
Exploring model repositories by means of
megamodel-aware search operators

Francesco Basciani
University of L’Aquila

L’Aquila, Italy
francesco.basciani@univaq.it

Davide Di Ruscio
University of L’Aquila

L’Aquila, Italy
davide.diruscio@univaq.it

Juri Di Rocco
University of L’Aquila

L’Aquila, Italy
ljuri.dirocco@univaq.it

Ludovico Iovino
Gran Sasso Science Institute

L’Aquila, Italy
ludovico.iovino@gssi.it

Alfonso Pierantonio
University of L’Aquila

L’Aquila, Italy
alfonso.pierantonio@univaq.it

ABSTRACT
Great strides have been made in the development of tools
and techniques for advance model management over the last
decade. Despite the use of model repositories is gaining trac-
tion in industry, their use is still hampered by the limited
understanding of the underlying platform semantics. Conse-
quently, the all-important goal of reusing artefacts has led to
an enduring quest for ways to search and retrieve artifacts
more efficiently and accurately. Arguably, a contributory fac-
tor limiting the use of current search engines is the poor
alignment between the query languages and the lattice of
relations among the different and heterogeneous artifacts in
the repository.

In this paper, a novel approach to model search is presented.
By leveraging the repository structure into megamodels, well-
formed search operators have been conceived in order to
permit designers to reliably explore and browse model repos-
itories. An experimental investigation has been conducted
by implementing the approach in the MDEForge platform
by employing the Lucene search library.

1 INTRODUCTION
The pervasiveness of modelling techniques in everyday soft-
ware practice has escalated the importance of reliable model
repositories [11]. Consequently, the availability of efficient
and accurate ways to retrieve artifacts is becoming of high
relevance. Thus, relying on sound and well-formed models for
discovering and reusing existing artifacts is key to preserving
productivity benefits related to model-based processes [18].
While such advantages are particularly attractive, substan-
tial shortcomings have been identified as problems that are
inherent to the way repositories are modelled themselves.
Arguably, a contributory factor limiting the use of current
search engines is the poor alignment between the query lan-
guages and the lattice of relations among the different and
heterogeneous artifacts in the repository. In particular, the
diversity and numerosity of models stored in a repository
require query mechanisms based on a finer-grained level of

The research described in this paper has been partially supported by
the CROSSMINER Project, EU Horizon 2020 Research and Innovation
Programme, grant agreement No. 732223.

understanding of the repository. For instance, in order to
locate an artifact, it might be useful to be able to predi-
cate over both repository-wide attributes, including artifact
types, metamodels, domain types, and maturity levels, and
metamodel elements, such as classes and structural features.

This article outlines a novel approach to model search
that leverages the repository structure into a megamodel.
The approach provides designers with dedicated operators
to explore the model repository without requiring the knowl-
edge of low-level details about the underlying platforms to
formulate the queries. The approach has been implemented
atop of MDEForge [4] by employing Lucene [16] to feature
efficient text search.
Structure of the paper. The paper is structured as follows.
Next section presents a motivating scenarios. Section 3 makes
an overview of existing model search approaches. Next section
introduces the approach, which is demonstrated in Sect. 5.
Finally, Sect. 6 concludes the paper and discusses future
work.

2 MOTIVATING SCENARIOS
In this section, we discuss explanatory scenarios that involve
models, metamodels, and model transformations. The goals
are:

– highlighting the need for proper methods and tools sup-
porting the exploration of model repositories managing
different kinds of interrelated modelling artifacts;

– showing that even the implementation of simple search
scenarios can be error-prone and time-consuming if not
adequately supported.

For each scenario, a corresponding query implemented in OCL
(and executed in Java) is presented. For the sake of clarity, the
queries assume the availability of modelling artifacts stored
in a local user folder.
Scenario 1. In this scenario, the modeler is interested in
metamodels that contain a specific metaclass defined in terms
of its name and structural features. For instance, metamodels
for graphs can be found by searching the terms nodes and
edges. Listing 1 shows a query whose definition is given in
OCL at line 4. Since it has to be evaluated on all the artifacts
locally stored, at lines 5-12 all the metamodels in a specified



folder are retrieved. Then, for each corresponding package
the checkConstraint method is executed. Line 6 checks the
artifact is a metamodel by looking at its extension (ecore).
The method checkConstraint executes the OCL predicate by
considering the parameters given as input, namely className,
attrName and refName. Each OCL query result is added to
the result list, which will contain the list of metamodels
satisfying the query.

Listing 1: Sample query supporting Scenario 1
1 public List <File > search(String folderString , String className

, String attrName , String refName) {
2 File folder = new File(folderString);
3 List <File > results = new ArrayList <Artifact >();
4 String query = "EClass.allInstances ()->exists(e␣|␣e.name='"+

className+" ')␣and␣EAttribute.allInstances ()->exists(e␣|␣
e.name='"+attrName+" ')␣and␣EReference.allInstances ()->
exists(e␣|␣e.name='"+refName+" ')"

5 for (final File fileName : folder.listFiles ()) {
6 if (getFileExtension(fileName).equals("ecore")) {
7 List <EPackage > epList = getEPackages(filename)
8 for (EPackages package : epList)
9 if(checkConstraint(package , query))

10 results.add(fileName);
11 }
12 }
13 return result ,
14 }

It is worth noting that even such simple search requires
writing a query (with three nested levels) that is a tedious and
error-prone activity, despite its simplicity (e.g., no relation
among artifacts is involved).
Scenario 2. In this scenario, the designer is interested in find-
ing transformations able to generate specific elements out of
source models of a given type. For instance, the developer
is working on some model transformations able to generate
Petri net models out of BMPN specifications. To this end,
she would like to get inspired by existing transformations (if
any) in order to understand how to develop the mappings
between BPMN tasks and corresponding Petri net modules.
Listing 2 contains an OCL query that at line 4 looks for trans-
formations mapping the concepts expressed in the parameter
inPatternName into one instance of outPatternName. The
query is evaluated for each atl file, see checkContraint at line
8. The outcome is stored in the list result, see line 9.

Listing 2: Sample query supporting Scenario 2
1 List <File > search(String folderString , String outPatternName ,

String inPatternName) {
2 File folder = new File(folderString);
3 List <File > result = new ArrayList <File >();
4 String query = "SimpleOutPatternElement.allInstances ()->exists

(e␣|␣e.type.name␣=␣'" + outPatternName+"')␣and␣
SimpleInPatternElement.allInstances ()->exists(e␣|␣e.type
.name␣=␣'" + inPatternName+" ')"

5 for (final File fileName : folder.listFiles ())
6 if(getFileExtension(fileName).equals("atl")){
7 ATLModel atlModel = injectTrasformation(fileName.getName ());
8 if (checkConstraint(atlModel.getRoot (), query))
9 result.add(fileName);

10 }
11 }

Scenario 3. In this scenario, the designer is interested in
models conforming to a specific metamodel. For instance,
the modeler would like to reuse and refine the architectural

specification (given in a some specific ADL) of an already
implemented software system. Then, Listing 3 contains a
sample query implemented in Java that makes use of EMF1

methods. In particular, the query returns all the models
conforming to a metamodel MM denoted by its nsUri (see
lines 5-11). In particular, the getNsURiFromModels method
(line 6) extracts package information by using the EMF
.eClass() and .eResource() methods.

Listing 3: Sample query supporting Scenario 3
1 public List <File > search(String folderString , String nsUri) {
2 File folder = new File(folderString);
3 List <File > results = new ArrayList <Artifact >();
4
5 for (final File fileName : folder.listFiles ()) {
6 List <EPackage > epList = getNsURiFromModels(filename);
7 if(containsUri(epList , nsUri))
8 results.add(fileName);
9 }

10 return result ,
11 }
12 f.eClass ().eResource ().getURI ()

Again, despite the simplicity of the requirements the designer
must face a certain accidental complexity due to the tech-
nological setting that requires the familiarity with the EMF
framework and its corresponding APIs.

3 BACKGROUND
A number of existing approaches for model searching are
summarized in Table 1. For each of them, the following
characteristics are considered:

– Supported modeling artifact: it refers to the kinds of ar-
tifacts that the considered approach is able to manage;

– Query mechanism: it refers to how query are specified;
e.g., there are approaches that allow users to specify
queries with query strings; others adopt more struc-
tured languages like OCL;

– Megamodel-awareness: some approaches consider also
relations among different kinds of artifacts, where rela-
tions give place to joins that traverse the repository; for
instance, like searching for all metamodels supported
by existing editors that are source metamodels of a
transformation that generates models conforming to a
given metammodel; considering the artifact relations
requires the approach to be aware of the repository
structure typically represented by means of megamod-
els [9];

– Indexing supported: in order to make searches more
efficient, approaches may rely on indexing mechanisms.

The first entry in the table is an approach [10] for retrieving
UML2 design models using the combination of WordNet and
Case-Based Reasoning. The approach makes use also of a sim-
ilarity distance to ’approximate’ the result. Moogle [14, 15] is
a model search engine that relies on the use of metamodeling
information for creating indexes allowing the execution of
complex queries. It also delivers the results in a readable
way by removing irrelevant strings from the actual model
1https://www.eclipse.org/modeling/emf/
2https://www.omg.org/spec/UML/

https://www.eclipse.org/modeling/emf/
https://www.omg.org/spec/UML/


Supported modeling artifact Query mechanism Megamodel-awareness Indexing supported
Gomes P. et al. [10] UML models Query-by-example No Yes
Lucrédio D. et al. [14, 15] Any Text search No Yes
Konstantinos B. et al. [2, 3] Any OCL-like language Partial Yes
Kessentini et al. [12] Metamodel Query-by-example No No
Bislimovska B. et al. [6] WebML Models Query-by-example No Yes
Bozzon A. et al. [7] Any Text search No Yes
Kling W. et al. [13] Any OCL-like language Yes No
Ángel. et al. [1] Model and Metamodel Text search No Yes

Table 1: A sample of approaches for model search. The list is inevitably non–exhaustive and merely intended to reflect the kinds
of approaches that are available

file. Moogle can search for models conforming to different
languages, as long as there is a well-defined metamodel which
can be provided to Moogle. The approach is limited to a
single architectural layer without considering for example
relationships among artifacts. For the indexing mechanism
Moogle relies on the existing Apache SOLR3 search engine.

Hawk is a framework aiming at providing scalable tech-
niques for large-scale model querying and transformations. In
[2, 3] the authors compare the conventional and commonly
used persistence mechanisms in MDE with novel approaches
such as the use of graph-based NoSQL databases. Moreover,
they present an extensible model indexing framework at the
base of the developed tool. The proposed framework collects
models stored in file-based version control systems and per-
sists them in indexes, while not altering the original files.
The node concept, represents metamodel types and contain
their name, they are linked with relationships to their model.
This mechanism directly supports conformance navigation
but we are not sure if can be adapted to fully support a
megamodel-based relationship navigation. The default query
mechanism is based on native APIs e.g., related to Neo4J4

and OrientDB5.
In [12], the authors propose a search-based metamodel

matching mechanism combining structural and syntactic met-
rics to generate correspondences between metamodels. The
approach considers metamodel matching as an optimization
problem. They adopted a global search to generate an initial
solution and, subsequently, a local search, namely simulated
annealing, to refine the initial solution generated by the ge-
netic algorithm. The approach starts by generating a set of
possible matching solutions between the source and target
metamodels randomly. Then, these solutions are evaluated
using a fitness function based on structural and syntactic
measures.

In [6], the authors investigate the adoption of different
techniques for indexing and searching model repositories, by
focusing on WebML [8] models. Keyword-based and content-
based techniques are employed to provide users with a query-
by-example paradigm. In [7], authors proposes the adoption
of information retrieval techniques. They identify relevant
design dimensions and several options (project segmentation,
index structure, query language and processing, and result

3http://lucene.apache.org/solr/
4https://neo4j.com
5https://orientdb.com/

presentation) and presents an architecture for the automatic
model-driven project segmentation, indexing and search, with-
out requiring any manual model annotation. The proposed
approach is agnostic on the type of modelling artifact. In
[13], the authors propose MoScript, an OCL-based scripting
language that permits to query a model repository by relying
on the metadata available in a dedicated megamodel.

The authors in [1] propose EXTREMO, a tool developed as
an Eclipse plugin, able to gather heterogeneous information
from different technological spaces (like ontologies, RDF,
XML or EMF). EXTREMO represents them uniformly in a
common data model that enables an uniform querying, by
means of an extensible mechanism, which can make use of
services, e.g., for synonym search and word sense analysis.

By a brief analysis of Table 1, it clearly emerges that only
few approaches leverage the relationships among the artifacts
as first-class entities to be used when exploring an existing
model repository. Most of the analyzed approaches are based
on indexing techniques for the sake of better performance.
Some approaches have recognized the importance of being
generic and supporting the management of any kind of model-
ing artifacts. Among the considered approaches, the preferred
query mechanism follows the ’query-by-example’ model.

In the next section, the proposed approach is presented. It
aims at being generic in order to manage any kind of modeling
artifact. Moreover, it reduces the accidental complexity by
allowing modelers to efficiently search repositories by means
of dedicated search operators that prevent the designer from
becoming familiar with specific languages, systems, and tech-
nologies.

4 PROPOSED APPROACH
Conventional wisdom on managing large repositories suggests
that technical merit of the query model is key to success. In
fact, as shown in Sect. 2 very simple requirements may lead
to complex queries embedded in components that involve sev-
eral languages and tools. We aim to address this shortcoming
by proposing a technique that is based on search operators
that abstract from the underlying machinery. For instance,
Gmail provides users with a list of domain-specific opera-
tors6 that can be used when searching throughout mails, e.g.,
the operator has:attachment returns all messages with an
attachment. Multiple operators can be combined in complex
search string, as for instance “to:david has:youtube” that
6https://support.google.com/mail/answer/7190?hl=en

http://lucene.apache.org/solr/
https://neo4j.com
https://orientdb.com/
https://support.google.com/mail/answer/7190?hl=en


Figure 1: Architecture overview of the proposed model search
infrastructure

filters messages sent to a specific recipient with a YouTube
video. The interesting idea about this is that it is based
on a very simple syntax that does scale well, in the sense
that i) it is platform agnostic as it does not require specific
expertise to be used; and ii) the notation remains concise
despite searches can get complex. Thus, the same mechanism
has been adopted for searching through model repositories.
For instance, let us assume we are interested in retrieving all
transformations that consumes models conforming to a Fam-
ily metamodel, the expression fromMM:Family returns them.
Now, if we restrict our attention to only those transformations
that return Person models, we can write fromMM:Family
toMM:Person. An excerpt of the available operators is in
Table 2 together with descriptions and typing requirements.

The approach has been implemented by integrating the
Lucene [16] search engine in the MDEForge [5] platform. A
detailed overview of the technologies, model search infras-
tructure, and operators is given in the next section.

4.1 Overview of the technology baseline
MDEForge is an extensible modeling framework that consists
of services for storing, managing, analysing any kind of mod-
eling artefacts. Extensions can be developed and integrated
in the platform by starting from the services exposed by the
platform. Restful APIs allow implementors to design complex
modelling life-cycles that are in turn used as software-as-a-
service. The persistency layer provided by MDEForge is at
the base of this work and will be used to retrieve the artifacts
that can be searched by means of specific search operators.
Interested readers can refer to [5] for more details about the
technical details about MDEForge and its megamodel-based
architecture.

Lucene is a simple but powerful Java-based and open
source search library. It is scalable and its high-performance
enables its adoption to index and search virtually any kind
of text. Lucene can be used in any application to add search
capabilities to it. The library provides the core operations,
which are typically required by any search application. The
main operations the engine provides can be summarized
as: collecting the content, analyzing the artifacts, indexing

the documents, providing a search interface, query building,
query execution, and showing results.

4.2 Model search infrastructure
Figure 1 illustrates the architecture of the search infrastruc-
ture with the components underpinning the integration of
MDEForge and Lucene. In particular, Lucene is used to cre-
ate indexes related to the artifacts stored in the MDEForge
repository. The indexing operation can be customized for
example, scheduling it every time a new artifact is uploaded.
The content to be considered when creating the indexes is
retrieved by the Content extractor component, which extracts
specific information for each type of artifact. For instance, for
metamodels the component extracts relevant metamodel char-
acteristics, including package names, nsUri, metaclass names,
attribute and reference names, enumerations, literales, and
datatypes. Concerning model transformations, the content
extractor retrieves for each transformation specific attributes
like helper and rule names, etc. Interestingly, the content
extractor implements some reflection as well, since it retrieves
also information about the megamodel representing all the
existing relationships of the ecosystem stored in the reposi-
tory. For instance, the megamodel explicitly represents the
conformsTo relation between a model and the corresponding
metamodel. Such conformance relation is used to index mod-
els with respect to the corresponding types. For instance, if
we consider the Person metamodel7, the content extractor
will retrieve information so to enable the possibility to query
models conforming to the Person metamodel by searching
for persons with a particular name and so on. There are
attributes that are common for all the types of artifacts and
that are retrieved by the extractor as, e.g., author’s name,
update time, etc.

Once all the artifacts stored in the repository have been
extracted, they are analyzed by the MDE Artifacts Analyzer,
which enriches the indexes created by the Index writer com-
ponent. When users submit a search string (by means of
the Web-based interface or via the available Rest API), a
corresponding query is built by the Query Builder component
in order to retrieve artifacts from the MDEForge repository
with respect to the available indexes.

Figure 2 shows a screenshot of the Web-based search page,
consisting of three main parts: the search form, the list of
available search operators that can be used for specifying
the query, and the query results. In the shown example, the
search string makes use of three operators, namely eClass:,
eReference:, and eAttribute: in order to search for all the
metamodels containing metaclasses named Family, which in
turn contains a reference named members, and an attribute
named age. The execution of that query produced one result
consisting of the Family.ecore metamodel.

Query results are ranked with respect to a matching score
between the query and the found artifacts (in the example
shown in Fig. 2 it is 755). The score is determined by the
Lucene engine and depends on many factors. In particular,

7http://www.eclipse.org/atl/atlTransformations/

http://www.eclipse.org/atl/atlTransformations/


Figure 2: The proposed model search infrastructure at work
Operator
name

Artifact Description

name: Any It returns all the artifacts matching the name provided by the query tag value
author: Any It returns all the artifacts provided by a specific author
conformToMM: Metamodel It returns the models that conform to the metamodel named as the provided value
eClass: Metamodel It returns the metamodels containing at least one metaclass named as the provided value
eAttribute: Metamodel It returns the metamodels containing at least one metaclass having an attribute named as the

provided value
eReference: Metamodel It returns the metamodels containing at least one metaclass having a reference named as the provided

value
fromMM: /
toMM:

Transformation It returns all the transformations having as source metamodel the provided value for the fromMM
tag and as destination the provided value for the toMM tag

fromMC: /
toMC:

Transformation It returns all the transformations having a rule transforming the metaclass specified in the value for
the first tag into the metaclass specified as value for the last tag

Table 2: Excerpt of the available search operators

to determine that value, Lucene implements a variant of the
TF-IDF[17] scoring model.

4.3 Model search operators
As mentioned above, Table 2 shows an excerpt of the opera-
tors provided by the proposed approach and that can be used
to search throughout a repository as shown in Fig. 2. Typ-
ing information are in the second column, i.e., the operator
name: is evaluated on any type of artifacts, whilst eClass:
is executed only on metamodels.

The operators can be used in the form key:value , where
key is the operator specification and value is the matching
term. More complex search expressions can be obtained by a
conjunction of operators

{key:value }+

Furthermore, Lucene provides users with additional operators
that can be used to compose queries [16].

5 EXPERIMENTS
In this section, a discussion is provided about the application
of the proposed approach to a dataset consisting of 2.422

metamodels, 350 models, and 115 transformations8. In par-
ticular, the approach has been used to specify and execute
the queries discussed in Sect.2. The main goal of the experi-
ments is to perform a preliminary experimental assessment
of the proposed approach with respect to i) its suitability to
support the specification of model queries involving different
kinds of interrelated artifacts; ii) its performance in terms of
query execution time. The queries that have been employed
in the experiments are the following:
Q1: Get all the metamodels having a metaclass named class-

Name, which in turn contains an attribute named attr-
Name, and a reference named refName;

Q2: Get all the model transformations transforming meta-
classes named metaclassName1 to generate target meta-
className2 elements;

Q3: Get all the models conforming to the metamodel named
metamodelName.

The queries are written with the proposed approach and
in OCL in order to provide a comparison. Table 3 shows
8These are publicly available artifacts; as it often happens it is not
easy to retrieve models from publicly accessible repositories, while
metamodels are typically easier to find.



Proposed approach OCL based approach
exec.time (ms) query string exec.time (ms) #loc

Q1 39 eClass:className AND eAttribute:attrName AND eReference:refName 12641 ≈70
Q2 59 fromMetaclass:metaclassName1 AND toMetaclass:metaclassName2 7701 ≈40
Q3 24 conformToMM:metamodelName 8102 ≈60

Table 3: Performed experiments

relevant data related to the application of both versions of
the queries. The specification of the queries by means of
the proposed operators is given in the third column of the
same table, whereas the number of lines of code (#loc) of
the OCL-based solutions is shown in the last column. The
#loc values are obtained by considering the length of the
code shown in Sect. 2 and the lines of the auxiliary methods
that have been implemented for supporting the execution
of those queries. For both approaches, the query execution
times are reported in milliseconds (see the second and fourth
columns of the table).

From the experimental data it emerges that the execution
time of the OCL-based queries is always considerably higher
than that of the proposed approach. In particular, for Q2 the
execution time of the OCL query is eight times higher; this
can be explained with the cardinality of metamodels that is
much higher of that of the other artifacts. As to the verbosity,
the proposed approach outperforms the OCL-based query.
It is worth noting that the execution times of the queries
specified by means of the proposed approach do not take into
account the time needed to create the indexes as discussed in
the previous section. However, indexes are typically created
off-line by means of batch processes, which do not interfere
with the actual execution of queries. Moreover, each time the
indexes must be updated because new artifacts are added,
this is done incrementally.

6 CONCLUSION AND FUTURE WORK
Modern modelling tools are becoming more and more dis-
tributed platforms where artifacts can be persistently stored
and coherently dealt with. As a consequence, being able to
conveniently search throughout the repository according to
specific criteria is key to any reuse practice. The approach pre-
sented in this paper proposes simple yet powerful operators
to perform complex repository searches. The correspond-
ing search infrastructure permits modelers to explore model
repositories in an efficient way by abstracting form the spe-
cific platforms and tools used to formulate the queries. The
approach has been implemented by integrating the Lucene
search engine in the MDEForge platform. Preliminary exper-
iments show that the approach is promising, especially when
compared with traditional techniques, even though more ac-
curate comparison criteria and metrics have to be properly
defined. Moreover, the adoption of alternative frameworks
for model query, like Hawk [2] will be also investigated.

REFERENCES
[1] Mora Segura Ángel, Juan de Lara, Patrick Neubauer, and Manuel

Wimmer. 2018. Automated modelling assistance by integrating

heterogeneous information sources. Computer Languages, Sys-
tems & Structures 53 (2018), 90–120.

[2] Konstantinos Barmpis and Dimitris Kolovos. 2013. Hawk: Towards
a Scalable Model Indexing Architecture. In Proceedings of the
Workshop on Scalability in Model Driven Engineering (BigMDE
’13). ACM, New York, NY, USA, Article 6, 9 pages.

[3] Konstantinos Barmpis and Dimitrios S Kolovos. 2014. Towards
scalable querying of large-scale models. In European Conference
on Modelling Foundations and Applications. Springer, 35–50.

[4] Francesco Basciani, Juri Di Rocco, Davide Di Ruscio, Amleto
Di Salle, Ludovico Iovino, and Alfonso Pierantonio. 2014. MDE-
Forge: an Extensible Web-Based Modeling Platform. Cloud-
MDE@MoDELS (2014), 66–75.

[5] Francesco Basciani, Davide Di Ruscio, Ludovico Iovino, and Al-
fonso Pierantonio. 2014. Automated Chaining of Model Transfor-
mations with Incompatible Metamodels. MoDELS 8767, Chapter
37 (2014), 602–618.

[6] Bojana Bislimovska, Alessandro Bozzon, Marco Brambilla, and
Piero Fraternali. 2014. Textual and content-based search in repos-
itories of web application models. ACM Transactions on the Web
(TWEB) 8, 2 (2014), 11.

[7] Alessandro Bozzon, Marco Brambilla, and Piero Fraternali. 2010.
Searching repositories of web application models. In International
Conference on Web Engineering. Springer, 1–15.

[8] Stefano Ceri, Piero Fraternali, and Aldo Bongio. 2000. Web
Modeling Language (WebML): a modeling language for designing
Web sites. Computer Networks 33, 1-6 (2000), 137–157.

[9] Juri Di Rocco, Davide Di Ruscio, Johannes Härtel, Ludovico
Iovino, Ralf Lämmel, and Alfonso Pierantonio. 2018. Sys-
tematic Recovery of MDE Technology Usage. In Theory and
Practice of Model Transformation, Arend Rensink and Jesús
Sánchez Cuadrado (Eds.). Springer International Publishing,
Cham, 110–126.

[10] Paulo Gomes, Francisco C. Pereira, Paulo Paiva, Nuno Seco, Paulo
Carreiro, José L. Ferreira, and Carlos Bento. 2004. Using WordNet
for Case-based Retrieval of UML Models. AI Commun. 17, 1 (Jan.
2004), 13–23. http://dl.acm.org/citation.cfm?id=992846.992849

[11] Brahim Hamid. 2017. A model-driven approach for developing a
model repository: Methodology and tool support. Future Gener-
ation Computer Systems 68 (2017), 473 – 490.

[12] Marouane Kessentini, Ali Ouni, Philip Langer, Manuel Wimmer,
and Slim Bechikh. 2014. Search-based metamodel matching with
structural and syntactic measures. Journal of Systems and Soft-
ware 97 (2014), 1–14.

[13] Wolfgang Kling, Frédéric Jouault, Dennis Wagelaar, Marco Bram-
billa, and Jordi Cabot. 2012. MoScript: A DSL for Querying
and Manipulating Model Repositories. In Software Language En-
gineering, Anthony Sloane and Uwe Aßmann (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 180–200.

[14] Daniel Lucrédio, Renata P. de M. Fortes, and Jon Whittle. 2008.
MOOGLE: A Model Search Engine. Springer Berlin Heidelberg,
Berlin, Heidelberg, 296–310.

[15] Daniel Lucrédio, Renata P de M Fortes, and Jon Whittle. 2012.
MOOGLE: a metamodel-based model search engine. Software &
Systems Modeling 11, 2 (2012), 183–208.

[16] Michael McCandless, Erik Hatcher, and Otis Gospodnetic. 2010.
Lucene in action: covers Apache Lucene 3.0. Manning Publica-
tions Co.

[17] Juan Ramos et al. 2003. Using tf-idf to determine word relevance
in document queries. In Proceedings of the first instructional
conference on machine learning, Vol. 242. 133–142.

[18] J. Di Rocco, D. Di Ruscio, L. Iovino, and A. Pierantonio. 2015.
Collaborative Repositories in Model-Driven Engineering [Software
Technology]. IEEE Software 32, 3 (May 2015), 28–34.

http://dl.acm.org/citation.cfm?id=992846.992849

	Abstract
	1 Introduction
	2 Motivating scenarios
	3 Background
	4 Proposed approach
	4.1 Overview of the technology baseline
	4.2 Model search infrastructure
	4.3 Model search operators

	5 Experiments
	6 Conclusion and Future Work
	References

