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Abstract. In this paper, we propose a Transfer Learning technique for Named
Entity Recognition that is able to flexibly deal with domain changes. The pro-
posed technique is able to manage both the case when the set of named entities
does not change and the case when the set of named entities changes in the target
domain. In particular, we focus on the case when the target data contains only the
annotation of a target named entity, and the source data is no longer available for
the target task. Our solution consists in transferring the parameters from a source
model, which are then fine-tuned with the target data. The model architecture is
modified when recognizing a new category by adding properly new neurons to
the model. Our experiments show that it is possible to effectively transfer learned
parameters in both the scenarios, resulting in strong performances over the target
categories without degrading the performances on the other named entities.

Keywords: Transfer Learning - Named Entity Recognition - Sequence Labeling
- Recurrent Neural Network

1 Introduction

Standard Named Entity Recognition (NER) models are supposed to be trained and ap-
plied on data coming from similar sources (i.e., in-domain data). The application of
a NER model on out-of-domain data will inevitably result in poor performances [5].
For example, the contexts in which a Person name entity occur could be slightly dif-
ferent (from a morpho-syntatic point-of-view) in each domain. Moreover, in industrial
scenarios, different domains (e.g., different customers) often will require to recognize
disjoint named entity sets. For example, in finance, target entities would probably in-
clude Companies and Banks, while in politics, target entities could include Senators and
Ministries. Thus, general-purpose models, for example trained starting from general-
purpose datasets (e.g., wikipedia) cannot be an optimal solution. A typical solution to
the out-of-domain problem is to train a NER model from scratch over different anno-
tated datasets, i.e., one for each domain. In this way, each NER model can focus over
the morpho-syntactic variations of the texts characterizing the occurrences of the dif-
ferent categories for each domain. However, this solution has two main disadvantages:
1) annotating a dataset from scratch for each domain can be costly; 2) there is no reuse
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of any acquired knowledge over the existing data (e.g., common entity categories could
share some linguistic characteristics that can be useful for training a new model).

Motivated by the problems described above, in this work, we define a new paradigm
of Transfer Learning for NER models. Without loss of generality, our setting consists
of two steps: (i) an initial step, where a source model Mg is trained to recognize a set
of named entities on source data Dg; (ii) a subsequent step, where the target model Mt
needs to recognize the new NE categories in the target data Dr, which are unseen in
Ds. Notice that D is typically much smaller in size compared to Ds and it will contain
only the annotations of the target entities. Moreover, in the update step D is no longer
available. These are strong requirements often appearing in industrial scenarios, where
a NER model provider wants to make available model update strategies to its customers,
without distributing the original data used to train the source model.

These problems lie in the research area of Transfer Learning (TL), which aims to
leverage the gained knowledge on a task in a source domain, to improve the learning of
a task in a target domain [17]. To tackle the problem, we aim at applying a knowledge
transfer in a deep neural network setting. Given an initial model for NER trained on
source data, we modify the layers of the network to include new neurons for learning
the new categories and continue to train with Drt. More specifically, we implement a
Bidirectional LSTM (BiLSTM) with Conditional Random Fields (CRF) as M. In the
update step, we modify such architecture to build M. The weights from Mg are trans-
ferred to M and then fine-tuned with D, where both seen and unseen NE categories
could be observed.

We conduct extensive experiments for updating NER models, analyzing the perfor-
mance of both methods on a custom dataset. Our experiments show that the training and
fine-tuning phases can effectively learn new knowledge about existing or new entities,
while not degrading much the performances over unchanged entities.

The rest of the paper is structured as following: in sections 2 and 3 the adopted
Deep Neural Network and the transfer learning methodology are described. In section
4 the experimental evaluation is provided. In section 5 the related work are discussed.
Finally, in section 6 the conclusions are derived.

2 Deep Neural Network for Named Entity Recognition

The NER problem can be defined as a sequential labeling problem: given an input
sequence X = x1, 9, ..., T, (x; € X), predicts the output sequence Y = y1,ya, ..., Yn
(y; € Y). X and )Y represent the input and output space respectively. Typically, the
model learns to maximize the conditional probability P(Y|X).

The model adopted to label a token sequence with respect to the NE categories
is the state-of-the-art neural model made of a Bidirectional LSTM + CRF [15]. This
model consists of several layers: (i) a character-level Bidirectional LSTM (BiLSTM) to
compute a vector representation of each word based on the character composing it; (ii) a
token-level LSTM layer whose role is to compute the representation of a sequence; (iii)
a Conditional Random Field (CRF) layer for making sequential predictions. A detailed
description of the model is presented in remaining of this section.

130



Word & Character Representations. A word in the input sequence is represented by
both its word-level and character-level embeddings. The former is used to capture se-
mantic information of words, while the latter is adopted to model the morphological
variations of words (e.g., capitalization, inflections, etc.) and they showed to provide
useful information for the NER task [15]. Token-level embeddings map each word ¢;
(given a lookup table) to a vector w;. Character-level embeddings map, instead, each
character ¢;; of the i*" word (given a lookup table) to a vector e;;. The final representa-
tion for a word given its character embeddings is obtained by applying a BiLSTM (see
next section) over the e;; vectors to obtain the character-level representation e;. The
final representation of the it word x; in the input sequence is the concatenation of its
word-level embedding w; and character-level embedding e;.
Bidirectional LSTM Layer. BiLSTM is a neural architecture where two LSTM cells
are applied in both the directions of a sequence. In particular, it is composed of a for-
ward LSTM (LSTM) and a backward LSTM (i :STM), which read the input sequence
(represented as word vectors described in the previous subsection) in both left-to-right
and reverse order.

The output of the BILSTM h; is obtained by the concatenation of forward and
backward outputs: h; = [a, ;'L_t], where

by — LSTM(z:, Fy_1) (1)
and
(—ﬁ
ﬁt = LSTM (x4, %H—l) 2

and h; captures the left and right context for ;.
Prediction Layer. The representation computed by the BiLSTM is then passed through
a fully-connected layer that computes the representation p, for each word. The final
prediction vy, is made based on the softmax over the output of fully-connected layer p,
by

eWo,cpt

ZC'EC eWU’C/pt ’
where W, are parameters to be learned on the output layer and C' represents the set of
all the possible output labels.

CRF Layer. CRF [14] is a powerful model for sequence labeling tasks such as NER
as it considers neighboring information of the categories when making predictions. We
implement a Linear Chain CRF over the output of the BILSTM to improve the predic-
tion ability of the model, i.e., by taking the neighboring prediction into account while
classifying each time step. Recall that we aim at maximizing the conditional probabil-
ity P(Y'| X)) of the output label sequence Y on the input word sequence X. In the CRF
setting, P(Y'| X)) is computed by

P(y; = clpt) = 3)

escore(X,Y)

P(Y‘X) = ZY’ escore(X,Y")

“

where Y is all possible label sequences and score(-) is calculated by adding up
the transition and emission scores for a label sequence. More specifically, the emission
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score is the probability of predicting a label y; for ¢ word in the sequence, and is given
by the prediction made from the BiLSTM. The transition score is the probability of
transiting from previously predicted label y;_; to current label y;. The outputs of fully-
connected layer p, at time step ¢ provides the emission scores for all possible value of
y. A square matrix P of size C' + 2 is used to store transitional probabilities among C'
output labels, as well as a start label and an end label. Hence,

score(X,Y) = Zpt [We] + Py, .y, &)
t

3 Updating Algorithm for NER Neural Models

The NER architecture described in the previous section is usually adopted to train a
model in a domain that is able to recognize named entities within texts of the same
domain. Our goal is to make this architecture adaptable to different domains without
the need of a full re-training of the model. Recall, in fact, that we are assuming that the
dataset used to train a base model, could be not available in the update step.

Let us consider data coming from a source domain Dg containing named entities
annotations for the entities s € S and data coming from a target domain Dry. The target
data contains annotations of entities ¢ € T, where T = SUQ and O is a possibly empty
set of new entity categories.

In the initial step, the model is trained on Dgs until the optimal parameters 65 =
és_o U ég are obtained and saved. és_o contains the parameters of the network except
those of the output layer, while ég contains the parameters only of the output layer.
There are two different TL cases, depending on the nature of the T set. First is the case
where T = S U O and O is empty, i.e., the set of entities does not change between
source and target domains. In this setting, what changes is only the domain of the data
where the entities of the set 7" need to be recognized. In this case, the adaptation of the
neural model can be achieved by updating the weights of the network by performing
a training stage over Dr. In this way, the weights of the network will shift towards
the new data Dr, and the network training will accommodate within them the relevant
morpho-syntactic information of the new domain.

The second scenario occurs when 7' = SUQ and O is a non-empty set. In this case,
the model structure needs to be changed in order to accommodate the new categories.
In order to make the model able to recognize the new NE categories contained in O,
the major modification is made on the output layer after the BILSTM. In the standard
BiLSTM architecture, the fully-connected layer maps the outputs h of BiLSTM to a
vector p of size nC' + 1, where n is a factor depending on the tagging format of the
dataset. For example, n = 2 if the data is annotated with an IOB format: in fact, a word
can be Outside a NE or can be at the Beginning or Inside an annotation. For recognizing
target NEs, we build the same model architecture for all layers before the output layer
and initialize all the parameters by éio obtained in the initial step. We extend the output
layer by size nE, where E is the number of new NE categories. The extended part is
initialized with weights drawn from the random distribution X ~ A(u, 0?), where
and o are the mean and standard deviation of the pre-trained weights in the same layer.
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In this way, the associated weight matrix of the fully-connected layer W also updates
from the original shape nC' x p to a new matrix WZ/ of shape (nC' +nE+ 1) x p. Note
that the parameters égutput and éioutput are essentially the weights in the matrix W
and W2 . In the BiLSTM + CRF architecture, the modification must be made also on
the P transition matrix in order to include the new rows and columns that are relative to
the new entity categories. The new model parameters are updated in the same way as in
the initial step by performing training steps over Dr.

4 Experiments

We divide the experiments on dynamically updating the NER model into three sub-tasks
(i), (i1) and (iii). For task (i), we experiment on updating M with regard to a target NE
category with more training data coming from a new domain (i.e. Dr). For task (ii), we
experiment on forgetting and retraining an entity class (seen in Dg) with new training
data (i.e. Dr) from a different domain. Note that the difference between task (i) and task
(ii) is the morphology of the target NE in Dr. For task (i), the morphology of the target
NE is expected to be the same in Dg and Dt while they are expected to be different for
task (ii) (hence the forgetting and retraining). Lastly, for task (iii), we experiment on
updating M on a target NE that is unseen in Dg, with new training data Dr.

4.1 Data

The experiments are carried out with a dataset provided by Almawave. The dataset
consists of sentences coming from chat conversations in Italian between users and cus-
tomer service support representatives. The dataset contains conversations coming from
two different customers/domains. Each sentence is annotated with respect to 8 named
entity categories. The specification of each of the named entity category can be found in
Table 1. The annotation process was provided by Almawave in the context of the Italian
educational project Alternanza Scuola-Lavoro. In this project, two groups of students
coming from a scientific and a language high school, annotated the dataset by Webanno
annotation tool [22] in two weeks (one week for each group): each group was split
into 9 teams, the annotations of each team were checked against the other. Finally, an
annotation review process was performed by Almawave’s employees.

The dataset is split in three parts, reflecting the three sub-tasks. In Table 2, the
details about the dataset are provided. The target NE category for three subtasks are
PaymentInformation, CustomerIdentification and Address, respec-
tively. Note that in Ds, all NEs are annotated but in Dr, only the annotations of the
target NE with regard to the subtask is provided. That is to say, there are linguistic rep-
resentations of other NEs in Dr but they are annotated as ”O”. We first use pretrained
M to annotate these NEs before we train the Mt on Dr. There is no specific pre-
processing of the dataset, except for replacing all digits with O to reduce the size of the
vocabulary.
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Entity Description

The occurrence of a

postal address in a sentence.

The occurrence of information

of the customer, e.g., client id, username.

Example

L’indirizzo sul contratto Via di Casal Boccone 188.

(The address on the contract is Via di Casal Boccone 188.)

codice cliente PI0AA210645

(client id P1I0AA210645)

La mia residenza a Roma, ma il contratto registrato a Latina.
(My residency is in Rome, ma the contract is registered in Latina.)
Ho ricevuto un offerta migliore da Fastweb.

an organization. (I got a better offer from Fastweb)

The occurrence of information regarding Si, certo pu fare I’accredito sul conto IT17X 000011111000001234 000.
a payment, e.g., a credit card number or an IBAN.|(Sure, you can credit on ITI7X 000011111000001234 000.)

The occurrence of information regarding La linea registrata a nome di Mario Rossi.

the name of a person. (The line is registered to Mario Rossi)

The occurrence of information regarding Nato a Veroli provincia di Roma il 23/05/1956.

personal information, e.g. date of birth. (I am born in Veroli province of Rome on 23/05/1956)

Mi pu contattare al 333447755 o al 00667788

(You can reach me at 333447755 or at 00667788)

Table 1: Named Entity Categories and Examples.

Address

Customerldentification

Location The occurrence of a location.

o The occurrence of the name of
Organization

Paymentlnformation

Person

Personallnformation

The occurrence of information regarding

Phone phone numbers.

Task (i) Task (i) Task (iii)
Ds 12377 (213) 12377 (947) 12377 (0)
Dr 7045 (143) 6979 (758) 4389 (3828)
Diest 1496 (16) 1496 (16) 3488 (484)

Table 2: Number of total NEs contained in each dataset. The numbers in parenthe-
ses are those of the target NE categories. The target NE categories for task (i), (ii),
(iii) are PaymentInformation, CustomerIdentification and Address
respectively

4.2 Experimental Setup

We use 300 dimension GLOVE pretrained embedding? for Italian to initialize the weights
of the embedding layer. Since we do not lowercase the tokens in the input sequence, we

map the words having no direct mapping to the pretrained word embeddings to their

lowercased counterpart, if one is found in the pretrained word embeddings.

We map the infrequent words (words that appear in the dataset for less than twice) to
<UNK> as well as the unknown words appearing in the test set. The word embedding
for <UNK> is drawn from a uniform distribution between [—0.25, 0.25]. The character
embedding lookup table is randomly initialized with embedding size of 25. The hidden
size of the character-level BLSTM is 25 while the word level one is 128.

We apply a dropout regularization on the word embeddings with a rate of 0.5. All
models are implemented in TensorFlow [1], as an extension of NeuroNER [6]. In the
fist step, we use the Adam [13] optimizer with a learning rate of 0.05, gradient clipping
of 5.0 to minimize the categorical cross entropy, and a maximum epoch number of 100
at each step. The neural hyperparameters of the update step are the same as the ones of
the first step except for the learning rate. In fact, we observed that it is a better choice
to lower the value of the learning rate: it is needed to avoid catastrophic forgetting
phenomena. In our experiments for the update step, we set the value of learning rate to

3 http://hlt.isti.cnr.it/wordembeddings/
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#of |# of delta # of test
NE type| training | training test F1 (Init. step)|test F1 (Sub. step)
examples
examples |examples
Address 0 0 172 00.00 00.00
Customerldentification| 947 515 131 80.70 79.64 (-1.06)
Location| 1932 931 16 12.31 12.24 (-0.07)
Organization| 2662 1450 383 69.76 69.75 (-0.01)
PaymentInformation| 213 143 16 85.71 86.67 (+0.96)
Person| 4042 3599 736 91.34 93.28 (+1.94)
Personallnfornation| 613 78 4 26.67 36.36 (+9.69)
Phone| 1968 329 38 59.84 56.49 (-3.35)
All| 12377 7045 1496 72.50 73.31

Table 3: Test F1 on each NE categories in the initial and the subsequent step for task
®.

0.005. Finally, the models are evaluated with the F1 score 4 as in the official CONLL
2003 shared task [21].

4.3 Results

In this section, we present results on the three experiments.

Fine-tuning seen NE with Additional Data from a different domain First of all, we
show the result in Table 3 of task (i), i.e. training Mt with new training data on target
NE.

In terms of the test F1 score in the initial step, we see that model performs well on
categories that have a substantial number of instances in Dsg, such as Organization,
Person and Phone. One unusual case being Location, which has 1932 training
instances but only got 12.31 in test F1 in the initial step. This is possibly due to the
fact that there are only 16 instances in the test set, and most of them are not commonly
seen in the training set. For example, surface form Manfredonia, Aprilia Latina, Acilia
Roma or Veroli are never presented in the training set, which makes it quite difficult for
the model to correctly distinguish them from non-NE words, especially in a different
context. Surface form Trento is presented many time in the training set but annotated as
0, which also causes confusion for the model.

Phone is a NE category with plenty of training instances but the F1 score is not
as high as expected. After a comparison between training and test data, we found out
that the low performance could be due to the different format of the phone number. In
the training set, phone number are often presented as a token of several digits in the
format 000000000 where each 0 means a digit, whilst in the test set, they are presented
as several separate tokens with shorter numbers of digits, instead of one token.

With regard to fine-tuning the dataset on Dr, the F1 of the target NE category
PaymentInformation increased by 1 point with the new training data in Dy. For

* https://www.clips.uantwerpen.be/conl12000/chunking/conlleval.txt
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#of |#of delta # of test
NE type| training | training test F1 (stepl)| test F1 (step2)

examples

examples|examples
Address 0 0 172 0.00 0.00

Customerldentification| 947 758 131 78.76 89.73 (+10.97)
Location| 1932 867 16 10.47 10.81 (+0.34)
Organization| 2662 1222 383 63.06 64.24 (+1.18)
PaymentInformation| 213 23 16 60.87 60.87 (+0.00)
Person| 4042 3813 736 93.10 94.72 (+1.62)
Personallnformation| 613 15 4 33.33 33.33 (+0.00)
Phone| 1968 281 38 55.07 69.72 (+14.65)
All| 12377 6979 1496 71.10 73.53 (+4.43)

Table 4: Test F1 on each NE categories in the initial and the subsequent step for task
(ii).

some of the NE categories, the test F1 sees a very minor amount of decrease, while for
some others, there are improvement in the test F1. This result suggests the effectiveness
of the TL techniques on transferring the learned knowledge in Dg to M. It is also able
to further improve on both the target NE category and several other categories without
catastrophic forgetting.

Retraining seen NE with additional data from a different domain In Table 4, we
present the results of task (ii), where the target model M is trained on D with the
same set of NE as Ds but in a different domain. In terms of the test F1 in the initial
step, the result is quite similar to that of task (i). It is reasonable because the training
procedure for the source model in these two tasks are the same. As in the subsequent
step for task (ii), we see a consistent improvement on the test F1 for all NE categories.
It indicates that M is able to adapt fairly well to the new domain for NEs, with the
parameters transferred from M.

More importantly, since the Dy in task (ii) is from the same domain as Dy for task
(ii), task (ii) simulates the industrial scenario where a company have at hand a pretrained
model and some in-domain training for their target task. The good performance of the
proposed TL techniques suggests that the model performance on the target task can be
improved with a small amount of target data, compared to using only the pretrained
model.

Recognizing new NE with new training data Last but not the least, we present in
Table 5 the results of task (iii) on recognizing NE that is unseen in Ds. As seen from
the result, in the subsequent step, we got a fairly good performance on recognizing the
target new NE along with improvements in test F1 scores on other seen NE categories.
It is worth noting that, in Dy, there are not many training examples of those seen NE
categories. (for example, only 36 for Payment Informat ion. The test F1 score only
sees a minor decrease in two categories CustomerIdentification and Phone.
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#of |#of delta # of test
NE type| training | training test F1 (stepl)| test F1 (step2)

examples

examples |examples

Address 0 3828 172 00.00 79.55 (+79.55)
CustomerlIdentification| 947 23 243 88.05 87.75 (-0.30)
Location| 1932 174 288 62.86 67.56 (+4.70)
Organization| 2662 258 828 79.22 82.81 (+3.59)
PaymentInformation| 213 36 51 84.44 85.56 (+1.12)
Person| 4042 289 1223 93.61 94.73 (+1.12)
Personallnformation| 613 58 28 51.02 52.08 (+1.06)
Phone| 1968 137 343 88.42 88.10 (-0.32)
All| 12377 4389 3488 85.10 85.50 (+0.40)

Table 5: Test F1 on each NE categories in the initial and the subsequent step for task
(iii).

Hence, the TL techniques are able to transfer well the learned knowledge in the source
model Mg to the target model M.

5 Related Work

Our work is related to research in Named Entity Recognition and Transfer Learning.
We report on both in the following sections.

5.1 Named Entity Recognition

In the earlier years of the study on Named Entity Recognition, most work approached
the task by engineering linguistic features [3, 2], such as lexical features, case informa-
tion, orthographically patterns and so on. Models such as Maximum Entropy Model,
Perceptrons and CRF are often used for the task [9, 3,7, 10].

Recent approaches also include neural models. Current state-of-the-art methods on
NER are mostly Recurrent Neural Network models that incorporate word and character
level embeddings and/or additional morphological features. [11] uses BILSTM com-
bined with CREF to established the state-of-the-art performance on NER (90.10 in terms
of test F1 on CONLL 2003 NER dataset). In their system, they used a variety of hand-
craft features together with word embeddings as the input to the model. Later, [15]
implemented the same CRF over BiLSTM model without using any handcraft features.
They reported 90.94 of test F1 on the same dataset. [4] also implemented a similar BiL.-
STM model with Convolutional filters as character feature extractor, achieving 91.62 in
the F1 score using also lexical features.

In this work, we opted to adopt a BiLSTM + CRF in order to test whether our
proposed methods can be applied on the state-of-the-art models.
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5.2 Transfer Learning

Neural networks based TL has proven to be very effective for image recognition [8,
19]. In the NLP area, [16] showed that TL can also be successfully applied on seman-
tically equivalent NLP tasks. Researches were carried out on NER related TL too. [18]
explored TL for NER with different NE categories (different output spaces). They pre-
train a linear-chain CRF on large amount annotated data in the source domain. A two
linear layer neural network is used to learn the discrepancy between the source and tar-
get label distributions. Finally, they initialize another CRF with learned weight param-
eters in linear layers for the target domain. [12] experimented with transferring features
and model parameters between similar domains, where the label types are different but
may have semantic similarity. Their main approach is to construct label embeddings to
automatically map the source and target label types to help improve the transfer. In [20],
they have also used an adapter to help transfer. They propose progressive networks to
solve a sequence of reinforcement learning task while being immune to the forgetting,
by leveraging learned knowledge with the adapter, which is an additional connection
between new model and learned models. This connection is realized by a feed-forward
neural layer with non-linear activation.

6 Conclusion

In this paper, we study the Named Entity Recognition problem in a domain adaptation
setting involving a two-step process. The first step regards the acquisition of a source
model, while the second step regards the update of this model.

The main characteristics of our setting are: (i) the set of named entities between
source and target domain can possibly change; (ii) the dataset used to acquire the source
model is no longer available in the update step; (iii) the dataset used to train the target
model is only annotated with target NE. These are strong requirements often appearing
in industrial scenarios, where a NER model provider wants to make available model
update strategies to its customers, without distributing the original data used to train the
source model.

We verified that our method can be applied to current state-of-the-art neural models
for Named Entity Recognition, i.e., a Bidirectional LSTM + CRF applied over word
and character embeddings inputs. We carried out extensive experiments to analyze the
effect on the performance of the transfer approach. The empirical results show the ef-
fectiveness of the proposed methods and techniques. In particular, the update step we
studied demonstrated to be effective in recognizing a specific target entity, while not
degrading the performances on the other categories.

In future work, we should investigate how to update a model with respect to more
than one named entity. Moreover, we believe that this approach can be also applied to
different and more complex tasks that we aim to investigate, e.g., coreference resolution.
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