
Handling constraints in model versioning

Alessandro Rossini
PwC Norway

alessandro.rossini@pwc.com

Adrian Rutle
Western Norway University of Applied Sciences

aru@hvl.no

Yngve Lamo
Western Norway University of Applied Sciences

yla@hvl.no

Uwe Wolter
University of Bergen, Norway

wolter@ii.uib.no

ABSTRACT

In model-driven software engineering (MDSE), models are �rst-

class entities of software development and undergo a complex evol-

ution during their life-cycles. As a consequence, there is a grow-

ing need for techniques and tools to support model management

activities such as versioning. Traditional versioning systems target

text-based artefacts and are not suitable for graph-based structures

such as software models. To cope with this problem, a few pro-

totype model versioning systems have been developed. However,

a uniform formalisation of model merging, con�ict detection and

con�ict resolution in MDSE is still debated in the literature. In this

paper, we propose an approach to constraint-aware model version-

ing; i.e., an approach that handles constraints in model merging,

con�ict detection and con�ict resolution. The proposed approach

is based on theDiagramPredicate Framework (DPF), which is foun-

ded on category theory and graph transformation.

KEYWORDS

Model-Driven Software Engineering,Model Versioning, Constraints,

Category Theory, Graph Transformation, DiagramPredicate Frame-

work

1 INTRODUCTION

Since the beginning of computer science, raising the abstraction

level of software systems has been a continuous process. One of

the latest steps in this direction has led to the use of modelling

languages in software development processes. Softwaremodels are

abstract representations of software systems that are used to tackle

the complexity of present-day software by enabling developers to

reason at a higher level of abstraction.

In model-driven software engineering (MDSE), models are �rst-

class entities of software development and undergo a complex evol-

ution during their life-cycles. As a consequence, there is a growing

need for techniques and tools to support model management activ-

ities such as versioning.

In optimistic versioning, each developer has a local (or working)

copy of a software artefact. These local copies are modi�ed inde-

pendently and in parallel. From time to time, local modi�cations

are merged. In the centralised approach to optimistic versioning,

local modi�cations from each developer are merged into a central

repository. In the distributed approach, in contrast, local modi�ca-

tions from each developer are merged into other developers’ local

copies. In both cases, the merge is performed using a three-way

merging technique [29], which attempts to merge two versions of

a software artefact relying on the common ancestor version from

which both versions originated. This technique facilitates con�ict

detection. In general, con�icts may arise when the modi�cations

are contradictory. They are resolved either manually or—where

applicable—automatically.

Mainstream versioning systems, e.g., Subversion [5] andGit [24],

target text-based artefacts. The underlying techniques such as mer-

ging, con�ict detection and con�ict resolution are based on a per-

line textual comparison [25]. Since the underlying structure ofmod-

els is graph-based rather than text-based, these techniques are not

suitable for such models [1, 2].

To cope with this problem, a few prototype model versioning

systems have been developed, e.g., [3, 8]. However, a uniform form-

alisation of model merging, con�ict detection and con�ict resolu-

tion in MDSE is still debated in the literature. Research has lead

to a number of �ndings in this �eld [4, 7]. The interested reader

may consult [9–11, 13, 35, 41, 43] for di�erent approaches to model

merging, con�ict detection and con�ict resolution. Unfortunately,

these techniques consider only model elements and their conform-

ance to the corresponding modelling language, e.g., well-formed-

ness constraints. However, these techniques should also consider

constraints added to model elements, e.g., multiplicity constraints.

Therefore, an interesting challenge is to extend the current tech-

niques by enabling versioning of constraints.

In this paper, we describe a formal approach to constraint-aware

model versioning based on the Diagram Predicate Framework

(DPF) [33, 36]; i.e., a formal approach to model versioning that

handles constraints in model merging, con�ict detection and con-

�ict resolution. In particular, the proposed approach enables the

detection, and—where applicable—resolution of syntactic and se-

mantic con�icts on constraints. This paper further develops the

formalisation of model versioning published in [35, 37]. Compared

to the previous work, the theoretical foundation and the underly-

ing techniques are updated to handle constraints. Moreover, new

examples are added to illustrate how model merging, con�ict de-

tection and con�ict resolution are adapted to handle constraints.

The remainder of the paper is structured as follows. Section 2

introduces constraint-aware model versioning through a running

example. Section 3 outlines DPF. Section 4 discusses the proposed

approach to constraint-aware model versioning, with a particular

focus on model merging, con�ict detection and con�ict resolution

for constraints in DPF. In Section 5, the current research in model

versioning is summarised. Finally, in Section 6, some concluding

remarks and ideas for future work are presented.

2 MODEL VERSIONING

This section introduces constraint-aware model versioning. The

following example illustrates a common scenario of concurrent de-

velopment in MDSE. The example is kept simple intentionally, re-

taining only the details that are relevant for the discussion.

Example 2.1 (Model versioning and con�ict detection scenario).

Suppose that two developers, Alice and Bob, adopt an optimistic,

centralised versioning system to develop an information system

for the management of students and universities. Fig. 1 illustrates

the interaction betweenAlice, Bob, and the repository. Fig. 2 shows

the di�erent versions of the model being developed.

B3B2B2

Bob

A2A2A1A1

Alice

c
o
m
m
its

y
n
c

c
h
e
c
k
-o
u
t

V3V2V1Repository

Figure 1: The timeline of the scenario

Alice creates a local copy A1 of the model V1 in the repository

(see Fig. 2(a)). This is done in a check-out step. She modi�es her

local copy by adding the node University together with the arrows

sUnivs and uStuds. These modi�cations take place in an evolution

step. Since other developers may have updated the model V1, she

needs to synchronise her local copy with the repository to merge

other developers’ modi�cations. This is done in a synchronisation

step. However, no modi�cations of the model V1 have been made

in the repository while Alice has been modifying it. Hence, the

synchronisation is completed without changing her local copy A1.

Finally, Alice commits her local copy, which is labelled V2 in the

repository (see Fig. 2(b)). This is done in a commit step.

A2(d) V3(c)

V2(b)V1(a)

University
sUnivs

uStuds
Student

[1..4]

University
sUnivs

uStuds

[0..3]

Student

University
sUnivs

uStuds
StudentStudent

Figure 2: The models V1, V2, V3 and A2

Afterwards, Bob checks out a local copy B2 of the model V2
from the same repository. He adds the multiplicity constraint [0..3]

on the arrow sUnivs. Then, he synchronises his local copy with the

repository. This synchronisation is also completed without chan-

ging his local copy B2. Finally, Bob commits his local copy, which

is labelled V3 in the repository (see Fig. 2(c)).

Alice continues to modify her local copy A2, which is now out-

of-date since it is a copy of the modelV2, while the head model in

the repository (containing Bob’s modi�cations) isV3. She adds the

multiplicity constraint [1..4] on the same arrow sUnivs. Then, she

synchronises her local copy with the repository. The synchronisa-

tion procedure detects con�icting modi�cations. This is because

Alice has added a multiplicity constraint that contradicts the one

added by Bob.

3 DIAGRAM PREDICATE FRAMEWORK

DPF is a formal diagrammatic speci�cation framework founded on

category theory and graph transformation. The interested reader

may consult [33–36, 38] for a more detailed presentation of the

framework. DPF is an extension of theGeneralized Sketches Frame-

work originally developed by Diskin et al. in [14–20]. This section

presents the basic concepts of DPF that are used in the formalisa-

tion of constraint-aware model versioning.

In DPF, a model is represented by a speci�cation S. A speci�c-

ation S = (S ,CS : Σ) consists of an underlying graph S together

with a set of atomic constraintsCS that are speci�ed by means of a

predicate signature Σ . A predicate signature Σ = (ΠΣ
,αΣ) consists

of a collection of predicates π ∈ ΠΣ , each having an arity (or shape

graph) αΣ (π). An atomic constraint (π ,δ) consists of a predicate

π ∈ Π
Σ together with a graph homomorphism δ : αΣ (π) → S

from the arity of the predicate to the underlying graph of a spe-

ci�cation.

Example 3.1 (Signature and speci�cation). Building on Example

2.1, Table 1 shows a signature Σ = (ΠΣ
,αΣ) suitable for object-

oriented structural modelling. The �rst column of the table shows

the predicate symbols. The second and the third columns show the

arities of predicates and a proposed visualisation of the correspond-

ing atomic constraints, respectively. Finally, the fourth column pre-

sents the semantic interpretation of each predicate.

Table 1: The signature Σ

π ∈ Π
Σ

α
Σ (π) Proposed vis. Semantic interpreta-

tion

[mult(m, n)] 1
a // 2 X

f

[m..n]

// Y ∀x ∈ X : m ≤
|f (x) | ≤ n, with 0 ≤
m ≤ n and n ≥ 1

[surjective] 1
a // 2 X

f

[surj]

// Y ∀y ∈ Y ∃x ∈ X : y ∈
f (x)

[inverse] 1

a

&&
2

b

ff X

f
))
Y

g

ii [inv] ∀x ∈ X , ∀y ∈ Y : y ∈
f (x) if and only if x ∈
д(y)

Fig. 3(a) shows a speci�cation S = (S ,CS : Σ) representing an

object-oriented structural model. Fig. 3(b) shows the underlying

graph S of the speci�cation S, i.e., the graph of S without any

atomic constraints.

S(b)S(a)

uStuds
University

sUnivs
StudentStudent University

sUnivs

uStuds

[1..4]

[surj]

[inv]

Figure 3: A speci�cation S = (S ,CS : Σ) and its underlying

graph S

In S, the nodes Student and University are interpreted as sets

Student andUniversity, while the arrows sUnivs, uStuds are inter-

preted as multi-valued functions sUnivs : Student → ℘(Universi-

ty), etc., where the powerset ℘(University) is the set of all subsets

ofUniversity, i.e., ℘(University) = {A | A ⊆ University}.

The function sUnivs has cardinality between one and four. InS,

this is enforced by the atomic constraint ([mult(1, 4)],δ1) on the

arrow sUnivs. This atomic constraint is formulated by the predic-

ate [mult(m,n)] from the signature Σ (see Table 1). Moreover, the

function uStuds is surjective. In S, this is enforced by the atomic

constraint ([surjective],δ3) on the arrow uStuds. Furthermore,

the functions sUnivs and uStuds are inverse of each other; i.e.,

∀s ∈ Student and ∀u ∈ University : s ∈ uStuds(u) if and only

if u ∈ sUnivs(s). In S, this is enforced by the atomic constraint

([inverse],δ2) on the arrows sUnivs and uStuds.

The semantics of predicates of the signature Σ (see Table 1) is

described using the mathematical language of set theory. In an im-

plementation, the semantics of a predicate is typically given by the

code of a corresponding validator such that the mathematical and

the validator semantics coincide [28].

A semantic interpretation [[..]]Σ of a signature Σ consists of a

mapping that assigns to each predicate symbol π ∈ ΠΣ a set [[π]]Σ

of graph homomorphisms ι : O → αΣ (π), called valid instances of

π , whereO may vary over all graphs. [[π]]Σ is assumed to be closed

under isomorphisms. The interested readermay consult [36, 38] for

a more detailed discussion of the semantics of a speci�cation.

Example 3.2 (Instance of a speci�cation). Building on Example 3.1,

Fig. 4(a) shows a valid instance of S, while Fig. 4(b) shows an in-

valid instance ofS that violates the atomic constraints

([surjective],δ3) and ([inverse],δ2) since Adrian is associated

with four universities but none of these universities are associated

with Adrian.

UnivAQ

��
UiB

rrAlessandro

55❥❥❥

::✈✈✈✈✈✈

))❙❙❙

##●
●●

●●
●

UniMarburg

kk

UAM

XX

(a)

UiB

HVL

Adrian

66❧❧❧

<<②②②②②

((◗◗

!!❉
❉❉

❉❉
❉

UniMarburg

AUC

(b)

Figure 4: (a) A valid instance ofS; (b) An invalid instance of

S violating ([surjective],δ3) and ([inverse],δ2)

4 CONSTRAINT-AWARE MODEL
VERSIONING

This section introduces the underlying techniques of the pro-

posed approach to constraint-aware model versioning, with a par-

ticular focus on model merging, con�ict detection and con�ict res-

olution for atomic constraints. The interested reader may consult

[33, 35] for a more detailed discussion of model versioning in DPF.

4.1 Representation of di�erences

In this paper, the di�erence between two versions of a speci�ca-

tion is represented by a di�erence speci�cation; i.e., a speci�cation

that contains all common, added, deleted and renamed elements.

The motivation behind adopting di�erence speci�cations is that—

as will be clear later—gathering all these elements in one speci�c-

ation facilitates the application of transformation rules to detect

and resolve con�icts.

Due to the diagrammatic nature of speci�cations, the representa-

tion of di�erences such as added, deleted and renamed is expressed

by a diagrammatic language. The diagrammatic language for the

representation of di�erences is given by a label signature ∆, which

has the same structure of a signature but no semantic counterpart

(see Table 2). A label signature ∆ = (Θ∆
,α∆) consists of a set of

labels θ ∈ Θ
∆ , each having an arity α∆ (θ). Hence, a di�erence

speci�cation D = (D ,CD : Σ,AD : ∆) consists of a speci�cation D

together with a set of annotations AD that are speci�ed by means

of the label signature ∆ (see, e.g., UD and D in Fig. 5).

Table 2: A subset of the signature ∆ for the annotation of

atomic constraints

θ ∈ Θ
Σ

α
∆ (θ) Proposed visual.

<add>[mult(m,n)] 1
a // 2 X

f

++[m..n]
// Y

<delete>[mult(m,n)] 1
a // 2 X

f

- -[m..n]
// Y

<conflict>[mult(m,n)] 1
a // 2 X

f

[m..n]
// Y

❴ ❴ ❴ ❴ ❴ ❴✤

✤

✤

✤
❴ ❴ ❴ ❴ ❴ ❴

The underlying graph and the set of atomic constraints of a dif-

ference speci�cation are obtained by the pushout construction [6,

23, 33], which can be regarded as a generalisation of union. In this

paper, we do not provide details of the pushout construction, but

we o�er an explanation of its usage by means of the running ex-

ample.

Example 4.1 (Di�erence speci�cation). Building on Example 2.1,

recall that two (or more) developers may modify the same speci�-

cations concurrently. Starting from the base speci�cation V2 (see

Fig. 2(b)), Bob makes and commits his modi�cations so that the

head speci�cation is now V3 (see Fig. 2(c)). Concurrently, Alice

makes (but does not commit) her modi�cations so that her local

copy is now A2 (see Fig. 2(d)). Next, Alice synchronises her local

copy with the head speci�cation.

The speci�cation UD (see Fig. 5(g)) represents the di�erence

between Alice’s local copy and the base speci�cation. It is calcu-

lated using the pushout construction by merging A2 and V2 mod-

ulo their commonality speci�cation, which contains the unmodi-

�ed elements from V2 to A2.

Similarly, the speci�cationD (see Fig. 5(d)) represents the di�er-

ence between the head speci�cation and the base speci�cation. It

is calculated using the same pushout construction by merging V3
and V2 modulo their commonality speci�cation, which contains

the unmodi�ed elements from V2 to V3.

4.2 Con�ict detection

The merge of di�erencesMD is a speci�cation that represents the

concurrent modi�cations of two (or more) developers and that is

processed to detect con�icts. Con�icts are speci�ed by con�ict de-

tection rules, which are based on constraint-aware transformation

rules [33, 36, 38].

A transformation rule t = L K
loo �

� r // R consists of three

speci�cations L, K and R. L and R are the left-hand side and right-

hand side of the transformation rule, respectively, while K is their

interface. L \ l(K) describes the part of a speci�cation that is to

be deleted, R \ K describes the part to be added, and K describes

the part that has to exist to apply the rule, in which only renaming

modi�cations are possible. Note that the speci�cation morphism l :

K → L is injective—not an inclusion—to allow for renaming [33].

An application of transformation rule consists of �nding a match

for the left-hand side L in a source speci�cation S and replacing

L with R, leading to a target speci�cationS′.

A con�ict detection rule consists of a non-deleting transforma-

tion rule, where the left-hand sideL represents the con�ict and the

right-hand side R is a speci�cation where the con�icting elements

are annotated. The interface K is equal to L since non-deleting

transformation rules do not delete any elements.

Detecting a con�ict consists of applying a con�ict detection rule

by �nding a match for the left-hand side L in the merge of di�er-

ences MD, leading to a target merge of di�erences MD′′ where

the con�icting elements are annotated.1 Hence, MD is processed

by applying all applicable con�ict detection rules.

Applying these rules provides a classi�cation of the con�icts

into two kinds, namely traditional con�ict and custom con�ict. A

traditional con�ict occurs when concurrent modi�cations compete

over the same elements of a speci�cation; e.g., a part of the under-

lying graph is deleted while an atomic constraint having the same

part as the target is added (dangling atomic constraints). Table 3

(rule g) shows a traditional con�ict detection rule for dangling

multiplicity constraints. In contrast, a custom con�ict occurs when

concurrentmodi�cations lead to contradicting constraints; e.g., two

(di�erent) multiplicity constraints are added to the same arrow.

Table 3 (rule l) shows a custom con�ict detection rule for inconsist-

ent multiplicity constraints. Note that these kinds of con�icts may

include domain-speci�c con�icts. The proposed approach enables

the speci�cation of custom con�ict detection rules on demand.

The following example illustrates the application of custom con-

�ict detection rules.

Example 4.2 (Merge of di�erences and custom con�ict detection).

Building on Example 2.1, Fig. 5(h) shows the merge of di�erences

MD. It is calculated using the pushout construction on UD,D and

their commonality speci�cation. Fig. 5(i) shows the merge of dif-

ferencesMD′′ after the application of con�ict detection rules.

InMD the atomic constraints ([mult(0, 3)],δ1) and

([mult(1, 4)],δ1) are annotated with <add>[mult(m,n)], which is

visualised by a ++ and green colouring. InMD′′ these atomic con-

straints are additionally annotated with <conflict>[mult(m,n)],

which is visualised by a dotted box, according to rule l (see Table 3).

1The choice of the notationMD′′ rather thanMD′ will be clear in Section 4.4

MD''(i)MD(h)

D(d)UD(g)

V2(a)

conflict
detection

merge of differences

University
sUnivs

uStuds
Student

++[1..4]
++[0..3]

University
sUnivs

uStuds

++[1..4]

Student

++[0..3]

University
sUnivs

uStuds

++[0..3]

StudentUniversity
sUnivs

uStuds

++[1..4]

Student

University
sUnivs

uStuds
Student

Figure 5: The merge of di�erences MD and the merge of

di�erences MD′′ after the application of con�ict detection

rules

4.3 Con�ict resolution

Depending on the structure and semantics of the modi�cations,

some con�icts may be automatically resolved. Several resolution

strategies [9] may be possible for a given con�ict. These strategies

are speci�ed by con�ict resolution patterns, which are based on

transformation rules. A con�ict resolution pattern consists of a

transformation rule, where the left-hand side L represents the con-

�ict, the right-hand side R is a speci�cation where the resolution

is applied, and K is their interface.

In the merge of di�erences MD, we could annotate modi�ca-

tions from di�erent developers with di�erent labels so that a con-

�ict resolution with priorities could take this information into ac-

count. However, in this paper, we abstract from these details and

consider resolution patterns without priorities.

Resolving a con�ict consists of applying a con�ict resolution

pattern by �nding a match for the left-hand side L in the merge of

di�erences MD′′ , leading to a target merge of di�erences MD′′′ .

Hence, in addition to con�ict detection rules, the merge of di�er-

ences MD is processed by applying all applicable con�ict resolu-

tion patterns.

To resolve con�icts of inconsistent multiplicity constraints, two

con�ict resolution patterns are de�ned. The �rst “liberal” pattern

bL is to remove the con�icting multiplicity constraints and add a

constraint that is the union of the two. The second “conservative”

pattern bC is to remove the con�icting multiplicity constraints and

add a constraint that is the intersection of the two. Table 3 shows

these con�ict resolution patterns.

InbL , according to the semantic interpretation [[[mult(m,n)]]]Σ

of the signature Σ (see Table 1), the set of valid instances of the

atomic constraint ([mult(min(m1,m2),max(n1,n2))],δ1) ∈ C
R is

equal to the union of the set of valid instances of the atomic con-

straints ([mult(m1,n1)],δ1), ([mult(m2,n2)],δ2) ∈ CL . This is

justi�ed as follows:

([mult(m1,n1)],δ) ∧ ([mult(m2,n2)],δ) ≡

≡





([mult(m2,n2)],δ) if m1 ≤ m2 ≤ n2 ≤ n1
([mult(m1,n1)],δ) if m2 ≤ m1 ≤ n1 ≤ n2
([mult(m2,n1)],δ) if m1 ≤ m2 ≤ n1 ≤ n2
([mult(m1,n2)],δ) if m2 ≤ m1 ≤ n2 ≤ n1

Table 3: The con�ict detection rules and resolution patterns for inconsistent multiplicity constraints

Rule L K R

д X
- -f

++[m..n] // Y X
- -f

++[m..n] // Y

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴✤

✤

✤

✤
❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

l X
f

++[m1 ..n1] ++[m2 ..n2] // Y X
f

++[m1 ..n1] ++[m2 ..n2] // Y

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴✤

✤

✤

✤
❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

bL X
f

++[m1 ..n1] ++[m2 ..n2] // Y

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴✤

✤

✤

✤
❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

X
f // Y X

f

++[min(m1 ,m2)..max(n1 ,n2)] // Y

bC X
f

++[m1 ..n1] ++[m2 ..n2] // Y

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴✤

✤

✤

✤
❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

X
f // Y X

f

++[max(m1 ,m2)..min(n1 ,n2)] // Y

Similarly, in bC , the set of valid instances of the atomic con-

straint ([mult(max(m1,m2),min(n1,n2))],δ1) ∈ CR is equal to

the intersection of the set of valid instances of the atomic con-

straints ([mult(m1,n1)],δ1), ([mult(m2,n2)],δ2) ∈ CL . This is

justi�ed as follows:

([mult(m1,n1)],δ) ∨ ([mult(m2,n2)],δ) ≡

≡





([mult(m1,n1)],δ) if m1 ≤ m2 ≤ n2 ≤ n1
([mult(m2,n2)],δ) if m2 ≤ m1 ≤ n1 ≤ n2
([mult(m1,n2)],δ) if m1 ≤ m2 ≤ n1 ≤ n2
([mult(m2,n1)],δ) if m2 ≤ m1 ≤ n2 ≤ n1

Note that the con�ict resolution patterns bL and bC can be ap-

plied only under the condition that the range of the multiplicity

constraints overlap, i.e., if n1 ≥ m2 or m1 ≤ n2. This could be

formulated as a positive application condition [21].

The following example illustrates the application of con�ict res-

olution patterns.

Example 4.3 (Con�ict resolution). Building on Example 2.1, Fig. 6(i)

shows the merge of di�erences MD′′ , while Fig.s 6(j) and 6(k)

show the merge of di�erences MD′′′ after the application of the

liberal and conservative con�ict resolution patterns, respectively.

InMD′′ the atomic constraints ([mult(0, 3)],δ1) and

([mult(1, 4)],δ1) are annotated with <add>[mult(m,n)] and

<conflict>[mult(m,n)]. InMD′′′ these atomic constraints are re-

placed with a new atomic constraint ([mult(0, 4)],δ1), according

to pattern bL , or ([mult(1, 3)],δ1), according to pattern bC (see

Table 3).

MD'''(k)MD'''(j)

MD''(i)MD(h)

conservative conflict resolutionliberal conflict resolution

conflict
detection

University
sUnivs

uStuds
Student

++[1..3]

University
sUnivs

uStuds

++[0..4]

Student

University
sUnivs

uStuds
Student

++[1..4]
++[0..3]

University
sUnivs

uStuds

++[1..4]

Student

++[0..3]

Figure 6: The merge of di�erences MD′′ and the merge of

di�erencesMD′′′ after the application of the con�ict resol-

ution patterns

4.4 Normalisation, con�ict detection and
con�ict resolution

In general, the merge of di�erencesMD is a valid speci�cation by

construction, but it may not be in normal form; i.e., single atomic

constraints of the speci�cation may not express syntactically the

constraints that the conjunction of all the atomic constraints im-

plies semantically. Performing con�ict detection on a merge of dif-

ferences that is not in normal form may lead to a speci�cation con-

taining false negatives [29]; i.e., containing actual con�icts that are

not annotated with conflict. Moreover, performing con�ict res-

olution on the merge of di�erences that is not in normal form may

lead to a speci�cation that is also not in normal form.

Intuitively, the normal form is a speci�cation N where there ex-

ist speci�cation morphisms ϕ : N → {MD′′} to all other pos-

sible ways of applying resolution patterns to MD. This speci�ca-

tion may not always be unique. Therefore, we consider the scen-

ario where we obtain a reasonable normal form, which contains

the minimal set of constraints that give the same semantics. The

interested reader may refer to [33] for a formal de�nition of the

normal form.

The following example illustrates an alternative scenario of con-

current development in MDSE, which leads to a merge of di�er-

encesMD that is not in normal form.

Example 4.4 (Alternative custom con�ict detection). Let us con-

sider a variant of the scenario in Example 2.1. Fig. 7 shows the

di�erent versions of the speci�cation being developed.

In addition to the atomic constraint ([mult(1, 4)],δ1) on the ar-

row sUnivs, Alice adds the atomic constraints ([surjective],δ3)

on the arrows uStuds and ([inverse],δ2) on the arrows sUnivs

and uStuds.

Fig. 7(h) shows the merge of di�erencesMD, Fig. 7(j) shows the

merge of di�erences MD′′ after the application of con�ict detec-

tion rules, while Fig.s 7(k) and 7(l) show the merge of di�erences

MD
′′′ after the application of the liberal and conservative con�ict

resolution patterns, respectively.

MD'''(l)MD'''(k)

MD''(j)MD(h)

D(d)UD(g)

V2(a)

conservative conflict resolutionliberal conflict resolution

conflict
detection

merge of differences

University

uStuds++[surj]

++[inv]Student
sUnivs ++[1..3]

University

uStuds++[surj]

++[inv]Student
sUnivs ++[0..4]

University

uStuds++[surj]

++[inv]Student
sUnivs ++[1..4]

++[0..3]

University
sUnivs

uStuds

++[1..4]

++[surj]

++[inv]Student

++[0..3]

University
sUnivs

uStuds

++[0..3]

StudentUniversity
sUnivs

uStuds

++[1..4]

++[surj]

++[inv]Student

University
sUnivs

uStuds
Student

Figure 7: The merge of di�erencesMD, the merge of di�er-

ences MD′′ after the application of con�ict detection rules

and the merge of di�erences MD′′′ after the application of

the con�ict resolution patterns

The application of the con�ict resolution pattern bL for incon-

sistent multiplicity constraints (see Table 3) leads to a merge of

di�erences MD′′′ that is not in normal form. In fact, the single

atomic constraint ([mult(0, 4)],δ1) on the arrow sUnivs expresses

syntactically that the function sUnivs has cardinality between zero

and four (see Fig. 7(k)), but the conjunction of all the atomic con-

straints ([mult(0, 4)],δ1), ([inverse],δ2) and ([surjective],δ3)

implies semantically that the function sUnivs has cardinality be-

tween one and four. This is justi�ed as follows:

uStuds surjective ⇒ ∀s ∈ Student ∃u ∈ University

where x ∈ uStuds(y)

sUnivs,uStuds inverse ⇒ ∀s ∈ Student ∃u ∈ University

where y ∈ sUnivs(x)

sUnivs total ⇒ ∀s ∈ Student : |sUnivs(x)| ≥ 1

In this paper, the properties of conjunctively connected sets of

atomic constraints are described by means of speci�cation entail-

ments. A speci�cation entailment has the structure Le f t ⊢ Riдht ,

where both premise (Le f t) and conclusion (Riдht) are speci�ca-

tions with the same underlying graph. From a speci�cation entail-

ment, one may induce a transformation rule that can be applied to

existing speci�cations. The interested reader may consult [33, 36]

for a more detailed discussion of speci�cation entailments.

The following example illustrates the usage of speci�cation en-

tailments.

Example 4.5 (Speci�cation entailment). Fig. 8 shows a speci�c-

ation entailment e = L ⊢ R that expresses the relation between

multiplicity and surjectivity constraints.

Table 4 shows the transformation rule t = L K
loo �

� r // R in-

duced by the corresponding speci�cation entailment e . Fig. 9(b)

shows the speci�cation S′ = (S ′,CS
′
: Σ) after the application of

the transformation rule t .

Performing con�ict detection on amerge of di�erencesMD that

is not in normal form may lead to a merge of di�erences MD′′

containing false negatives or false positives [29]. To ensure that

L = R

1ε

2ε

3ε
3δ

2δ

1δ

α([mult(1, n)])

α([inverse])

α([surjective])

⊢

α([surjective])

α([inverse])

α([mult(0, n)])

R⊢L

X

f

Y
g

1
a

2

1

a

2

b

2 1
a

2 1
a

1

a

2

b

1
a

2

Figure 8: A speci�cation entailment e = L ⊢ R

S'(b)S(a)

University

uStuds[surj]

[inv]Student
sUnivs [1..4]

University

uStuds[surj]

[inv]Student
sUnivs [0..4]

Figure 9: The application of the transformation rule t

con�ict detection and con�ict resolution behave as expected, they

are performed on a merge of di�erencesMD in normal form.

In this paper, normalisation consists of a sequence of applica-

tions of transformation rules induced by speci�cation entailments.

More precisely, given a speci�cation S = (S ,CS : Σ) and a set of

transformation rules induced by speci�cation entailments, a nor-

malisation consists of a speci�cation transformation S
∗ +3 S′ ,

leading to a normal form S′. Note that the normalisation is as-

sumed to be terminating and con�uent; i.e., each speci�cation can

be transformed to a unique normal form by speci�cation trans-

formation. The identi�cation of the conditions under which a set of

speci�cation entailments guarantees termination and con�uence

of the normalisation is outside the scope of this work (see Sec-

tion 6).

The following example illustrates the application of normalisa-

tion.

Example 4.6 (Normalisation, con�ict detection and con�ict resolu-

tion). Building on Example 4.4, Fig. 10(i) shows the merge of di�er-

ences MD′ after the normalisation, Fig. 10(j) shows the merge of

di�erences MD′′ after the application of con�ict detection rules,

while Fig.s 10(k) and 10(l) show the merge of di�erences MD′′′

after the application of the liberal and conservative con�ict resol-

ution patterns, respectively.

The normalisation replaces the atomic constraint ([mult(0, 3)],

δ1) inMD with ([mult(1, 3)],δ1) inMD
′ . As a consequence, the

application of the con�ict resolution pattern bL (see Table 3) leads

to a merge of di�erencesMD′′′ that is in normal form.

Table 4: The transformation rule t = L ← K ֒→ R induced by the corresponding speci�cation entailment e

Rule L K R

t X

f [0..n]
))

Y

g[surj]

ii [inv] X

f
))

Y

g[surj]

ii [inv] X

f [1..n]
))

Y

g[surj]

ii [inv]

MD'''(l)MD'''(k)

MD''(j)MD'(i)

MD(h)

D(d)UD(g)

V2(a)

conservative conflict resolutionliberal conflict resolution

conflict
detection

normalisation

merge of differences

University

uStuds++[surj]

++[inv]Student
sUnivs ++[1..3]

University

uStuds++[surj]

++[inv]Student
sUnivs ++[1..4]

University

uStuds++[surj]

++[inv]Student
sUnivs ++[1..4]

++[1..3]

University

uStuds++[surj]

++[inv]Student
sUnivs ++[1..4]

++[1..3]

University
sUnivs

uStuds

++[1..4]

++[surj]

++[inv]Student

++[0..3]

University
sUnivs

uStuds

++[0..3]

StudentUniversity
sUnivs

uStuds

++[1..4]

++[surj]

++[inv]Student

University
sUnivs

uStuds
Student

Figure 10: The merge of di�erencesMD, the merge of di�er-

encesMD′ after the normalisation, the merge of di�erences

MD
′′ after the application of con�ict detection rules and the

merge of di�erencesMD′′′ after the application of the con-

�ict resolution patterns

5 RELATED WORK

Model versioning has been greatly discussed in the literature. The

interested reader may consult [4, 7] for a survey and an introduc-

tion.

A strand of research within model versioning focuses on the

problem of model merging. Di�erent approaches can be found in

the literature:

• In [13], the authors propose a search-based automatedmodel

merge approach where rule-based design space exploration

is used to search the space of solution candidates that rep-

resent con�ict-free merged models. Similar to our approach,

this work takes into consideration certain structural and nu-

meric constraints.

• The work in [12] uses a repair generator to address incon-

sistencies that are producedwhilemerging architecturalmod-

els. The work in [11] examines the same issues more thor-

oughly and uses search-based techniques.

• In [31], the authors propose to use an arti�cial intelligence

technique of automated planning for resolving inconsisten-

cies—be it due to model merging or due to model editions—

through the generation of one ormore resolution plans. They

also implement the tool Badger in Prolog, which is a regres-

sion planner generating such plans.

• The work in [43] presents a formal approach to the three-

way merging of Ecore [40] models based on set theory and

predicate logic. It is based on formally de�ned merge rules

that can handle additions, deletions and renames of model

elements as well as moves of containedmodel elements. Fur-

thermore, it detects and resolves con�icting modi�cations

of the same element and of di�erent interdependent elements.

Finally, the approach guarantees that the resulting merged

model is well-formed.

• The work in [41] proposes a formal approach to the mer-

ging of typed attributed graphs based on graph transforma-

tions and category theory. In this approach, two kinds of

con�icts are de�ned based on the notion of graph modi-

�cations: operation-based and state-based con�icts. On the

one hand, operation-based con�icts are detected by �rst ex-

tracting minimal rules from modi�cations and thereafter, if

possible, selecting pre-de�ned operation rules. Con�ict de-

tection is then based on the parallel dependence of graph

transformations and extraction of critical pairs. On the other

hand, state-based con�icts are detected by checking the

merged graphs against graph constraints.

• In [10], the authors propose a technique for obtaining auto-

matically generated repair plans for a given inconsistent

model. Repair plans are sequences of concrete modi�cations

to be performed on a given model that �x existing incon-

sistencies without introducing new ones. The technique is

based on Praxis, which is a model inconsistency detection

approach. In Praxis, themodel is represented as the sequence

of actions executed by the user in order to build it.

• The work in [9] introduces a domain-speci�c modelling lan-

guage for the de�nition of weaving models that represent

patterns of con�icting modi�cations. Resolution criteria for

these patterns can be speci�ed through OCL expressions.

With the exception of [13], the approaches mentioned above do

not take constraints on model elements into account. However, the

approaches in [10, 41, 43] include checking the well-formedness of

the result of merging. In future work, we may also explore this

important dimension in our approach to model versioning.

Research has also lead to a number of prototype tools that sup-

port model versioning:

• EMFStore [27] provides a dedicated framework for version

control of EMF models. It is an operation- and graph-based

approach that supports the detection of composite modi�c-

ations.

• AdaptableModel Versioning (AMOR) [8] is a versioning sys-

tem that can deal with arbitrary modelling languages based

on Ecore. AMOR is built around Subversion to provide a

centralised approach to optimistic versioning, but reuses an

extended version of EMF Compare [22] for di�erence calcu-

lation. AMOR provides con�ict detection features that may

be enhanced with user-de�ned operations. Moreover, it pro-

vides collaborative con�ict resolution features, which allow

the implementation of con�ict resolution policies. If the res-

olution is performed manually, it is analysed to derive resol-

ution recommendations for similar situations that occur in

future scenarios. In contrast to our approach, this tool does

not provide a formal treatment of con�ict detection and res-

olution.

• Semantically enhanced Model Version Control System

(SMoVer) [3] facilitates the speci�cation of modelling lan-

guage semantics, which is needed for accurate con�ict de-

tection. The authors exemplify how semantics can improve

the accuracy of con�ict detection and how these con�icts

can be presented to modellers. On the one hand, certain

models that are in con�ict syntacticallymay bemergedwith-

out con�icts based on their semantics. On the other hand,

certain models that are not in con�ict syntactically may not

be merged without con�icts based on their semantics. Sim-

ilar to our approach, this tool enables the de�nition of rules

for con�ict detection and resolution based on both syntax

and semantics.

• Epsilon Comparison Language (ECL) and Epsilon Merging

Language (EML) [30] provide a rule-based language for com-

paring and merging homogeneous or heterogeneous mod-

els, respectively. Rules speci�ed in ECL and EML could be

employed for con�ict detection and resolution.

An Eclipse-based modelling environment for DPF is described

in [28], while aweb-basedmodelling environment for DPF is presen-

ted in [32]. In future work, we may implement prototype support

for our approach to model versioning and perform case studies to

compare the existing tools with our tool.

An initial attempt in this direction—based on Resource Descrip-

tion Format (RDF)—is described in [39]. Moreover, the DPF model-

ling environment utilises Alloy [26] for consistency checking [42].

Alloy could be used to check the satis�ability of the merge of di�er-

ences, which in turn could be used in the process of normalisation

and con�ict detection.

6 CONCLUSION AND FUTURE WORK

In this paper, we described a formal approach to model versioning

based on DPF. First, we de�ned the representation of di�erences—

i.e., the information added, deleted and renamed—as a set of an-

notations that are speci�ed by means of a label signature. Second,

we introduced a synchronisation procedure that includes normal-

isation, con�ict detection and con�ict resolution. Transformation

rules are used to represent con�icts and—where applicable—their

resolution patterns. The con�ict detection and resolution are then

formalised as the application of these transformation rules. More-

over, speci�cation entailments are adopted to describe properties

of conjunctively connected sets of atomic constraints. The norm-

alisation of a speci�cation is then formalised as the embedding of

these speci�cation entailments to obtain the normal form of a spe-

ci�cation.

Note that the proposed approach handles constraints in all the

steps of the synchronisation, including normalisation, con�ict de-

tection and con�ict resolution. To the best of our knowledge, this

work constitutes the �rst attempt to formalise constraint-awareness

in model versioning.

Speci�cation transformations constitute the basis for normalisa-

tion, con�ict detection and con�ict resolution. In future work, we

will analyse termination and con�uence in DPF. This will facilitate

the identi�cation of the conditions under which a set of con�ict res-

olution patterns guarantees that no new con�icts are introduced.

REFERENCES
[1] Kerstin Altmanninger. 2009. Issues and challenges inmodel versioning. In iiWAS

2009: 11th International Conference on Information Integration andWeb-based Ap-
plications and Services, Gabriele Kotsis, David Taniar, Eric Pardede, and Ismail
Khalil (Eds.). ACM, 8. https://doi.org/10.1145/1806338.1806344

[2] Kerstin Altmanninger, Petra Brosch, Philip Langer, Martina Seidl, Konrad Wiel,
and ManuelWimmer. 2009. WhyModel Versioning Research is Needed!? An Ex-
perience Report. InModels and Evolution: Joint MoDSE-MCCM 2010Workshop on
Model-Driven Software Evolution and Model Co-Evolution and Consistency Man-
agement. 1–12.

[3] Kerstin Altmanninger, Wieland Schwinger, and Gabriele Kotsis. 2010. Semantics
for Accurate Con�ict Detection in SMoVer: Speci�cation, Detection and Present-
ation by Example. International Journal of Enterprise Information Systems 6, 1
(2010), 68–84. https://doi.org/10.4018/jeis.2010120206

[4] Kerstin Altmanninger, Martina Seidl, and Manuel Wimmer. 2009. A Survey on
Model Versioning Approaches. International Journal of Web Information Systems
5, 3 (2009), 271–304. https://doi.org/10.1108/17440080910983556

[5] Apache Subversion. Accessed 2018-08-20. https://subversion.apache.org/
[6] Michael Barr and Charles Wells. 1995. Category Theory for Computing Science

(2nd Edition). Prentice Hall.
[7] Petra Brosch, Gerti Kappel, Philip Langer, Martina Seidl, Konrad Wieland,

and Manuel Wimmer. 2012. An Introduction to Model Versioning. In
SFM 2012: Formal Methods for Model-Driven Engineering—12th International
School on Formal Methods for the Design of Computer, Communication, and
Software Systems (Lecture Notes in Computer Science), Marco Bernardo, Vit-
torio Cortellessa, and Alfonso Pierantonio (Eds.), Vol. 7320. Springer, 336–398.
https://doi.org/10.1007/978-3-642-30982-3_10

[8] Petra Brosch, Gerti Kappel, Martina Seidl, Konrad Wieland, Manuel Wimmer,
Horst Kargl, and Philip Langer. 2010. Adaptable Model Versioning in Action. In
Modellierung 2010 (Lecture Notes in Informatics), Gregor Engels, Dimitris Karagi-
annis, and Heinrich C. Mayr (Eds.), Vol. 161. GI, 221–236.

[9] Antonio Cicchetti, Davide Di Ruscio, and Alfonso Pierantonio. 2008. Man-
aging Model Con�icts in Distributed Development. In MoDELS 2008: 11th In-
ternational Conference on Model Driven Engineering Languages and Systems
(Lecture Notes in Computer Science), Krzysztof Czarnecki, Ileana Ober, Jean-
Michel Bruel, Axel Uhl, and Markus Völter (Eds.), Vol. 5301. Springer, 311–325.
https://doi.org/10.1007/978-3-540-87875-9_23

[10] Marcos Aurélio Almeida da Silva, Alix Mougenot, Xavier Blanc, and Reda
Bendraou. 2010. Towards Automated Inconsistency Handling in Design Models.
In CAiSE 2010: 22nd International Conference on Advanced Information Systems
Engineering (Lecture Notes in Computer Science), Barbara Pernici (Ed.), Vol. 6051.
Springer, 348–362. https://doi.org/10.1007/978-3-642-13094-6_28

[11] Hoa Khanh Dam, Alexander Egyed, Michael Winiko�, Alexander Re-
der, and Roberto E. Lopez-Herrejon. 2016. Consistent merging of
model versions. Journal of Systems and Software 112 (2016), 137–155.
https://doi.org/10.1016/j.jss.2015.06.044

[12] Hoa Khanh Dam, Alexander Reder, and Alexander Egyed. 2014. Inconsistency
Resolution in Merging Versions of Architectural Models. In WICSA 2014: 2014
IEEE/IFIP Conference on Software Architecture. IEEE Computer Society, 153–162.
https://doi.org/10.1109/WICSA.2014.31

[13] Csaba Debreceni, István Ráth, Dániel Varró, Xabier De Carlos, Xabier Mendi-
aldua, and Salvador Trujillo. 2016. Automated Model Merge by Design Space
Exploration. In FASE 2016: 19th International Conference (Lecture Notes in Com-
puter Science), Perdita Stevens and Andrzej Wasowski (Eds.), Vol. 9633. Springer,
104–121. https://doi.org/10.1007/978-3-662-49665-7_7

[14] Zinovy Diskin. 2002. Visualization vs. Speci�cation in Diagrammatic Notations:
A Case Study with the UML. In Diagrams 2002: 2nd International Conference
on Diagrammatic Representation and Inference (Lecture Notes in Computer Sci-
ence), Mary Hegarty, Bertrand Meyer, and N. Hari Narayanan (Eds.), Vol. 2317.
Springer, 112–115. https://doi.org/10.1007/3-540-46037-3_15

https://doi.org/10.1145/1806338.1806344
https://doi.org/10.4018/jeis.2010120206
https://doi.org/10.1108/17440080910983556
https://subversion.apache.org/
https://doi.org/10.1007/978-3-642-30982-3_10
https://doi.org/10.1007/978-3-540-87875-9_23
https://doi.org/10.1007/978-3-642-13094-6_28
https://doi.org/10.1016/j.jss.2015.06.044
https://doi.org/10.1109/WICSA.2014.31
https://doi.org/10.1007/978-3-662-49665-7_7
https://doi.org/10.1007/3-540-46037-3_15

[15] Zinovy Diskin. 2003. Practical foundations of business system speci�cations.
Springer, Chapter Mathematics of UML: Making the Odysseys of UML less dra-
matic, 145–178.

[16] Zinovy Diskin. 2005. Encyclopedia of Database Technologies and Applications.
Information Science Reference, Chapter Mathematics of Generic Speci�cations
for Model Management I and II, 351–366.

[17] Zinovy Diskin and Boris Kadish. 2003. Variable set semantics for keyed gen-
eralized sketches: formal semantics for object identity and abstract syntax
for conceptual modeling. Data & Knowledge Engineering 47, 1 (2003), 1–59.
https://doi.org/10.1016/S0169-023X(03)00047-8

[18] Zinovy Diskin and Boris Kadish. 2005. Encyclopedia of Database Technologies
and Applications. Information Science Reference, Chapter Generic Model Man-
agement, 258–265.

[19] Zinovy Diskin, Boris Kadish, Frank Piessens, and Michael Johnson. 2000. Uni-
versal Arrow Foundations for Visual Modeling. In Diagrams 2000: 1st Interna-
tional Conference on Diagrammatic Representation and Inference (Lecture Notes in
Computer Science), Michael Anderson, Peter Cheng, and Volker Haarslev (Eds.),
Vol. 1889. Springer, 345–360. https://doi.org/10.1007/3-540-44590-0_30

[20] Zinovy Diskin and Uwe Wolter. 2008. A Diagrammatic Logic for Object-
Oriented Visual Modeling. In ACCAT 2007: 2nd Workshop on Applied and Com-
putational Category Theory (Electronic Notes in Theoretical Computer Science),
Vol. 203/6. Elsevier, 19–41. https://doi.org/10.1016/j.entcs.2008.10.041

[21] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer.
2006. Fundamentals of Algebraic Graph Transformation. Springer.
https://doi.org/10.1007/3-540-31188-2

[22] EMF Compare. Accessed 2018-08-20. https://www.eclipse.org/emf/compare/
[23] José Luiz Fiadeiro. 2004. Categories for Software Engineering. Springer.
[24] Git. Accessed 2018-08-20. https://git-scm.com
[25] James W. Hunt and M. D. McIlroy. 1976. An Algorithm for Di�erential File Com-

parison. Technical Report 41. Bell Laboratories.
[26] Daniel Jackson. 2012. Software abstractions: logic, language, and analysis. MIT

Press.
[27] Maximilian Koegel and Jonas Helming. 2010. EMFStore: a model repository for

EMF models. In ICSE 2010: 32nd ACM/IEEE International Conference on Software
Engineering, Je� Kramer, Judith Bishop, Premkumar T. Devanbu, and Sebastián
Uchitel (Eds.). ACM, 307–308. https://doi.org/10.1145/1810295.1810364

[28] Yngve Lamo, Xiaoliang Wang, Florian Mantz, Wendy MacCaull, and Adrian
Rutle. 2012. DPF Workbench: A Diagrammatic Multi-Layer Domain Spe-
ci�c (Meta-)Modelling Environment. In Computer and Information Science,
Roger Lee (Ed.). Studies in Computer Intelligence, Vol. 429. Springer, 37–52.
https://doi.org/10.1007/978-3-642-30454-5_3

[29] Tom Mens. 2002. A State-of-the-Art Survey on Software Mer-
ging. IEEE Transactions on Software Engineering 28, 5 (2002), 449–462.
https://doi.org/10.1109/TSE.2002.1000449

[30] Richard F. Paige, Dimitrios S. Kolovos, Louis M. Rose, Nikolaos Drivalos, and
Fiona A. C. Polack. 2009. The Design of a Conceptual Framework and Technical
Infrastructure for Model Management Language Engineering. In ICECCS 2009:
14th IEEE International Conference on Engineering of Complex Computer Systems.
IEEE Computer Society, 162–171. https://doi.org/10.1109/ICECCS.2009.14

[31] Jorge Pinna Puissant, Ragnhild Van Der Straeten, and Tom Mens.
2015. Resolving model inconsistencies using automated regres-
sion planning. Software and System Modeling 14, 1 (2015), 461–481.
https://doi.org/10.1007/s10270-013-0317-9

[32] Fazle Rabbi, Yngve Lamo, Ingrid Chieh Yu, and Lars Michael Kristensen.
2016. WebDPF: A Web-based Metamodelling and Model Transforma-
tion Environment. In MODELSWARD 2016: 4th International Conference on
Model-Driven Engineering and Software Development, Slimane Hammoudi,
Luís Ferreira Pires, Bran Selic, and Philippe Desfray (Eds.). SciTePress, 87–98.
https://doi.org/10.5220/0005686900870098

[33] Alessandro Rossini. 2011. Diagram Predicate Framework meets Model Versioning
and Deep Metamodelling. Ph.D. Dissertation. Department of Informatics, Univer-
sity of Bergen, Norway.

[34] Alessandro Rossini, Juan de Lara, Esther Guerra, Adrian Rutle, and Uwe Wolter.
2014. A formalisation of deep metamodelling. Formal Aspects of Computing 26,
6 (2014), 1115–1152. https://doi.org/10.1007/s00165-014-0307-x

[35] Alessandro Rossini, Adrian Rutle, Yngve Lamo, and Uwe Wolter. 2010. A
formalisation of the copy-modify-merge approach to version control in
MDE. Journal of Logic and Algebraic Programming 79, 7 (2010), 636–658.
https://doi.org/10.1016/j.jlap.2009.10.003

[36] Adrian Rutle. 2010. Diagram Predicate Framework: A Formal Approach to MDE.
Ph.D. Dissertation. Department of Informatics, University of Bergen, Norway.

[37] Adrian Rutle, Alessandro Rossini, Yngve Lamo, and Uwe Wolter. 2009.
A Category-Theoretical Approach to the Formalisation of Version Con-
trol in MDE. In FASE 2009: 12th International Conference on Fundamental
Approaches to Software Engineering (Lecture Notes in Computer Science),
Marsha Chechik and Martin Wirsing (Eds.), Vol. 5503. Springer, 64–78.
https://doi.org/10.1007/978-3-642-00593-0_5

[38] Adrian Rutle, Alessandro Rossini, Yngve Lamo, and Uwe Wolter. 2012. A
formal approach to the speci�cation and transformation of constraints in
MDE. Journal of Logic and Algebraic Programming 81, 4 (2012), 422–457.
https://doi.org/10.1016/j.jlap.2012.03.006

[39] Hans Georg Schaathun and Adrian Rutle. 2018, to appear. Model-Driven Soft-
ware Engineering in the Resource Description Framework: a way to version con-
trol. InNIK 2018: 31st Norsk Informatikkonferanse. BIBSYS Open Journal System.

[40] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and EdMerks. 2008. EMF:
Eclipse Modeling Framework 2.0 (2nd Edition). Addison-Wesley Professional.

[41] Gabriele Taentzer, Claudia Ermel, Philip Langer, and Manuel Wimmer.
2010. Con�ict Detection for Model Versioning Based on Graph Modi-
�cations. In ICGT 2010: 5th International Conference on Graph Transforma-
tions (Lecture Notes in Computer Science), Hartmut Ehrig, Arend Rensink,
Grzegorz Rozenberg, and Andy Schürr (Eds.), Vol. 6372. Springer, 171–186.
https://doi.org/10.1007/978-3-642-15928-2_12

[42] Xiaoliang Wang, Adrian Rutle, and Yngve Lamo. 2015. Towards User-Friendly
and E�cient Analysis with Alloy. In MoDeVVa@MoDELS 2015: 12th Workshop
on Model-Driven Engineering, Veri�cation and Validation (CEUR Workshop Pro-
ceedings), Michalis Famelis, Daniel Ratiu, Martina Seidl, and Gehan M. K. Selim
(Eds.), Vol. 1514. CEUR-WS.org, 28–37. http://ceur-ws.org/Vol-1514

[43] Bernhard Westfechtel. 2010. A Formal Approach to Three-Way Merging of EMF
Models. In IWMCP 2010: 1st InternationalWorkshop onModel Comparison in Prac-
tice. ACM, 31–41. https://doi.org/10.1145/1826147.1826155

https://doi.org/10.1016/S0169-023X(03)00047-8
https://doi.org/10.1007/3-540-44590-0_30
https://doi.org/10.1016/j.entcs.2008.10.041
https://doi.org/10.1007/3-540-31188-2
https://www.eclipse.org/emf/compare/
https://git-scm.com
https://doi.org/10.1145/1810295.1810364
https://doi.org/10.1007/978-3-642-30454-5_3
https://doi.org/10.1109/TSE.2002.1000449
https://doi.org/10.1109/ICECCS.2009.14
https://doi.org/10.1007/s10270-013-0317-9
https://doi.org/10.5220/0005686900870098
https://doi.org/10.1007/s00165-014-0307-x
https://doi.org/10.1016/j.jlap.2009.10.003
https://doi.org/10.1007/978-3-642-00593-0_5
https://doi.org/10.1016/j.jlap.2012.03.006
https://doi.org/10.1007/978-3-642-15928-2_12
http://ceur-ws.org/Vol-1514
https://doi.org/10.1145/1826147.1826155

	Abstract
	1 Introduction
	2 Model versioning
	3 Diagram Predicate Framework
	4 Constraint-aware model versioning
	4.1 Representation of differences
	4.2 Conflict detection
	4.3 Conflict resolution
	4.4 Normalisation, conflict detection and conflict resolution

	5 Related work
	6 Conclusion and future work
	References

