CEUR-WS.org/Vol-2245/exe_paper_1l.pdf

Execution of UTP test cases using fUML

Marc-Florian Wendland
Fraunhofer FOKUS
Berlin, Germany
marc-florian.wendland@fokus.fraunhofer.de

ABSTRACT

The UML Testing Profile (UTP) is a standardized modeling language
that offers concepts relevant to specify test cases, test data and even
entire test automation architectures including test environments.
Just recently in June 2018, the OMG adopted the official version
2.0 of UTP. It was primarily designed to support both manual and
automated activities of the dynamic test process, in particular the
design and specification of test cases, test data and test suites. Ba-
sically, such UTP-based test specifications remain on a platform-
independent level and leave it open how the test cases shall be
executed in the end. In this paper, we describe an approach to ex-
ecuting UTP test cases via the executable UML standards f{UML
and PSCS. Therefore, we map platform-independent UTP test cases,
expressed as Interactions, into executable f{UML test cases for even-
tual execution against f{UML systems. It is a first step towards an
executable representation of UTP.

KEYWORDS

UML Testing Profile, UTP, executable UML, executable UTP, auto-
mated test execution, f{UML, f{UML-based test automation, architec-
ture

1 INTRODUCTION

In system engineering, executable specifications serve the purpose
of validating the feasibility of system architecture as well as the
consistency of systems/software requirements specifications (SRS)
through simulation. A simulation of systems requirements specifi-
cations enables engineers to evaluate the efficiency of competing
architectural solutions as well as the correctness and complete-
ness of requirements. Furthermore, systems simulations help un-
derstanding how the systems behaves under varying (simulated)
environmental conditions or in situations that are deemed critical
but costly or even not possible to provoke in a real environment
(e.g. failure of a flight or train control system while operating, val-
idation of functional countermeasure in a nuclear power station
etc.). With the upcome of the executable UML that currently consist
of Semantics of a Foundational Subset of Executable UML (fUML),
Precise Semantics of Composite Structures (PSCS) and Precise Se-
mantics of State Machines (PSSM), it is possible to build executable
specifications with UML.

From a tester’s point of view, testing an executable SRS is the
earliest point in time where dynamic testing is feasible. Dynamic
testing mainly consists of designing and executing test cases against
the system under test (SUT). This can be a simulation of the sys-
tem or its eventual implementation, however, testing both kinds
of realizations does not vary much. In both cases, test cases are
(usually) derived from an SRS and executed against the SUT. It is
expected that both, the simulated and implemented SUT, basically

Niels Hoppe
Fraunhofer FOKUS
Berlin, Germany
niels.hoppe@fokus.fraunhofer.de

behave functionally equivalent. Thus, test cases designed for testing
an executable specification of the system ought to be reused for
testing the eventual implementation of the system in a dedicated
test environment or in the field.

Ideally, a methodology for continuous dynamic testing fosters
reuse of test cases across target technologies and test interfaces. A
prerequisite for such a continuous test design approach is a test
specification language that enables the specification of platform-
independent test models, consisting of a test architecture and test
cases, for later generation of executable test cases for the respective
testing target environment. The UML Testing Profile (UTP) [10] is
such a test modeling language.

As an extension to UML, it offers test-specific concepts on top of
UML, used in particular to support dynamic testing. The intention
of using UTP for testing is, similar to using UML for system analysis
and design, to facilitate communication and easy comprehensibility
of test specifications. It does not claim to be an executable modeling
language, even though, it allows for specifying entire test automa-
tion architectures, including support for test design, test execution,
verdict calculation and test log analysis.

In this paper, we concentrate on a mapping from a platform-
independent UTP test model to a f{UML test automation solution and
executable test cases for testing f{UML systems. Therefore, we assign
an executable semantics to a subset of UTP concepts necessary for
our methodology by mapping the respective concept to executable
fUML concepts. We assume that the reader has basic knowledge
about UML, UTP and fUML. The contributions of this paper are:

o Defining the structures for executable, yet platform-indepen-
dent UTP test models; and

e Describing a mapping of structural and behavioral aspects
of such UTP test models to f{UML test models for eventual
test case execution.

The remainder of this paper is outlined as follows: Section 2
summarizes existing work that relates to or influenced our work.
Section 3 introduces the UTP concepts relevant for f{UML-based
test execution. The executable semantics for these concepts is pro-
vided by a mapping to their f{UML counter parts. Section 4 describes
mapping UTP test architectures to executable test environments,
whereas section 5 explains the mapping from UTP test case be-
havior to fUML test cases. Section 6 briefly describes the tools and
technologies we used to implement and run the approach. Section
7 eventually concludes this paper and outlines future work.

2 RELATED WORK

UTP has been subject to publication for over a decade now. Baker et
al. wrote a comprehensive book that accompanied the first version
of the standard [1]. UTP has been used for model-based generation
of test cases for service-oriented architectures [11] as well as for

EXE 2018, October 14, 2018, Copenhagen, Denmark

testing product lines [4]. The work from Zander et al. [14] is closest
to our work, for it specifies a mapping from UTP test cases to
executable TTCN-3 test cases. Besides being based on the earlier
UTP version 1.0 as opposed to our work, which is based on the
current version 2.0, Zander’s et al. work targets solely the mapping
of test cases without addressing aspects like test sets, scheduling
or arbitration. These parts of the test automation architecture were
assumed to be realized by an existing TTCN-e execution engine.
Thus, the work described by Zander et al. concentrated on the
mapping of Interactions to TTCN-3 in the first place, whereas our
work addressed also the generation of (parts of) the components
of the fUML test automation architecture, such as scheduling and
logging.

To the best of our knowledge, there is no previous work that tar-
gets a mapping from UTP test models to f{UML models for the sake
of black-box testing of fUML models. However, testing of f{UML
models was subject to previous work. Mijatovic et al. [5] proposed
a framework for testing f{UML models that is based on a proprietary
domain-specific language (DSL) for describing assertions on the
execution flow of fUML Activities. Apart from not being based on
UTP, this approach is different to our work, because it is capable
of white-box testing e.g., by asserting the execution order of the
executed ActivityNodes or the input/output values of single Activi-
tyNodes within an executed Activity. This is not possible and not
intended by our approach that concentrates on a pure black-box
approach to continuous test design.

Craciun et al. [2] addressed testing of f{UML models using a
rewrite-based executable semantic framework called K. The infor-
mation obtained from that early work makes it hard to relate the
work to our approach. Unfortunately, the work was not continued
so that no further information about the approach can be stated
here.

The executable UML standard PSCS [9] contains a conformance
test suite written in fUML and the Action Language for Founda-
tional UML (ALF) [7], that resembles the assertions-oriented unit
test frameworks such as JUnit or NUnit!. Additionally, the exe-
cutable UML standard PSSM [8] defined another conformance test-
ing framework based on fUML and ALF, which compares string
collections of expected events with a captured string collection of ex-
ecuted event sequences from a set of input events. Both approaches
utilize fUML and ALF to specify test cases for f{UML models. Our
approach, however, utilizes fUML only for test execution. Test de-
sign, logging and verdict calculation happens on a higher level of
abstraction, i.e., on UTP test model level, independent from any
executable language to facilitate continuous test design.

Wendland [12] described an approach towards the definition
of a precise semantics for UML Interactions by mapping them to
fUML Activities. Even though that work was independent of UTP
or testing in general, it influenced and inspired the mapping of UTP
test cases to an fUML-based representation described in the current
paper.

Summarizing the related work it can be stated, that different parts
of our approach (e.g., fUML, PSCS, UTP, testing of f{UML models)
were subject to past research work. Yet the approach to provide an
executable semantics for a subset of UTP by mapping the respective

1See https://junit.org and http://nunit.org respectively.

Marc-Florian Wendland and Niels Hoppe

concepts to f{UML and finally execute those executable-made UTP
test models against a fUML-based system model for the sake of
early validation of its requirements is new.

3 UTP- AND FUML-BASED TEST MODELS

UTP is a standardized graphical modeling language that enhances
UML with test-specific concepts for designing, visualizing, specify-
ing, analyzing, constructing, and documenting artifacts commonly
used in and required for expressing test specifications. As an open
ended standard, UTP neither prescribes the test modeling method-
ology, application domain, testing tool, nor the eventual target
technology that is used for carrying out testing activities. In June
2018, a new version of UTP has been adopted by OMG, i.e., UTP
2.0, called UTP 2. The work described in this paper uses UTP 2 test
models as input for the mapping to an executable representation.

In our approach, two kinds of test models are distinguished, the
UTP test model and fUML test model. Inspired by the principles of
the Model-Driven Architecture (MDA) [3], the UTP test model is
henceforth called platform-independent test model (PITM), the {UML
test model platform-specific test model (PSTM). The PITM specifies
test cases and test architectures on a higher level of abstraction
and makes no assumptions on the eventual target environment or
implementation of the SUT. It provides a set of logical test cases
formalized as sequence diagrams, which are used to generate ex-
ecutable test cases for different target environments (e.g., JUnit,
TTCN-3, fUML) or test levels (e.g., simulation testing, component
testing, system testing). In contrast, the PSTM merely represents
an executable version of the PITM test cases. Comparable to the
bytecode of a JUnit test case, the PSTM is, in theory, of less interest
to the test engineer, as the semantics of the test case is defined on
PITM level, whereas the PSTM is completely derived and thereby
rendered transient and transparent. Thus, there is usually no need
to generate a user-friendly variant of the PSTM , e.g. by using ALF
instead of fUML, as test engineers are not required to understand
the specifics of the execution. This is another benefit of continuous
test design.

Since UTP is not per se an executable language, it is necessary
to define an executable semantics for a set of required concepts.
This executable semantics can either be specified in the same way
as fUML, PSCS or PSSM was composed, in which case, a dedicated
runtime environment would be required to actually run the UTP
test cases. As a more concise and convenient way, we chose to rely
on the already existing executable semantics of fUML concepts
(PSSM and PSCS base their executable semantics on fUML, too)
and provide a mapping for every necessary UTP concept to an
executable f{UML concept. This mapping approach is also consistent
with mapping PITM test cases to other executable test languages
such as JUnit or TTCN-3.

Similar to fUML, which represents an executable subset of UML,
not all UTP concepts are deemed necessary for execution. For the
definition of the mapping rules from PITM to PSTM it is necessary to
identify those concepts from UTP for which an executable semantics
is required. Figure 1 illustrates a (simplified) PITM featuring a subset
of UTP concepts that are necessary for test execution and will be
used for describing the mapping to the PSTM . These required UTP
concepts are explained in greater detail subsequently. The SUT

https://junit.org
http://nunit.org

Execution of UTP test cases using fUML

shown in Figure 1 represents an f{UML model of an elevator system.
Internals of the elevator systems are not important for this paper,
since it concentrates on technical aspects of the mapping from UTP
test models to an fUML test automation architecture and test cases
instead of actual verification of the elevator system.

The essential concept in our approach is the test case (Compo-
nent with «TestCase» applied), which shall be contained by test sets
(Package with «TestCase» applied). Test sets serve as containers for
a set of test cases sharing a certain purpose (e.g., regression testing,
smoke testing etc.). The behavior of a test case is given as an Inter-
action, usually visualized by a sequence diagram, but not required
to for any UML behavior can be used to specify test cases. Conse-
quently, only the elements Lifeline, MessageOccurrenceSpecification
(MOS), Message and GeneralOrdering are of interest.

UTP introduces a dedicated abstract procedural language based
on stereotypes that abstract from the underlying UML metaclasses
in order to simplify the construction and analysis of test cases
without the need to know about the underlying UML behavior.
The central elements of that procedural language are so called test
actions. In this paper, we will focus on test actions for sending
stimuli to (Message with «CreateStimulusAction»), and expecting
responses (Message with «ExpectResponseActions») from the SUT.
See the UTP specification [10], Clause 8.5.2 ProceduralElements
and Clause 8.5.3 Test-specific actions for further details.

A test case must always be executed on a composite structure
called test configuration (i.e., Components stereotyped with «Test-
Configuration»), which defines communication channels between
its parts, who are called test configuration roles. They represent
either test components or test items, distinguished by the stereo-
types «TestItem» and «TestComponent». A test item represents the
SUT, whereas the test components belong to the test environment
and drive a test case’s behavior by sending stimuli to or expecting
responses from the SUT. Test configurations can be shared across
multiple test cases. Test cases are then linked with a respective test
configuration by establishing a Generalization dependency among
themselves and the test configuration.

4 GENERATING THE EXECUTABLE TEST
ENVIRONMENT

4.1 Mapping test sets

As opposed to PITM test sets, PSTM test sets are executable entities,
for they schedule the execution and logging of the test cases they
contain. Therefore, each PITM test set is translated into a f{UML
Class, whose classifier behavior, i.e., test set scheduler, is responsible
for instantiating and eventually executing the respective test cases
as illustrated in Figure 2. Test cases are represented as nested classes
of the PSTM test set and executed by the test set scheduler, whose
behavior consists of the two phases initialization and execution of
test cases.

During initialization of the test set, an instance of a test set
log is created. This test set log links all the test case logs of the
executed test cases in the end. The created object is then passed as
an argument to the invoked (i.e., executed) test case.

During execution of test cases, each test case that belongs to the
PITM test set is scheduled for execution. This scheduling manifests

EXE 2018, October 14, 2018, Copenhagen, Denmark

in a generated flow consisting of a CreateObjectAction and a Start-
ObjectBehaviorAction for each test case. Since PITM test cases are
currently unordered in a PITM test set?, there is no possibility to
specify the eventual execution order of test cases in the PSTM ,
leaving it up to the transformation engine.

4.2 Setting up the executable test environment

4.2.1 Mapping test components. On PITM level, test components
are represented as Components without any classifier behavior. The
behavior of a test component is determined by every Lifeline that
represents the test component within a test case. On PSTM level,
however, a test component’s behavior must be precisely and un-
ambiguously defined, but since a test component must only exists
during the execution of a test case, our mapping towards PSTM test
components is fairly simple: For each test configuration role with
«TestComponent» applied, a dedicated f{UML Class is generated that
represents the executable test component for a single test case. It
is represented by an active Class with an Activity as its classifier
behavior. This classifier behavior is derived from the covering Inter-
actionFragments of the Lifeline representing the test component in
the corresponding PITM test case and is described later to a greater
extent.

4.2.2 Mapping the test configuration. On PITM level, reuse of
test components and test configuration is encouraged by our method-
ology to ensure high maintainability of the test cases. On PSTM
level, maintainability is not important for the executable artifacts
are generated entirely from the PITM . Each test case is translated
into a dedicated Class that directly contains the PSTM represen-
tation of the test configuration by processing the Generalization
between the PITM test case and the PITM test configuration. Thus,
the structure of the test configuration is replicated for each sepa-
rate test case in the PSTM (Figure 5). The test item, however, is not
generated, for it already exists as f{UML Class that will merely be
integrated into the test configuration.

The instantiation and activation of the generated PSTM test
cases and their test configuration roles takes advantage of the
CS_DefaultConstructStrategy from PSCS, making explicit creation,
assembly and activation of objects obsolete. Anyhow, preparing the
execution of a PSTM test case consists also of actions for prepar-
ing for logging, starting the test item and coordinating the test
components.

Since the test components are active Classes, i.e., they possess
their own thread of control and run in parallel once they are instan-
tiated, so coordination of the test component behaviors is required.
In particular, the test components must not send signals to the
test item before the test item is itself instantiated and its behavior
started. This coordination is achieved on PSTM level by generating
another Class, the so called (test case) coordinator, which is inte-
grated into a test case’s test configuration and connected with the
test components through dedicated synchronization Ports and an
n-ary Connector, the so called synchronization bus, which is respon-
sible for the transmission of synchronization messages to the test
components. The coordinator also serves as an intermediary for
exchanging data between the test case and the test components.

2There is a concept in UTP called «TestExecutionSchedule» that enables ordering of
test case execution, however, this concept is not part of our work yet.

EXE 2018, October 14, 2018, Copenhagen, Denmark

«TestSet»
TS 1

Marc-Florian Wendland and Niels Hoppe

«Component»
«TestConfiguration» <|
Environment

<Component»
«TestCase»
TC1

<«Testltem» «TestComponent»

«TestCase»
+ elevator: Elevator [1] + tester1: Tester1 [1 sd: Test cas;

e

«TestComponent»

tactar1-Tactar1

«CreateStimulusAction»
CallSignal(floor: Integer = 0, direction: Direction = UP)

alouatar-Flovatar tactor? Toctor?

+ tester2: Tester2 [1 =—=—___

-

«ExpectResponseAction» e
ResponseSignal(foo: Boolean = true, bar: Boolean = false) Tl

«CreateStimulusAction=»
OpSignal(floor: Integer = 1)

«ExpectResponseAction»
ResponseSignal(foo: Boolean = true, bar: Boolean = false)

Figure 1: PITM test model example

Test set scheduler

Create test seﬂ [Create test set Iog [Create test cas%

test setI test IogI / I test case

[Call CreateTestSetlog] ‘Start test caSH

Figure 2: Test set (scheduler) behavior

Test case behavior

test case

Call constructor

LT test case

Create test case log
|

test case log

test case

Call CreateTestCaselog
test case log]]

{[Start test iteﬂ

test case T tem

test case

3 coordinator 3
Read coordinator] | Start coordinator

test case log[

Call FinalizeTestCaselog

Figure 3: Test case behavior

4.2.3 Preparing the test case execution. Figure 3 illustrates the
preparation of a test case execution prior to running the actual PITM
test case behavior. In this regard, the classifier behavior of the PSTM
test case creates a test case log by means of a CreateObjectAction
"Create test case log’ and a CallBehaviorAction ’Call CreateTest-
CaseLog’ and distributes it to the test components through the

coordinator. The mechanism of creating test case logs is out of
scope of this paper.

In order to prevent a potential loss of signals to or from the
test item, it is important to ensure the complete setup of the test
environment before the test item behavior commences. Therefore
we require the test item to be modeled as a passive (not active)
class, even though this is in violation with f{UML.> Consequently,
the test item must be started manually by a ReadStructuralFea-
tureAction 'Read test item’, which passes the resulting object to a
StartObjectBehaviorAction *Start test item’.

4.2.4 Coordinating the test case components. Starting and syn-
chronizing the test components is the responsibility of the (test
case) coordinator (see Figure 4). For this purpose, it sends a start
signal over the synchronization bus. The test component behaviors
wait for this start signal before they commence their actual behav-
ior. Added as an argument to the start signal is a reference to the
test case log. This log object is required to capture the test actions
executed by the test components.

Following this initial broadcast is a flow consisting of paral-
lel AcceptEventActions for all SignalEvents corresponding to the
completion signals of the involved test components. Only after all
completion signals are received, the coordinator behavior completes
and the test case can enter the finalization phase.

4.2.5 Finalizing the test case execution. After the completion of
all test components and the associated termination of the action
’Start coordinator’, the initially created test case log is finalized
by a CallBehaviorAction calling the OpaqueBehavior "FinalizeTest-
CaseLog’. Again, the mechanism of finalizing test case logs is out
of scope of this paper.

3See fUML [6], Clause 7.2.2.2.3 Class, Additional Constraint 1: Only active classes
may have classifier behaviors. We found out that the f{UML engine we used allows for
setting classifier behaviors for passive classes, too, but those passive classes are not
started by the instantiation of the composite structure parts. We are aware that we
need to find a better solution for this purposes in the future.

Execution of UTP test cases using fUML

Coordinator

coordinator 1 [l

Send start
signal

in awai End await all
Begin await all >} oqteraCompletionSignalEven nd awaita

Accept
Tester1CompletionSignalEven

Figure 4: Coordinator behavior

«TestCase»
Test case

«Testltem» «TestComponent»
+ elevator: Elevator [1] + tester1: Tester1 [1]

L8

+ coordinator: Coordinator [1]

«<TestComponent»
+ tester2: Tester2 [1]

o

synchronization bus

Figure 5: Compiled PSTM executable test configuration

5 MAPPING THE TEST CASE BEHAVIOR

The Interactions that represent the behavior of a PITM test case
undergo the most extensive transformation. The resulting PSTM be-
havior is distributed among the test case itself for setting up the test
environment including the coordinator, and the individual test com-
ponents. Since the first mapping has already been described in the
previous section, the subsequent sections deal with the generation
of the individual test component behaviors.

Examples of the Activities implementing the test case and the
coordinator behavior are shown in figures 3 and 4. The individual
phases of the displayed behavior are described subsequently.

5.1 Mapping test actions

Each PITM Lifeline yields an ordered list of associated MessageOc-
currenceSpecifications (MOS), which, together with the correspond-
ing Messages, represent the test actions to be taken.

In order to derive a test component’s behavior from a Lifeline,
these covering MOS are iterated over and each test action is trans-
formed into a flow. The sequence of such flows, enclosed by an
initializing and a concluding flow for synchronization and logging,
defines the ultimate behavior of the test component. Depending on
the messageSort and whether the MOS represents a sendEvent or
receiveEvent, different mappings are applied to generate the appro-
priate actions. Each flow representing a test action can be divided
into four phases, each represented by a sub-flow:

(1) Signaling for synchronization (where applicable)

(2) Communication with the test item

(3) Logging

(4) Signaling for synchronization (where applicable)

Details on the different phases are given in the subsequent sec-
tions. Section 5.1.1 covers the communication with the test item (2),
section 5.1.2 covers the logging phase (3) and section 5.1.3 covers
the synchronization mechanism in (1) and (4).

EXE 2018, October 14, 2018, Copenhagen, Denmark

Test component

Accept
ResponseSignalEvent

test log entry
result

test case log E[Call CreateExpectResponselogEnt

Figure 6: Execution and logging of a CreateStimulusAction

Test component
floor] value

{ | CallElevatorSignal

o

test component

test case log
[l result

Call CreateCreateStimuluslogEnts

value
[diredion}:‘—)l:(Set direction|

test log entry

test log entry

Figure 7: Execution and logging of an ExpectResponseAc-
tion

5.1.1 Sending and receiving Signals. For sendEvents of Messages
that are the sort of asynchSignal, the transformation results in
a SendSignalAction with one InputPin for every argument of the
respective Message as well as appropriate ValueSpecificationActions
connected by ObjectFlows. For receiveEvents of such Messages, the
transformation results in an unmarshalling AcceptEventAction with
one OutputPin for every argument of the respective Message. The
values of the latter will be used to create an appropriate log entry
as described in section 5.1.2. Examples of both flows are shown in
figures 6 and 7.

5.1.2 Logging. Whenever a test action of the types «CreateS-
timulusAction» and «ExpectResponseAction» is being executed, a
matching test log entry should be created. The implementing flow
starts with a CreateObjectAction, creating an object of the type of the
TestLogEntryStructure that belongs to the test action. Subsequently,
AddStructuralFeatureValueActions populate the fields of the test log
entry. In case of a «CreateStimulusAction», the values are specified
by ValueSpecificationActions in accordance with the sent Signal (see
figure 6). In case of an «ExpectResponseAction», the values are read
from the actually received Signal (see figure 7). Finally, the object
is passed to a CallBehaviorAction, calling the appropriate opaque
behavior to persist the log entry.

EXE 2018, October 14, 2018, Copenhagen, Denmark

5.1.3 Synchronization of GeneralOrderings. In order to repro-
duce the effect of GeneralOrderings (see Figure 1) in the test case
behavior, a signaling mechanism was implemented. For that pur-
pose, each GeneralOrdering is transformed into a corresponding
Signal and SignalEvent. Test components whose lifelines are source
or target of GeneralOrderings can then send or wait for such Signals
and SignalEvents on the synchronization bus in order to synchronize
their actions. When transforming a test action, the toBefore and
toAfter associations of the corresponding MOS are evaluated to de-
termine whether the test action must be synchronized. In case there
are one or more GeneralOrderings found on the toBefore association,
a flow consisting of parallel AcceptEventActions for all SignalEvents
corresponding to the respective GeneralOrderings, is inserted at the
beginning of the test action flow. Accordingly, in case there are one
or more GeneralOrderings found on the toAfter association, a flow
consisting of parallel SendSignalActions for all Signals correspond-
ing to the respective GeneralOrderings, is inserted at the end of the
test action flow.

6 IMPLEMENTATION AND EXECUTION

We implemented the described mapping with Eclipse QVTo. As
execution engine, we utilized Eclipse Papyrus Moka. As Moka imple-
ments the CS_DefaultConstructStrategy from PSCS, it only offers
support for binary Connectors by default. In order to support also
n-ary Connectors as they are an integral part of our synchronization
mechanism, we implemented a custom construction strategy.

We successfully executed the PITM test cases against the elevator
use case. Test logs of the test case execution were successfully cap-
tured during execution. Details of UTP test logs were subject to our
previous work [13]. Verdict calculation was done using an external
Java implementation of the default UTP arbitration specifications,
but had to be excluded from this paper due to space limitations.

7 CONCLUSION

In this paper, we described an approach to generate fUML test
models from UTP test models for eventual testing of f{UML systems.
We addressed both, mapping rules to setup the test environment as
well as mapping rules to execute the test case behavior. Therefore,
we described a mapping from PITM Interactions to PSTM Activities.
Using UTP for testing fUML systems is a new approach.

Even though the result demonstrates the feasibility of our ap-
proach towards executable UTP, a few aspects need closer discus-
sion and further improvement.

We currently do not distinguish between test and system inter-
faces. The test configuration relies on the interfaces offered by the
fUML system. This is not necessarily a shortcoming, however, con-
tinuous test design should rather define dedicated test interfaces to
keep independence of any technical details of the SUT to ensure
easier maintenance of the test cases. Maintenance is a key success
factor in continuous test design. The reason why we do not utilize
test interfaces is the lack of an adaptation layer, that is capable
of mapping logical test interfaces to technical system interfaces.
Supporting test interfaces and providing an adaptation layer has a
high priority for our approach in the future.

Furthermore, we only support Signals and Receptions for commu-
nication between test components and the test item. Signal sending

Marc-Florian Wendland and Niels Hoppe

was for a long time the only supported events by fUML. With the
upcome of PSSM, fUML was extended to support CallEvents, too.
Therefore, future work will be spent on integrating Operations and
CallEvents in addition.

Finally, we do not support the UTP concept test execution sched-
ule. A test execution schedule is able to base the execution order
of test cases within a test set on certain condition. This might be
as simple as a sequence of execution (e.g., test case 1 must be exe-
cuted before test case 2) or as something complex as conditional
execution (e.g., if test case 1 concludes with verdict pass execute test
case 3, otherwise test case 2). The related «TestExecutionSchedule»
extends Behavior so that test execution schedules could be provided
as fUML-compliant Activities as well. This would in fact decrease
the effort for supporting them in our approach.

ACKNOWLEDGMENTS

The work described in this paper was funded by the ITEA 3 TESTOMAT

Project (no. 16032).

REFERENCES

[1] Paul Baker, Zhen Ru Dai, Jens Grabowski, Oystein Haugen, Ina Schiefdecker,
and Clay Williams. 2007. Model-Driven Testing aAS using the UML Testing Profile.
Springer, Heidelberg.

[2] Florin Craciun, Simona Motogna, and Ioan Lazar. 2013. Towards Better Testing
of f{UML Models.

[3] David Frankel. 2003. Model-Driven Architecture. OMG PRESS.

[4] Beatriz Lamancha, Macario Usaola, and Mario Velthius. 2009. Towards an auto-
mated testing framework to manage variability using the UML Testing Profile.
In 2009 IEEE International Workshop on Automation of Software Test (AST’09)
co-related with the International Conference on Software Engineering (ICSE) 2009.
Vancouver, Canada.

[5] Stefan Mijatov, Philip Langer, Tanja Mayerhofer, and Gerti Kappel. 2013. A
Framework for Testing UML Activities Based on fUML. In 2013 10th International
Workshop on Model Driven Engineering, Verification and Validation (MoDeVVa)
co-located with the 16th International Conference on Model Driven Engineering
Languages and Systems (MODELS 2013). Miami, USA.

[6] Object Management Group (OMG). 2012. Semantics of a Foundational Subset for
Executable UML Models (fUML). The Object Management Group October (2012),
441. http://www.omg.org/spec/FUML/

[7] Object Management Group (OMG). 2017. Action Language for Foundational
UML (ALF). The Object Management Group March (2017). https://www.omg.org/
spec/ALF/1.1/

[8] Object Management Group (OMG). 2017. Precise Semantics of UML State
Machines Structures (PSSM). The Object Management Group March (2017).
https://www.omg.org/spec/PSSM/1.0/Betal

[9] Object Management Group (OMG). 2018. Precise Semantics of UML Composite

Structures (PSCS). The Object Management Group March (2018). https://www.

omg.org/spec/PSCS/1.1/

Object Management Group (OMG). 2018. UML Testing Profile (UTP). The Object

Management Group March (2018). https://www.omg.org/spec/UTP/2.0/Betal

Alin Stefanescu, Marc-Florian Wendland, and Sebastian Wieczorek. 2010. Using

the UML testing profile for enterprise service choreographies. In 2010 IEEE 36th

EUROMICRO Conference.

[12] Marc-Florian Wendland. 2016. Towards Executable UML Interactions based on
fUML. In Proceedings of the 4th International Conference on Model-Driven Engi-
neering and Software Development. SCITEPRESS - Science and and Technology
Publications, 405-411. https://doi.org/10.5220/0005809804050411

[13] Marc-Florian Wendland, Niels Hoppe, Martin Schneider, and Steven Ulrich. 2018.

Extending the UML Testing Profile with a fine-grained test logging model. In 2018

IEEE 11th International Conference on Software Testing, Verification and Validation

(ICST). Vasteras, Sweden.

Schieferdecker I. Din G. Zander J., Dai Z.R. 2005. From U2TP Models to Executable

Tests with TTCN-3 - An Approach to Model Driven Testing. In Khendek F.,

Dssouli R. (eds) Testing of Communicating Systems. TestCom 2005. Lecture Notes in

Computer Science, vol 3502. Springer, Berlin, Heidelberg.

[10

[11

[14

http://www.omg.org/spec/FUML/
https://www.omg.org/spec/ALF/1.1/
https://www.omg.org/spec/ALF/1.1/
https://www.omg.org/spec/PSSM/1.0/Beta1
https://www.omg.org/spec/PSCS/1.1/
https://www.omg.org/spec/PSCS/1.1/
https://www.omg.org/spec/UTP/2.0/Beta1
https://doi.org/10.5220/0005809804050411

	Abstract
	1 Introduction
	2 Related work
	3 UTP- and fUML-based test models
	4 Generating the executable test environment
	4.1 Mapping test sets
	4.2 Setting up the executable test environment

	5 Mapping the test case behavior
	5.1 Mapping test actions

	6 Implementation and Execution
	7 Conclusion
	Acknowledgments
	References

