
On the Reactive Nature of Financial Networks

Silvia Crafa Daniele Varacca

Università di Padova, Italy LACL, Université Paris Est-Créteil, France

Abstract. We propose to model financial networks as distributed and reactive
systems. Both financial institutions and financial contracts such as loans, assets
or derivatives, are embodied as concurrent entities. These entities operate in par-
allel and dynamically update their state as a reaction to events issued by other
entities. e.g. a macroeconomic shock or a bank default. The model is given in
terms of an architectural pattern that can be directly implemented as an Actor
system. We show how this reactive model can be used to study the systemic risk
of financial networks and to design and conduct very flexible stress tests that
include macroeconomic shocks and derivative contracts such as Credit Default
Swaps.

1 Introduction

Business relationships between financial institutions, such as inter-banking borrowing
and lending activities, have been often represented in terms of networks. For instance
[CMS13,CM16,Cap16,BPK+12] rely on weighted directed graphs whose nodes rep-
resent institutions and links represent financial dependencies. This network model has
been used to analyse global properties of the financial systems such as the systemic risk,
that is the fragility of the system when exposed to the contagious effects of distressed
financial institutions.

Despite the success of these methodologies, a graph remains a static structure,
whereas a financial system has an highly dynamic nature. A graph can then represent
just a snapshot of the system at a given time. Therefore modeling, and thinking, in terms
of graphs, naturally shifts the view towards the structure of the system rather than its
dynamics/behavior. Accordingly, the current literature points out a number of structural
properties, i.e. network-based measures of connectivity and risk such as counterparty
susceptibility, local network fragility, feedback centrality (DebtRank). Furthermore, a
graph is a very abstract model, that is not well suited to systematically incorporate addi-
tional information. For instance, given a weighted graph of inter-banking borrowing and
lending, adding information about derivatives contracts depending on defaulted loans,
requires multi-layered models such as the superimposal of additional graphs [CM16].

In this work, we propose to model financial systems as distributed and reactive sys-
tems. The key point is recognizing that financial institutions operate in parallel and they
dynamically (and frequently) set up, trade and terminate contracts and other forms of
assets. Sometimes trading decisions are taken independently, but often contracts are
started/closed/modified as a reaction to other actions, e.g. a reaction to a macroeco-
nomic stress. Default contagion is another source of reactivity, where the path (i.e., the
sequence of events) that leads from an initial bank default to other bank defaults might

be relevant to devise a recovery strategy. Therefore we argue that modeling the financial
system as a reactive system better highlights properties that can be difficult to capture
in terms of graphs, such as safety or liveness invariants of the system behavior, but also
compositionality and nondeterminism. Moreover, this opens the way to reuse in the fi-
nancial context the rich toolbox of analysis and verification techniques developed for
digital concurrent systems.

Modeling and analysis techniques from (reactive) concurrent systems have been
successfully applied to biological systems, which also have a highly concurrent and
dynamic nature (e.g. [Kri17,DHK12,CH09,BDPP15]). However, while modeling bio-
chemical systems requires quantitative and probabilistic variants of process calculi, we
argue that financial systems naturally suit the plain Actor Model[Agh86]. Indeed, a fi-
nancial network can be viewed as a set of interactive entities, that asynchronously react
to external events, e.g. market or credit events, by modifying their behavior according to
their internal policy and locally stored information (strong locality and isolation prin-
ciples). There will not be always necessary to incorporate probabilistic reactions: the
internal policy of a bank may consider stochastic algorithms, but the fact that a bank
reacts to a market event according to its internal policy is deterministic. Moreover, each
financial institution and each financial asset have a well-defined identity, e.g., the legal
name, or an entry in a mortgage register, while biochemical reactions depend on the
concentration rate of molecules or on absence of inhibitor molecules.

Besides being a natural and elegant approach for modeling financial networks, using
Actors has the following advantages:

1. it better highlights properties that can be difficult to capture in terms of graphs,
especially properties dealing with the nondeterministic dynamic of the systems and
the effect of timing on (strategic) reactions to events;

2. since Actors systems can be directly implemented using mainstream programming
languages, this model allows the straightforward development of very flexible and
interactive simulation tools that support the analysis in a test-oriented style, which
is hardly possible with other more complex mathematical simulation methods;

3. the model, being just based on entities that react to events issued by other entities,
is very abstract but, differently form graphs, it easily scales to more concrete situ-
ations by simply (i) refining the information encapsulated into entities and (ii) by
enlarging the set of events the entities react to.

In the rest of the paper we illustrate how to model a financial network as a reactive
concurrent system. The model is given in terms of an architectural pattern that can be
directly implemented as an Actor system. Accordingly, we refer to FinMarkSimr , our
software tool written in Erlang, that allows the user to design and run very flexible, fea-
sible and scalable stress tests over the financial system entered as input. Building on the
financial literature, we show how this reactive model can be used to study the systemic
risk of financial networks, even in presence of macroeconomic shocks. We finally illus-
trate how to extend the basic architectural pattern so to model a refined scenario where
financial institutions’ portfolios also contain Credit Default Swaps derivatives.

We mention that some of the work presented in this article is the subject of a recent
patent application the content of which cannot be fully disclosed.

2

2 Banks, Assets and Loans

2.1 The Architectural Structure

The architectural structure we devise is based on two kinds of entities: financial institu-
tions (e.g., banks, finance companies, brokerage companies, development agencies) and
contracts, which generally refer to any financial agreement (e.g., loans, credits, bonds,
swaps like CDS) and generally any kind of assets. Considering contracts at the same ab-
straction level of institutions, rather than being just part of the institutions state, allows
for a better systemic account of the financial system. Indeed, decoupling contracts from
institutions allows more flexibility in the modeling and a deeper observation of the sys-
tem’s reactions, especially in terms of the happens-before effects due to asynchrony and
nondeterminism. It also opens the way to model smart contracts, which are contracts
encoded as software so that contractual obligations are automatically self-enforced.

Actors, that is entities in the model, interact by exchanging messages: the sending
of a message can be thought of as the communication that an event has occurred, so
that the receiver of the message can react to the received message by modifying its
behaviour according to its internal policy. As in the standard Actor Model, we rely just
on asynchronous and point-to-point communication, while synchronous messages and
broadcast could be added later. Notice that asynchrony seems to be particularly well-
suited to financial interactions where counterparties tend to take their time to react to
requests, e.g., a request of payment can be fulfilled after some delay, either because
the debtor needs time to collect liquidity, or because of strategic or market reasons. We
will see that exposing such a delay in message responses allows the model to capture
complex scenarios.

Since the model we devise complies with the standard Actor Model, we directly
implemented it as a software tool written in the Erlang programming language, so to
actually run simulations of reactive financial networks as a system of Erlang Actors.
Below we illustrate the architectural design of the FinMarkSimr tool using a pseudo-
code notation that should be easy to understand also for readers that are not familiar
with actor-based programming languages.

2.2 The Entities

Each entity in the system is characterized by:

– the identity, that identifies the institution or the contract, but that it is also used
in contracts to legally refer to contract parties and to reference entities, e.g. the
reference to the loan in a CDS;

– the state, that is a representation of the internal information, e.g., the assets of a
bank or the value of a loan. The content of the internal state is private to the owner
entity, that is it can be queried and modified only by the owner entity itself;

– the interface, that expresses how it is possible to interact with that entity. More
precisely it lists the set of messages the entity reacts to, i.e., the events that can be
notified to the entity so that it can modify its behavior.

3

Institution identity
state =

liquidity : Money
assets : List[Asset]
loans : List[Loan]
cdsPortfolio : List[Cds]

interface =
default triggers an immediate default
checkValue calculate value and possibly default
addContract(c:Contract) add the contract c:loan,asset,cds
payCds(b:Institution,n:Money) pay the notional n to b
addLiquidity(n:Money) modify liquidity, n can be <0

Loan identity
state =

value : Money
creditor : Institution
debtor : Institution

interface =
default(who:Institution) who notifies its default

Asset identity
state =

value : Money
owner : Institution

interface =
change(r:Rate) modify the value of the asset

Fig. 1. FinMarkSimr architecture

More concretely, Figure 1 defines the structure of loan, asset and institution actors.
All the entities have a unique identity, that in the tool corresponds to the Pid of the
Erlang process. The internal state of a financial institution informs on the current liq-
uidity (essentially the Tier 1 capital, representing its capacity for absorbing losses, see
e.g. [CMS13]) and the current list of contracts held by the institution. At the moment
we consider three kinds of contracts: external assets, loans and CDSs, but more can be
added just by refining the state of institutions. Each asset is an actor whose state holds
information about the current value of the asset and a reference to its owner. A loan
actor records in its state a reference to the debtor and the creditor institutions, together
with the amount of borrowed money, corresponding to the loan’s value. Therefore, the
list of loans contained in the institution’s state contains a reference to any loan for
which the institution is either the creditor or the debtor. We postpone the discussion of
CDSs to the next section. Future work could consider refining definition of loans by

4

Fig. 2. A financial system

also considering interest rates. At the moment we keep a simple but nontrivial scenario
considering both interbank exposures and external assets so to implement stress tests
which take into account macroeconomic shocks.

In line with the literature, we consider defaults as generated by institution insol-
vency, that is when debts exceed the sum of credits, external assets and institution’s
liquidity.

Definition 1 (Institution’s value). The value (a.k.a. the net worth) of the institution i,
written value(i), is the sum of the liquidity of i, the values of its external assets and the
value of its loans, where loans issued as the creditor have positive value while loans
issued as the debtor have negative value. When value(i) < 0 institution i becomes
insolvent.

Remark 1. It is easy to see that all the information encoded in the network model of
[CMS13] can be encoded as an actor system structured as in Figure 1. For instance,
the in-degree and the out-degree of each node i in the graph model of [CMS13], that
is the number of i’s debtors and creditors, correspond to the number of loans listed
in i’s attribute loans for which i is the creditor, resp. debtor, institution. The weight
eij of an edge (i, j) in the network model corresponds to the value attribute of the
loan actor whose state records i as the creditor and j as the debtor institutions. We also
remark that graph models appearing in the literature usually assume that there is at most
a single edge between a given pair of nodes i, j, and the weight of that edge is the sum
of the values of all the loans established between i and j. We do not require the same
assumption: there can be multiple loan actors that have the same state (hence the same
creditor/debtor) but with different identities.

As an example, Figure 2 shows a financial system with three institutions, no external
assets and a number of loans. Bank B has three contracts: the credit to the bank C,
and two loans corresponding to two debts with bank A. Therefore, the value of B is

5

value(B) = 300+ 700− 400− 100 = 500. Notice that each loan object is referred by
a pair of institutions, accordingly, it is listed both in the creditor’s and debtor’s state.

The actors’ interfaces given in Figure 1 are very simple: the messages default
and checkValue deal with the default procedure which is explained below; the ex-
planations of the asset’s change message and the message payCds are postponed to
the explanation of the stress test and the CDSs mechanisms. The remaining institution’s
messages addContract and addLiquidity are used to induce the corresponding
modification of an institution’s internal state.

3 The Dynamics of the Model

3.1 Default procedure

The default procedure can be initiated in two ways: a default message can be di-
rectly sent to an institution to trigger its immediate and unconditional default. A second
possibility is to send a checkValue message, which is handled by the institution by
calculating its internal value and, in case of a negative value, (the liabilities are higher
than the assets plus the liquidity) declaring its default. Defaults can also occur as a con-
sequence of a macroeconomic shock that decreases the value of (some) asset causing
some institution to become insolvent. We will discuss this scenario in the next section,
when explaining stress tests, here we focus on the default procedure that starts when an
institution becomes insolvent.

When an institution i defaults, a number of actions are triggered, modeling the sys-
temic reaction to the default event. More precisely,

– i sends a default(i) message to all the loans in its list informing them about its
failure;

– i updates its state and its interface to empty: this is for simplicity, but we could keep
the info about default so to model the behavior of defaulted institutions;

– all the loans that received the default message from i react (in parallel) by
checking whether i stands for the loan’s creditor or debtor. If the defaulted i is the
creditor institution, nothing happens (but we could refine this in case of need). On
the other hand, if i is the debtor institution, then the default of i implies the default
of this loan, thus triggering a new credit event. Therefore the current loan’s value
is updated to 0 and a message is sent to the loan’s creditor, say j, so to propagate
the contagion. We model such a contagious message as a checkValue message
(sent to j), which then causes the institution j to internally check its value and
possibly recursively default along the same procedure of i. Notice indeed that when
j computes its value as a consequence of the checkValuemessage received from
one of its loans, it will for sure compute a reduced value since one of its debtors
has just defaulted and the corresponding loan (which sent the contagious message)
has been already set to 0.

This recursive procedure actually models contagion via an insolvency cascade. As
an example, Figure 3 shows a systemic contagion where the default of Bank B is in-
duced by the initial default of Bank C. Notice that credits issued to a bank that defaults
are not deleted, for future recovery computation, e.g. the credit C gave to A survives
C’s default in Figure 3(c-d).

6

(a) Bank C defaults and default msg (b) defaulted loans send contagious messages
is sent to its loans to creditors

(c) Bank B suffers illiquidity and defaults (d) Bank A is well capitalized and survives

Fig. 3. An example of systemic contagion by illiquidity cascade

3.2 Systemic Risk in the literature

Since our model subsumes a graph structure, we can account for a number of mea-
sures put forward in the literature that study the systemic risk of financial networks. We
mention here only a few, as examples:

Loss cascade Let V be the set of institutions in the network, then in [CMS13] the au-
thors define the loss cascade (c|V |−1(j), j ∈ V) as the remaining liquidity of the
institution j once all counterparty losses have been accounted for, i.e. when all the
credit events generated by an initial default have been handled. In [CMS13] the
values (c|V |−1(j), j ∈ V) are computed with |V | iterations; our model requires
a different approach since the loss cascade propagates concurrently and nondeter-
ministically. For instance, let A be a bank that has a debt with both B1 and B2,
and B1 has a debt with C1 while B2 has a debt with C2, and both C1 and C2 have
a debt with D. If all these banks are not well capitalized, the default of A may
lead to the default of the whole system. With the procedure devised in [CMS13]
the loss cascade is deterministic: initially only A is insolvent, then also B1 and B2,

7

at the third step C1 and C2 become insolvent too, and in the final step also D de-
faults. In that procedure the iterations are just a computation algorithm. Instead, in
our model the default contagion starting form A propagates concurrently along the
“causal paths” A−B1 −C1 −D and A−B2 −C2 −D. In the end all the banks
will be insolvent but in some run C1 (resp. C2) may default before B2 (resp. B1),
while in other run it may be the opposite, revealing that the defaults of C1 and B2

(resp. C2 and B1) are independent.
Default Impact The Default Impact of the institution i is defined as the total loss cap-

ital induced by the default of i: DI(i) = Σj 6=i c0(j) − c|V |−1(j). Default Impact
focuses on the loss this initial default inflicts to the rest of the network: it thus mea-
sures the loss due to contagion. As for the loss cascade, the default impact measure
can be obtained also in our model by computing the values of the institutions at the
end of the default procedure.

Group DebtRank In [BPK+12] the authors propose a measure to estimate the impact
on the whole system due to a shock hitting the financial network. More precisely,
Group DebtRank measures the impact of the simultaneous default or distress of
several nodes in the network. As for all measures based on the graph structure,
Group DebtRank can be computed in the same way in our model. We can model
the initial default of a group of banks by initially sending the default message
in parallel to all the institutions in the target group. The initial defaults will not
be simultaneous and the execution will nondeterministically interleave the initial
defaults with the systemic propagation of the contagions. Exposing the steps of
the default contagion will be useful not only to define static global properties of
the net, but also to reason about its dynamics, possibly devising strategic recovery
methods such as choosing between modifying assets and increasing the liquidity of
an institution.

The default procedure of FinMarkSimr follows the default cascade dynamics, that
is no distress/contagion is propagated if it is below a given threshold, actually, if the
distress in not enough to produce a local default. This procedure could be easily refined
to propagate any level of distress along the lines of the DebtRank procedure. However,
we decided to model the systemic propagation of defaults and rather use assets and
market shocks to model other forms of distress propagation in the network. Finally, we
remark again that the notions studied in the literature are used to globally reason on
the network structure, e.g., to measure the systemic risk of the network nodes. In this
work we focus instead on modelling the net as a reactive system, keeping the analysis
of the system for future work, by possibly resorting to formal methods developed in the
literature about concurrent systems.

3.3 Macroeconomic shock

A more realistic scenario for studying systemic risk requires to integrate contagion ef-
fects with macroeconomic shocks. Indeed, economic downturns produce losses in asset
values (e.g. bonds, stocks, real estates), hence losses in institutions’ values, thus making
the financial network less resilient and contributing to the amplification of the magni-
tude of contagion. Accordingly, in [CMS13,BCDG16] the authors observe that corre-
lated market shocks may increase the proportion of contagious exposures considerably

8

(up to fifteen times), so ignoring market risk when assessing contagion effects can lead
to a serious underestimation of the extent of default contagion.

In [CMS13] macroeconomic shocks are introduced as a (negative) random variable
that decreases the institution liquidity with a severity that depends on the capital and the
creditworthiness of the institution, that is institution with higher default probabilities are
more affected by a macroeconomic shock. The systemic risk is then measured in terms
of the Contagion Index of a given institution i, which is defined as the Default Impact
of i when the network is subject to a shock.

Our tool FinMarkSimr allows a very flexible modeling of macroeconomic shocks
by means of the interface of the Asset Actor (cf. Figure 1). A change(r)message can
be sent to assets, where r is a parameter determining the severity of the asset shock. We
can choose to stress a single asset, a specific set of assets (e.g., those related to a specific
market sector, or those held by a specific group of banks) or all the assets in the system.
Moreover, as in [CMS13] we can study the impact of specific defaults after an asset
shock, but in our model we can even let the macroeconomic shock happen during the
default contagion. This last scenario is more realistic because real default procedures
take time to complete and they induce market shocks in a sort of feedforward loop. We
thus draw attention to the fact that modeling a financial network as a reactive concurrent
system allows a very flexible and expressive design of stress-tests, that in combination
with a straightforward and scalable implementation, effectively allows to monitor the
systemic risk of a financial system in a test-oriented style.

4 Adding the Credit Default Swaps

While in the previous section we showed that we can recover several measures that were
proposed in the literature, we argue here that our model can go further. The example we
chose to deal with concerns Credit Default Swaps.

Credit Default Swaps (CDSs) are financial contracts that have been introduced to
manage the credit risk. Given a loan L, the creditor can buy a CDS over the loan L to be
protected from the risk that the debtor will not honor its debt. Therefore, if the debtor
defaults, the seller of the CDS will pay L’s creditor an amount agreed when the contract
was created. It has been observed ([Con10]) that the high volume of CDSs had a relevant
impact on the recent financial global crises, thus it is important to consider CDSs in the
study of systemic risk of financial networks. The literature relies again on graph models,
which show their limits when additional information such as CDS derivatives must be
incorporated. In [PCB14] publicly available information about the CDS spread is used
to reconstruct a financial network whose edges model the interdependencies among
institutions over which CDS are issued. Stress tests and systemic risk measures defined
in Section 3.2 are then applied to this net, which actually considers just CDS contracts.
Other approaches simply refine the weight of the edges of a financial graph to aggregate
the value of a loan with its corresponding derivative contract. However, in practice the
dynamic of CDSs is detached from that of their underlying loans, i.e. a CDS can be
sold, expire, or modify its spread, thus it is important to model the change in CDS
exposures triggered by a credit event. Therefore, [CM16] put forward a multi-layered

9

graph model where the dependencies due to derivative contracts belong to a different
layer w.r.t. borrowing and landing exposures.

On the contrary, our approach based on a reactive system very smoothly allows
to refine the analysis of a financial system by also incorporating information about
CDSs. The key point here is the architectural structure we put forward in Section 2.1, in
particular the fact that contracts entities are at the same abstraction level as institution
entities. It is indeed sufficient to introduce a new type of actors corresponding to CDSs
contracts, and refine the interface (and the corresponding reactive behavior) of other
entities. More precisely, as anticipated in Figure 1, we let the state of institutions contain
a list of CDSs called cdsPortfolio to represent the CDSs the institution bought
and/or sold. The following pseudo-code defines a CDS actor that keeps in its state all
the necessary data; we remind that the spread is the market price of the CDS while the
notional is the amount of money the seller must give to the buyer if the obligor defaults.

Cds identity
state = {

spread : Money
notional : Money
buyer : Institution
seller : Institution
obligor : Institution

}
interface = {

default the obligor send this msg to trigger the credit event
}

When an institution defaults, the procedure in Section 3.1 is refined so to send a
default message not only to its loans, but also to all the CDSs for which it is the
obligor. When a CDS entity receives a default message from its obligor entity, it
sends a payCds message to the institution corresponding to the protection seller so
that it pays the notional to the institution corresponding to the protection buyer, and
finally expires. We model the payment by sending the addLiquidity message to
the target institution and decreasing the liquidity in the seller’s local state. Notice that,
when receiving the payCds message, the protection seller may not be able to honor
the CDS since its value may be not enough to cover the CDS notional, thus in this case
the protection seller institution defaults, possibly starting an insolvency cascade.

Modeling Central Counterparties It has been observed ([Con10,CM16]) that the CDS
market is significantly concentrated on five-ten top institution names. Moreover, clear-
inghouses, or central counterparties (CCP), have been proposed as a solution for mit-
igating counterparty risk and preventing default contagion in the CDS market. More
precisely, a CCP acts as the buyer to every seller and seller to every buyer of protection,
thereby isolating each participant from the default of other participants. The systemic
risk of a financial network then crucially depends on capital and liquidity requirements
for large CCP, whose (some degree of) transparency has been subject of various regu-
latory initiatives both in US and in Europe.

10

As an example, consider the scenario in Figure 3 with an additional CCP, and as-
sume that the CCP sold toB a CDS over its loan with C and bought fromA a CDS over
its credit to C, both with a notional of 300. Now when bank C defaults, the two CDSs
are triggered as a consequence of the credit event sent by C to the CCP1. Therefore
when the banks A and B re-check their value after the default of their loans and the
payment of CDSs, they find values different from those in Figure 3 (c), in particular the
CDS payment saves the bank B from the default contagion.

It is important to observe that since the communication system is asynchronous,
asking for a (CDS) payment has not an immediate effect: time is passing between the
moment where the seller is asked to pay the buyer and the moment where the buyer
gets the notional, and other things may happen during this time. For instance the buyer
may have to use its liquidity to deal with a stress situation, and not having yet at its
disposal the CDS notional it is expecting may increase the stress and possibly lead to
default. This would be the case of Bank B in the example before, which needs a prompt
payment of its CDS in order to break up the default contagion.

We claim that this is an important issue in real financial systems, where expected
payments may be delayed. Our model naturally captures it by means of asynchronous
concurrent communication and nondeterminism, while this phenomenon is difficult to
account in graph-based models. Accordingly, the FinMarkSimr tool keeps track of
the interleaving between default contagion and CDS payments, so to record (in each
run) which institutions are saved from default due to a payment of CDS, and which one
defaulted because of a delayed payment.

5 Conclusions

We have shown how financial networks can be productively modeled as distributed and
reactive systems based on the Actor Model. Compared to the related literature, where
financial analyses are based on mathematical methods on top of graphs, our computa-
tional model brings in a number of advantages due to the nature of concurrent systems.
First of all, the model easily accounts for the dynamic of the net and the contagious ef-
fects of credit events such as a bank default or a macroeconomic asset shock. Moreover,
the strong compositionality and encapsulation principles effectively support the design,
the refactoring and the refinement of the financial system under observation, as shown
by the case of CDS derivatives. Several extensions are possible, and easy to incorporate,
as well as other measures of systemic risks (e.g. Counterparty Susceptibility and Local
Network Fraility in [CMS13]).

A further fundamental aspect of this model is the fact that it brings to the fore the
interleaving of events, thus exposing causally related events (more properly, happens-
before relations) such as contagion propagation paths. The theory and practice of con-
current systems have developed a rich toolbox of analysis and verification techniques
to reason about nondeterministic executions; their application to the analysis of finan-
cial networks will be an interesting direction for future investigations. We remark that,
differently from concurrent systems, mathematical models usually resort to probability

1 FinMarkSimr models CCPs as a specific type of institution actors which accept a specific
message that can be used to notify the default of some institution.

11

to account for nondeterministic effects such as the unpredictable delay of an expected
payment in a stressed scenario. Moreover, mathematical models usually describe and
simulate relationships between quantities and variations between such relationships,
while computational models encode and execute the fine-grained behavior of the sys-
tem under observations.

The approach that is mostly related to our is that of Agent-Based Computational
Economics [TJ06], where economic processes are modeled as dynamic systems of in-
teracting agents. Indeed the Actor Model shares some similarity with Agent Systems.
However we think that Actors are a specific instance of Agent System, that does not
need the full generality of dynamic systems and the powerful mathematical methods
behind them, such as game theory. We proved the effectiveness of the actor-based ap-
proach with our FinMarkSimr software tool, that implements very flexible and scal-
able stress-tests that allows to monitor the systemic risk of a financial system in a test-
oriented style. We finally mention that our model, as customary in the financial research
literature ([Cap16]), suffers form lack of real financial data, which are only partially
disclosed by financial institutions and supervisory authorities. The usual approach is
to indirectly reconstruct or generate missing data on the network structure, or to access
specific datasets. For instance, the paper [CMS13] rely on real data as one of the authors
works for Brasil’s Central Bank. We plan to contact the institutions to ask for real data.

References

[Agh86] G Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT
PRess, Cambridge, MA, USA, 1986.

[BCDG16] S Battiston, G Caldarelli, M D’Errico, and S. Gurciullo. Leveraging the network: a
stress-test framework based on debtrank. Statistics & Risk Modeling, 33(3-4):117–
138, 2016.

[BDPP15] G Boniolo, M D’Agostino, M Piazza, and G Pulcini. Adding logic to the toolbox of
molecular biology. European Journal for Philosophy of Science, 5(3):399–417, 2015.

[BPK+12] S Battiston, M Puliga, R Kaushik, P Tasca, and Caldarelli G. Debtrank: Too central
to fail? financial networks, the fed and systemic risk. Scientific Reports, 2(541), 2012.

[Cap16] A Capponi. Systemic risk, policies, and data needs. Tutorials in Operations Research,
pages 185–206, 2016.

[CH09] F Ciocchetta and J Hillston. Bio-pepa: A framework for the modelling and analysis
of biological systems. Theor. Comput. Sci., 410(33-34):3065–3084, 2009.

[CM16] R Cont and A Minca. Credit default swaps and systemic risk. Annals of Operations
Research, 247:523–547, 2016.

[CMS13] R Cont, A Moussa, and EB Santos. Network structure and systemic risk in banking
systems., pages 327–367. Cambridge University Press, 2013.

[Con10] R. Cont. Credit default swaps and financial stability. Financial Stability Review,
14:35–43, 2010.

[DHK12] T Damgaard, E Højsgaard, and J Krivine. Formal cellular machinery. Electr. Notes
Theor. Comput. Sci., 284:55–74, 2012.

[Kri17] J Krivine. Systems biology. SIGLOG News, 4(3):43–61, 2017.
[PCB14] M Puliga, G Caldarelli, and S Battiston. Credit default swaps networks and systemic

risk. Scientific Reports, 4(6822), 2014.
[TJ06] L Tesfatsion and K Judd, editors. Handbook of Computational Economics. Agent-

Based Computational Economics. North Holland, 2006.

12

