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Abstract—Goal models have been suggested to be an effec-
tive way to support decision making in early requirements
engineering. Such models are capable of representing a large
number of alternative ways to solve stakeholder problems and
comparing them against each other with respect to higher level
objectives. Core to the realization of such analysis is the concept
of the contribution link that represents how satisfaction of one
goal affects satisfaction of another. Many ways for representing
and assigning precise meaning to contribution links have been
proposed, each with different properties and advantages. But
which one agrees more with user preferences on how such links
should be used? In this paper, we present an experimental design
for comparing two ways for representing contribution links,
symbolic versus numeric, with respect to how accurately and
quickly users identify optimal decisions using each representation
format. Apart from comparing the two representation techniques
and advising the modeling practice accordingly, the study aims
at showing how a quality construct we call intuitiveness can be
added to the range of criteria a modeling language designer has
at her disposal for evaluating her language design decisions.

I. INTRODUCTION

Goal models [1]–[3] have long been proposed as an effective
means for representing intentional structures and their relation-
ship to decision problems in early requirements engineering
[4]–[6]. Using such models, business analysts can capture the
variety of ways by which stakeholders can solve their business
problems and compare them with one another with respect to
set criteria.

Many representational and semantic frameworks have been
proposed within the goal modeling community to allow such
analysis [5]–[8] ( [9] for a survey). One of the fundamental
constituents of goal models that allow such analysis is the
concept of the contribution link, which is a representation of
a relationship between two goals signifying how satisfaction
of one affects the satisfaction of the other. Different goal
modeling and analysis frameworks propose different ways
to visually represent and assign meaning to the contribution
concept. The traditional/de-facto representation choice is qual-
itative (symbolic) labels signifying the quality of contribution
(positive or negative) and crudely characterizing the size of
the contribution. However, the use of quantitative (numeric)

values has also been proposed, whereby, e.g., sign and absolute
value are used to represent quality and size of contribution.
These representational options have been studied from a
theoretical point of view and different formal semantics have
been proposed, each showing how the representations allow
inference of satisfaction status of one goal from that of other
goals.

However, limited work has been done in terms of how
users of the models perceive what the symbols and/or numbers
mean and how they expect to use them in order to make
inferences pertinent to decision making. It is particularly useful
to understand how users intuitively assign meaning to signifiers
within the language, when no prior training and/or experience
with the language can be assumed for them. Knowing what
untrained user’s intuition is, language designers can settle for
representations and semantics that are closer to the user’s
expectations and, as such, easier to learn and more accurate
to use.

In this paper we present an experimental design aimed at
comparing the intuitiveness of qualitative versus quantitative
contribution labels in goal models, having assumed specific
semantics for each. Our design aims at showing which of
the two visualization-meaning pairs leads to more accurate
decisions in the least amount of time.

The rest of the paper is organized as follows. In Section
II we offer some background on goal models, contribution
links and their semantics. In Section III we describe the
experimental design and in Section IV we summarize and
review some of the related work.

II. BACKGROUND

A. Goal Models and Contribution Links

The goal models we consider in this study look like the
ones in Figure 1. The nodes (ovals and clouds) are goals that
describe states of the world that the actor in question (circular
shape) has within their scope (large shaded dashed circle) and
want to achieve or maintain. The ovals describe hard-goals,
which are goals that come with a clear way to decide when



they are satisfied, while soft-goals (the clouds) are goals for
which this is not the case.

Goal modeling languages define a variety of relationships
between goals and allow for great structural freedom [10].
However, in our study we restrict our focus to goal models that
have specific structural characteristics. Thus, through means-
ends and decomposition links, hard-goals form an AND/OR
decomposition tree whose solutions describe alternative ways
by which the root hard-goal can be satisfied. Soft-goals on
the other hand form their own hierarchy using contribution
links, the curved directed lines. Similar lines connect some
hard-goals with some soft-goals.

A contribution link shows in what way satisfaction (or not)
of the origin of the link affects satisfaction (or not) of the
destination of the link. This way of affecting the other goal is
described through the label of the contribution link. Typically
the label will show whether the effect is positive or negative
and/or how large it is. Nevertheless, there are more than one
ways to represent contribution labels and, for each, multiple
ways to define their semantics.

The original and seemingly most popular approach to
modeling contribution labels is through symbols (diagram
on the left in Figure 1). Thus “+”, “++”, “−” and “−−”
denote respectively positive (“helps”) very positive (“makes”),
negative (“hurts”) and very negative contribution (“breaks”).
Alternatively numbers can be used to convey this information
(diagram on the right in Figure 1). Two distinct numeric
approaches have been introduced in the literature. The ap-
proach by Giorgini et al. [8], [11] assigns a number in the
real interval [0.0,1.0] to represent size of contribution and a
sign to represent positive or negative contribution1. The AHP-
inspired “linear” interpretation [12] also adopted by URN [7]
simply assigns a number in the real interval [0.0,1.0] denoting
the share of contribution of the origin goal to the destination
goal.

B. Contribution Semantics

Informal descriptions such as the above about the meaning
of the contribution link allow a model reader/user (henceforth
simply user) perform some very basic inferences by looking
at the model. For example, she can compare two contribu-
tions with respect to which one is larger or she can even
choose between alternatives in the hard-goal decomposition
with respect to a soft-goal of interest. For example, in the
symbolic model on the left side of Figure 1, if to Reduce
Scheduling Effort is an important soft-goal, then we know that
(Choose Schedule) Automatically is preferable than doing so
Manually, by simply looking at the contribution labels and
without knowing precisely what they mean. However, more
detailed semantics need to be given in order to perform more
complex inferences such as deciding on the satisfaction status
of a goal that receives multiple incoming contribution links,

1Giorgini et al.’s expressive framework also includes a subscript repre-
senting what is being contributed between satisfaction and denial; both their
quantitative and qualitative version includes this dimension. Presentation of
this dimension is outside our scope.

Label Effect Label Effect

++

FS → FS
PS → PS
PD → PD
FD → FD

−−

FS → FD
PS → PD
PD → PS
FD → FS

+

FS → PS
PS → PS
PD → PD
FD → PD

−

FS → PD
PS → PD
PD → PS
FD → PS

TABLE I
SYMBOLIC CONTRIBUTION SEMANTICS

or, as we will see below, deciding the optimal alternative by
considering all contribution links in the structure.

Giorigini et al. have developed the most expressive seman-
tics for both symbolic and numeric links [8], [11]. According
to their framework each goal in the diagram can be associated
with two variables: one that measures satisfaction and one
that measures denial. In the qualitative (symbolic) framework
each of these variables can take one of three values: Full
evidence (denoted with prefix F), Partial Evidence (P) and
No Evidence (N) – of, respectively satisfaction (suffix S) or
denial (D). For example, for a goal we may have partial
evidence of satisfaction and no evidence of denial (denoted
{PS,ND}) and, for another, full evidence of satisfaction and
partial evidence of denial ({FS,PD}); the inconsistency is
perfectly acceptable and the framework’s ability to represent it
is one if its strengths. A set of rules, seen in Table I, combine
the satisfaction and denial values of the origin goal with the
contribution label to decide the satisfaction and denial values
of the destination. Returning to Figure 1 (qualitative model
on the left), if we know that satisfaction and denial values
of Minimal Conflicts are {FS,PD} then based on the rules of
Table I Quality of Schedule must be {PS,PD} – assuming no
other influence.

In the quantitative (numeric) framework the rules are re-
placed by algebraic formulae. The researchers allude to three
possible ways by which this formula can be structured, seen
in the top three rows of Table II; in practice their framework
is open to the adoption of many other ways. Given a set of
goals g′ ∈ Og , each with satisfaction value s(g′) ∈ [0.0, 1.0]
targeting goal g with contribution links weighted as w(g′, g),
the satisfaction value of goal g is expected to be s(g) as
defined in each of the formulae. In all the proposed formulae
(“Bayesian”, “Min-Max” and “Serial-Parallel”) aggregation
is implemented through maximization. Note that in this seman-
tic framework, users are supposed to understand the numbers
of the contribution links as absolute contribution values po-
tentially elicited and understood in isolation from the other
ones.

A different interpretation of numeric contributions, which is
of particular interest here, is the de-facto approach followed
by URN [7] which has been studied by Liaskos et al. [12].
According to that interpretation, a unique numeric satisfaction
value is assigned to each goal with values in the real interval
[0.0,1.0] – so no distinct satisfaction and denial values. Then,
the number on the contribution link denotes the share of
contribution of the satisfaction of the origin goal to the



Fig. 1. Goal models with symbolic (left) and numeric (right) contribution links.

satisfaction the destination goal. This implies also a different
formula for satisfaction propagation, the last one on Table
II; the formula is labeled as “Linear” for it calculates the
satisfaction of the destination goal through linearly combining
the satisfaction value of each goal that influences it, using the
numbers on the contribution links as weights for the linear
combinations.

Bayesian s(g) = MAX
g′∈Og

{s(g′)× w(g′, g)}

Min-max s(g) = MAX
g′∈Og

{MIN(s(g′), w(g′, g))}

Serial-parallel s(g) = MAX
g′∈Og

{ s(g
′)×w(g′,g)

s(g′)+w(g′,g) }

Linear s(g) =
∑

g′∈Og
{s(g′)× w(g′, g)}

TABLE II
NUMERIC CONTRIBUTION SEMANTICS

While the linear interpretation is arguably less expressive
and imposes structural limitations to the models (the soft-
goal sub-graph must be acyclic) they have been found [12] to
be amenable to systematic elicitation through an established
decision making technique, the Analytic Hierarchy Process
(AHP) [13]. Following AHP, contribution values are not as-
signed directly but through pairwise comparisons followed by
transformation of the output of these comparisons into the final
values, controlling also for the consistency of the input, via
calculation of a Consistency Ratio (CR). Given this promise
of the linear interpretation for practical use, we adopt it as the
quantitative interpretation of choice in the study we propose
here.

C. (A case for) the Intuitiveness Construct

Given the above options for visually representing and under-
standing the use of contribution labels for inferring satisfaction
propagation, it is natural to ask which one is more “friendly” to
users of the models. One aspect of “friendliness” is the level

by which the intended meaning and use of the contribution
aligns with the users’ intuition.

We use the (working) theoretical construct “intuitiveness”
of a model construct to describe the ability of untrained users
of a conceptual model to readily understand what the construct
means and how it should be used to make inferences in the
model. The concept is analogous to the idea of an intuitive
human-machine interface: the more intuitive an interface is,
the more readily first-time users can use it without the need
to resort to help, a manual etc. The term is akin to that of
learnability which is a quality of an interface that allows
users to learn how to use it easily and quickly [14]. One can
think of intuitiveness as a facilitator of learnability. Design
principles such as consistency and compliance to standards
[15] are understood here to facilitate intuitiveness: users will
likely find intuitive a user interface that uses conventions with
which the user is already familiar.

With this user-machine interface analogy in mind, we can
reasonably claim that conceptual models are also artifacts to be
efficiently used by people, where “use” here is “understanding
and communication” [16]. Further, as design artifacts them-
selves, modeling languages are results of design decisions at
two levels: at the level of the concepts they consider (e.g.,
hard-goals and soft-goals) and at the level of the visualization
of those concepts (e.g., ovals and clouds). It appears that there
might be better and worse decisions for each of those levels.
For example, would we instead of ovals and clouds use animal
pictures (e.g. elephants and dolphins) to represent hard-goals
and soft-goals? Likewise, are the concepts “upper-goal” and
“lower-goal” more successful choices for representing human
intention than currently used concepts “hard-goal” and “soft-
goal”?

Intuitiveness, as we conceptualize and apply it here, mea-
sures the entire package of a concept and its visualization:



the visualization evokes a meaning, which, in turn, is used to
make inferences. When a user is exposed to a visualization
and ends up performing an inference that is not intended by
the designers, a sub-optimal decision may be claimed at any
of the levels: either the users did not map the visualization
to the right concept (e.g. confused a “goal” for an “event”,
both otherwise being clearly understood concepts), or they
did so correctly but did not understand the concept as the
language designers intended them to (e.g., they correctly
mapped a symbol to an “upper-goal” but didn’t know what
to do with the latter). While training may arguably establish
correct bridging between visualization and inference in the
long term, intuitiveness is exhibited when limited such training
is necessary.

In the context of contribution links in goal models, the
inference we are interested in is how users assign satisfaction
to goals given satisfaction of other goals based on their
own interpretation of what contribution labels seem to mean.
Reversely, their observed inferences reveal their perceived
meaning of the links, and, as such, the former can be used
to develop empirical operationalizations of the latter. In the
experiment we describe below, we ask the users to make
decisions using goal models. To do so, they need to adopt a
way of using the contribution link and, implicitly, a semantics
for those links. The alignment of the semantics implied by
how users use the models with the designed semantics (i.e. the
semantics intended by the designers), as exhibited by whether
the results of the inference match, is, we claim, a possible
indication of the intuitiveness of the designed semantics.

III. EXPERIMENTAL DESIGN

A. Overview and Research Question

In the proposed study we pick two approaches for modeling
and assigning meaning to contribution links and compare
them with regards to measures of intuitiveness and efficiency.
We specifically compare the symbolic against the numeric
approach, the latter under the linear interpretation. There is
one main research question we wish to address:

RQ. Which of the two methods for modeling contribution
links is the most (a) intuitive and (b) efficient for
the task of identifying optimal alternatives in goal
models?

We address the above through a controlled experiment with
human participants.

B. Experimental Tasks and Measurements

1) Measures: The two constructs we are considering are
intuitiveness and efficiency. We theoretically defined intuitive-
ness as the degree by which untrained users can make accurate
inferences with models they are exposed to. Operationally,
we will measure intuitiveness by exposing the experimental
participants to a sample of goal models and asking them
to perform an inference, which we then compare with the
“correct” inference as dictated by the adopted contribution
modeling approach. Perception of intuitiveness is also included

as a possible measure via self-reporting of participants’ con-
fidence about the aforementioned inferences they perform.
Efficiency, will be, in this context, measured as the total time
it takes for participants to perform this inference, independent
of correctness.

2) Experimental Units: We develop a number of goal
models such as those in Figure 1. We specifically develop
two (2) sets of models: qualitative, in which contribution
lables are symbolic, and quantitative, where contribution labels
are numeric following the “linear” semantics. All models
contain one OR-decomposition of hard-goals (so one decision)
together with a hierarchy of soft-goals that are used as criteria
for choosing the optimal alternative within the decomposition.
By having a unique root goal in the soft-goal hierarchy the goal
model implies that, generally, one of the depicted alternatives
is optimal compared to the others.

To show how this is possible let us go back to Figure 1 and
consider the decomposition Manually versus Automatically.
We can assume that whenever we pick one of the alternatives
the corresponding hard-goal is assigned maximum satisfaction
and, if applicable minimum denial value. Thus, to choose the
alternative Manually we assign to it maximum satisfaction
values {FS, ND} (qualitative case) or s(Manually) = 1 (quan-
titative case), and to all other alternatives (in our case only
Automatically) values {NS, ND} or s(·) = 0. We then perform
recursive bottom-up application of the propagation rules of
Tables I and II (depending on case), in order to calculate
the satisfaction of the root goal Overall Scheduling Quality.
For the quantitative models specifically we follow the linear
interpretation of the last row of Table II. Different choices
of alternative will result in different satisfaction level for the
root goal. The alternative that results to the highest satisfaction
value for the root goal is the optimal.

In the quantitative case, satisfaction is a unique value and
the comparison straightforward. In the example of Figure 1
(model on the right), Manually causes satisfaction of Overall
Scheduling Quality by approx. 0.6 compared to approx. 0.4
implied by selection of Automatically. Thus, Manually is the
optimal alternative2.

In the qualitative case, calculation is less straightforward
in that there are two variables to consider, satisfaction and
denial. To make different satisfaction levels comparable we
aggregate the two values into one, the aggregated satisfaction
value. To calculate the aggregated satisfaction values, we
firstly associate qualitative satisfaction labels {N, P, F} with
numeric values 0,1,2, respectively. We denote the resulting
numeric satisfaction and denial of a goal g as sat(g) and
den(g), respectively. The aggregated satisfaction value is then
sat(g) − den(g) which results to an integer in [-2,2]. Thus,
the aggregated satisfaction value of a goal g1 with {PS, FD}
is sat(g1) − den(g1) = 1 − 2 = −1 and of a goal g2 with
{FS, ND}, sat(g2)−den(g2) = 2−0 = 2. For the qualitative

2To simulate the experience of our experimental participants the reader
can look at the diagram and verify if the assertion that Manually is optimal
can be inferred intuitively, by roughly comparing the numbers and without
performing precise calculations.



model on the left of Figure 1, it can be verified that Overall
Scheduling Quality is {PS, PD} for Manually and also {PS,
PD} for Automatically. Hence, both alternatives lead to the
same aggregated satisfaction value for the root goal, that is 0,
and as such they are equally optimal.

3) Model Sampling: To develop the samples of goal models
that we need, we pick a goal structure (more below) and ran-
domly choose contribution link labels, such that the distance
in satisfaction value of the best alternative (i.e., optimal with
respect to the root soft-goal) compared to the second best
alternative is controlled to not exceed or be less than a fixed
value. Thus, we ensure that the distance is neither too large so
that the task of identifying the optimal alternative is trivial in
all cases, nor too small to constitute an unimportant distance
in terms of decision making and also be impossible to detect
even by some of the participants.

Specifically, in qualitative models contribution labels are
assigned randomly one of the labels “++”, “+”, “−−”, and
“−”, such that the first alternative has a distance from the
second alternative of two (2) levels of satisfaction, based on
the aggregated satisfaction value of the root soft-goal that each
alternative results in.

Thus, a goal model in which the best alternative, when
chosen, makes the root goal {FS, ND}, hence aggregated value
2− 0 = 2 and the second best makes the root goal {PS, PD},
hence aggregated value 1−1 = 0, qualifies for inclusion to our
sample as the distance of the two top alternatives is 2. A goal
model, on the other hand, in which the top two alternatives
are both {FS, PD} have both an aggregated value of 1 and
hence distance of zero; so they do not qualify.

In quantitative models we also randomly sample while
ensuring that the first alternative has a distance of 0.4 from the
second; again, in terms of the satisfaction they imply for the
root goal. For example a set of weights that gives satisfaction
value 0.7 to the first alternative and 0.3 to the second qualifies
for inclusion to our sample. The model of Figure 1 (right),
focussing on the Choose Schedule decision, does not qualify
as the distance is 0.6− 0.4 = 0.2

The choice of 0.4 is made to match the corresponding choice
in the qualitative models. Observe that in qualitative models
the maximum distance between alternatives is 4 ({FS, ND}
versus {NS, FD} so 2 - (-2)). The distance we demand is 2,
thus half of this space. Respectively in the quantitative models
the maximum theoretical distance is 1.0, so half the space
would be 0.5. However we end-up to 0.4 – biasing slightly
against numeric models – as for some of our structures there
does not seem to exist combinations of numeric labels that
yield a distance of exactly 0.5.

To remain consistent with the claim that linear interpretation
is chosen due to the systematic elicitation approach that is
afforded by it, namely AHP, all numeric sampling is done
through simulated AHP pair comparison processes and subse-
quent profile calculations, such that the consistency ratio (CR)
is less than 0.1.

It is worthwhile to note that, while it is understood that
the two representation approaches have different precision

levels, the numeric one being understood as more precise,
this difference does not seem to threaten our comparison
effort but rather offer us a possible explanatory view to a
potential result. If, for example, a difference is discovered in
favor of the numeric format, it might be due to a number
of reasons including precision but also, e.g., familiarity of
the participants with numerical reasoning and assessment of
proportions. Identifying those precise reasons – assuming
the effect is eventually observed – is a matter for future
investigation.

4) Instrument and Tasks: Using the sampling procedure
described above we develop a total of twelve (12) quantitative
models. The goal structures refer to three (3) different domains
describing intentional structures in the context of decisions:
Choosing an Apartment, Choosing a Course, and Choosing
a Means of Transportation. We develop the models based
on specific domains, rather than using dummy names (A, B,
C etc.) for the purpose of making the tasks more realistic.
This introduces the threat that participants may use their own
opinion of how goals are related to each other ignoring the
information provided in the contribution link. To avoid this
bias, participants are told that the structures represent decision
problems of a third party and that their task is to help that party
make the decision based on the priorities of that party as these
priorities are represented in the goal structure.

For each domain we develop two (2) structures (one with
two and one with three alternatives) and for each structure
we sample two (2) labels-sets (i.e., sets of labels for the
contributions) sampled as described above. To produce quali-
tative counterparts we simply copy the twelve (12) quantitative
structures and replace the numbers with randomly sampled
symbolic labels – again, as described above.

We then present the resulting twelve (12) models of each
type (qualitative and quantitative) to the participants one after
the other asking each time what they believe the optimal
alternative is. Domains are presented in random order and
models within the domains in random order as well. Three
video presentations precede these tasks: one describes decision
problems in general, another introduces goal models and a
third one introduces the three domains. The second video
specifically, describes the intuition behind the contribution
links of each type carefully without getting into the mechanics
of satisfaction propagation. The videos are scripted and are
the same in the two cases (qualitative and quantitative) except
obviously for the places where the numbers or symbols are
presented.

The videos are chosen as the instruction method for three
reasons (a) allow for repeatability of the procedure, (b) control
for biases in training, and (c) allow for remote administration
or administration by non-experts.

A simple demographics questionnaire (age, sex, education,
prior knowledge of goal models) precedes the main test.
Participants are unlikely to be familiar with goal models, and
input coming from those who actually are will be discarded.
However, if familiarity to goal modes turns out to be more
prevalent, treating familiarity as a covariant is another option.



5) Participant Sample: We plan to consider the University
student pool as the population to opportunistically sample
from, specifically intermediate/senior students from various
disciplines. We claim that this does not harm the generalizabil-
ity of the particular study. Firstly, having a valid noteworthy
intuition about how the particular conceptual modeling con-
struct works does not seem to require experience and skill in
any specific field: goal models refer to concepts (goals and
their fulfillment) that should be accessible to anyone who has
successfully entered post-secondary education – compared to,
for instance, component diagrams describing software designs.
Secondly, it seems to be the implicit ambition of goal modeling
language designers that goal models are artifacts that not only
analysts but also stakeholders are able to comprehend and use
to their benefit [17]. If this is the case, then the population
we should be drawing participants from is, roughly speaking,
the population of all people who might serve as decision
making stakeholders in a systems development project. While
there is no authoritative data about the characteristics of this
population, we believe that the breadth of educational and skill
profiles in it can be credibly approximated by a sample of
intermediate/senior University undergraduate students.

6) Variables and Analysis Approach: It becomes obvious
from the above that the experiment is a simple compari-
son between two levels (qualitative vs. quantitative) of one
independent variable/factor (contribution link representation
method) arranged in a between-subjects fashion. Dependent
variables are the accuracy measured as the number of correct
responses per participant, hence a number in [0,12], as well
as response time which is the average time participants need
in order to provide a response.

It is also possible to measure confidence in each partic-
ipant’s response as a measure of perceived intuitiveness. In
earlier studies [18], [19], we augmented each exercise with
a 5-level Likert-style question “how confident are you of
your answer above”, with possible answers Very Unconfident,
Confident, Neutral, etc. The higher the confidence the higher
the perceived intuitiveness, i.e., how intuitive the participants
think the representation is. However, this additional question
increases experimental time and fatigue. Addition of this
variable would depend on our ability to keep the instrument
short, i.e., around 30 to 40 minutes.

Simple comparisons between means appear to be sufficient
as a statistical procedure, with the expected deviation from
normality kept in view – the scale [0,12] is particularly inviting
for ceiling effects.

IV. SUMMARY AND RELATED WORK

We presented an experimental design for comparing the
intuitiveness of symbolic versus numeric contribution links in
goal models. We use intuitiveness as our main comparison
construct, defined as the ability of novice users of the notation
to correctly understand how they can use it. We operationalize
intuitiveness by measuring agreement between authoritative
inferences and inferences participants make, as well as the
time it takes for the latter to take place. We also include the

option of measuring perceived intuitiveness via self-reporting
the confidence of participants on their inferences. Our design
relies on random sampling of a number of goal structures
depicting a decision problem and asking participants to choose
the optimal of the available choices, thereby making intuitive
inferences about contribution links. The decision problems are
carefully sampled to allow for a controlled distance between
the optimal and second optimal choice.

Empirically evaluating the effectiveness of diagrammatic
notations has been widely studied in the literature. Much of the
research in the field has been dedicated towards understanding
the comprehensibility of (various aspects of) UML and ER
diagrams – e.g., [20]–[24] – or process models [25]–[28].
Although understandability is a popular construct of study,
it has been argued that there is little agreement on how this is
to be measured. Indeed, in their survey, Houy et al. [29] find
variability in how understandability is operationalized in the
literature. The concept of intuitiveness, as a specialization of
understandability, is less frequently being focused on explicitly
as in work by Jošt et al., for example, where the intuitive
understandability of various methods for modeling processes
are empirically compared [30].

Work that relates to understanding the comprehensibility
of goal models specifically is more limited. Horkoff et al.
evaluate an interactive evaluation technique for goal models
[31]. The way various concepts within goal models are visu-
alized has also been the matter of investigation and empirical
evaluation. Moody et al. offer an assessment of the i* visual
syntax based on established rules (“Physics of Notations”)
[32]. An empirical analysis was followed by Caire et al. [33] in
which experimental participants evaluate visualization choices
of the language’s primitives. Elsewhere, Hadar et al. [34]
compare goal diagrams with use case diagrams on a variety
of user tasks. Measures include text-model mapping, model
reading (extracting information from the model), and model
modification (performing targeted modifications to models).
Carvallo and Franch have also studied, in the context of
a case study, how non-technical stakeholders performed in
developing strategic dependency i* diagrams [17].

Compared to the above, our work is more targeted to a
specific construct of goal models, that is contribution links. In
earlier work on the subject [18] we set out to investigate the
intuitiveness of the rules in Table I. In that experiment, we
presented to experimental participants a series of contribution
links each connecting two goals in which the satisfaction
value of the origin is know. As we also propose here, we
operationalized intuitiveness by asking participants what their
“hunch” is with respect to the satisfaction of the destination
goal and comparing their input to the authoritative one of Table
I. Among our findings were that rules involving positive labels
and goal satisfaction are more intuitive to ones with negative
labels and goal denial.

We also endeavored to compare the quantitative rules of
Table II [35]. In that work we simply presented to participants
hierarchies of soft-goals with known satisfaction values at
the leaf level and asked them to choose the satisfaction of



the root goal from a set of four values, each representing
one of the possibilities of Table II. We found that the serial-
parallel method was not preferred while the most preferred
depended on whether the contribution weights added up to 1.0,
in which case a linear interpretation was evoked. In general,
our fundamental null hypothesis that the answers would be
uniformly random was rejected, indicating that more research
should be done on the matter.

Finally, in a different effort [19] and in a vain some-
what similar to that of Caire et al. [33] we focused on the
visualization of contribution measures that is alternative to
diagrammatic. We specifically employed bar-charts, pie-charts
and tree-maps to represent quantitative goal diagrams such as
those of Figure 1 – following again the “linear” interpretation.
Exactly as we propose here, we presented users with decision
problems and asked them to pick the optimal alternative using
each of the visualizations under comparison. We found that the
combination of pie-charts and bar-charts lead to more accurate
identification of the optimal alternative and that diagrams were
not better in none of the tests or measures.

The difference of the above effort [19] and the current work
is that, while in that paper the semantics are assumed and
the visualization is in question, in the study proposed here,
both the visualization and its meaning are under comparison.
The result can thus be interpretable at either level. For the
future, we are interested in exploring theoretical and method-
ological approaches through which these two aspects can be
separately evaluated. The endeavour is not a simple one, as
understanding of any communication of a concept can be
argued to be affected by the way it is communicated – through
words, visualizations or other methods. Thus it may prove
difficult to measure comprehension of a concept as a “pure”
abstraction. Such a problematic demonstrates how empirical
investigation, even at the conceptualization stage, forces us
to think more deeply into the substance of the process of
conceptual modeling and the nature of its artifacts.
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