X., Wang, H., Tian, Y., & Yu, Y.: A Graph Traversal Based
Approach to Answer Non-Aggregation Questions Over DBpedia. In Joint Interna-
tional Semantic Technology Conference (pp. 219-234). Springer, Cham(2015).

2. Yin, Wenpeng, et al.: Simple question answering by attentive convolutional neural
network. (2016).

3. Arora S, Liang Y, Ma T.: A simple but tough-to-beat baseline for sentence embed-
dings[J]. 2016.

4. Hu, S., Zou, L., Yu, J. X., Wang, H., Zhao, D.: Answering natural language questions
by subgraph matching over knowledge graphs. IEEE Transactions on Knowledge &
Data Engineering, PP(99), 1-1.(2018).

5. Marnee, M. C. D., Manning, C. D.: Stanford typed dependencies manual.Technical
report, Stanford University(2010).

