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ABSTRACT
Complex Event Processing (CEP) provides a mechanism to effi-
ciently correlate and infer conclusions about systems by means of
analyzing the events they process. In areas such as the Internet of
Things (IoT), Cyber Physical Systems (CPS), system monitoring or
data streaming analytics, CEP is able to read events from a data
stream and to generate complex events that represent situations
of interest to the system owner by means of event patterns. Every
time a sequence of events matches a pattern, a complex event is
created and added to the data stream. The dependencies among
the rules and the possibility of non-confluent behavior of CEP rule-
based systems may lead to unexpected outputs when executing
CEP programs. In this work, we show how to statically check and
correct two particular properties of CEP systems: rule acyclicity
and rule race conditions. We use Esper EPL as a CEP language, and
present a tool we have developed to perform these analyses.
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1 INTRODUCTION
Domains such as Internet of Things (IoT), Cyber-Physical Systems
(CPS), social networks, or system monitoring, generate gigabytes
of data every second. In order to take advantage of that situation,
approaches for data analytics have arisen and are used to extract
useful information and knowledge from it.

Complex Event Processing (CEP) [9, 15] addresses the issue of
analyzing a specific kind of data: events about facts or situations
occurring in real-time. CEP systems deal with the tasks of process-
ing streams of events and the identification of significant patterns
by means of techniques such as detection of relationships among
events, event correlation, and aspects such as causality and timing.

CEP systems are developed using Event Pattern Languages (EPL),
which are normally rule-based languages that define rules for each
pattern. Patterns are triggered when their matching conditions are
met (e.g., the relevant source event occurs) and are in charge of
generating the resulting complex events.

As with any other rule-based language, CEP programs are easy
to develop and very efficient when they are composed of a small
set of rules. However, as the number of patterns (rules) grow, the
complexity of CEP programs becomes unmanageable, their behav-
ior can be unpredictable, and checking their correctness becomes a
very difficult task.

In this work, we present a tool for the static analysis of CEP pro-
grams, which addresses the issues of detecting and fixing acyclicity
and rule race conditions. This static analyses help improve and

maintain the code quality and give developers immediate feedback
in the early development phases of the CEP software system.

The rest of the paper is structured as follows. First, Section 2
presents the background of our work. Then, we present our main
contribution in Section 3, and our tool in Section 4. Section 5 dis-
cusses a validation exercise we have used to evaluate our approach,
using a real CEP application. Finally, Section 6 compares our ap-
proach with other related works, and Section 7 concludes and out-
lines our future lines of work.

2 BACKGROUND
Complex Event Processing offers a form of data processing [6]
that aims at defining and detecting situations of interest, from the
analysis of low-level event notifications [7].

There are two types of events in a CEP system: simple events,
which contain the information received by the sensors; and complex
events, which are generated by the CEP system and inserted into
the data stream [10]. Each event has a type and a set of attributes
associated. CEP programs are composed of sets of patterns that
analyze and match sequences of events (both simple and complex)
taking into account their content and temporal relations. Each time
a match occurs, a complex event is created.

Although several CEP systems and languages exist, they all share
the same basic concepts, mechanisms and structure. In this paper
we write the rules in one particular EPL, called Esper EPL [8].

2.1 CEP by example
In order to explain CEP and to illustrate our proposal, we will use
the Smart House case study we introduced in [18]. In this system,
a house contains a set of devices and services that cooperate to
simplify the lives of its residents.

For the particular case of ensuring security in situations of fire,
we know that when a fire starts, the temperature increases at a
rate higher than a given value; and carbon monoxide (CO), which
weights less than air, increases and accumulates in the ceiling. For
this reason, temperature and carbon monoxide (CO) sensors have
been installed in the ceiling. They record the absolute value of the
temperature and CO in their respective position every second and
send signals to the central system.

In case of fire, another key aspect is to determine whether or not
someone is at home. For this purpose, our system uses the mobile
phones of its occupants as motion detectors that inform of their
geographical coordinates at all times.

Using the measurements produced by these sensors, and using
Esper EPL, we have defined the set of CEP rules that we show in
Listing 1. Lines 1–3 show the types of the simple events, in the form
of templates that specify their name and attributes. In this example,
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Listing 1: Esper EPL patterns for the Smart House
1 create schema Home ( id i n t , ts i n t , x i n t , y i n t , sqre i n t ,
2 temp i n t , co i n t , dopen boo lean ) ;
3 create schema Person ( pid i n t , ts i n t , x i n t , y i n t ) ;
4

5 @Name( "TempIncrease" )
6 in se r t into TempIncrease

7 s e l e c t h2 . ts as ts , h1 . id as id , h2 . temp as temp ,
8 h2 . temp−h1 . temp as incr

9 from pattern [ ( every ( h1 = Home ( ) −>
10 h2=Home ( h2 . temp−h1 . temp >=2 and h2 . id=h1 . id ) ) )
11 where timer : within ( 1 minutes ) ] ;
12

13 @Name( "TempWarning" )
14 in se r t into TempWarning

15 s e l e c t t4 . ts as ts t1 . id as id , t4 . temp
16 from pattern [ ( every ( t1 = TempIncrease ( t1 . temp >= 33 ) )
17 −> ( t2 = TempIncrease ( t2 . temp > t1 . temp and t2 . id = t1 . id ) )
18 −> ( t3 = TempIncrease ( t3 . temp > t2 . temp and t3 . id = t1 . id ) )
19 −> ( t4 = TempIncrease ( t4 . temp > t3 . temp and t4 . id = t1 . id ) ) )
20 where timer : within ( 5 minutes ) ] ;
21

22 @Name( "COHigh" )
23 in se r t into COHigh

24 s e l e c t h1 . ts as ts , h1 . id as id

25 from pattern [ ( every ( h1 = Home ( h1 . co >= 5000 ) ) ) ] ;
26

27 @Name( "FireWarning" )
28 in se r t into FireWarning

29 s e l e c t tw . id as id , coh . ts as ts

30 from pattern [ ( every ( coh = COHigh ( ) ) −>
31 every ( tw = TempWarning ( tw . id = coh . id ) ) )
32 where timer : within ( 5 seconds ) ] ;
33

34 @Name( "NobodyHome" )
35 in se r t into NobodyHome

36 s e l e c t p . ts as ts , h . x as x , h . y as y , h . id as id

37 from pattern [ ( every h =Home ( not dopen ) −> every ( p=Person (
38 ( p . x <= ( h . x − Math . sqrt ( h . sqre ) / 4 ) ) or

39 ( p . x >= ( h . x + Math . sqrt ( h . sqre ) / 4 ) ) or

40 ( p . y <= ( h . y − Math . sqrt ( h . sqre ) / 4 ) ) or

41 ( p . y >= ( h . y + Math . sqrt ( h . sqre ) / 4 ) ) ) ) )
42 where timer : within ( 3 seconds ) ] ;
43

44 @Name( "CallFireDepartment" )
45 in se r t into CallFireDepartment

46 s e l e c t fw . id as id , fw . ts as ts

47 from pattern [ ( every ( nh = NobodyHome ( ) ) −>
48 fw = FireWarning ( fw . id = nh . id ) ) )
49 where timer : within ( 5 seconds ) ] ;

there are two types of simple events that serve as inputs to the CEP
program: Home and Person. Each Home event keeps information
of the house identifier, the event timestamp, the house location
given its geographical coordinates x and y, its size measured in
square meters, the temperature degrees and CO accumulated in the
environment and whether the main door is open or not. Regarding
the simple events of type Person, they are represented by a tuple
with information about the person identifier, her corresponding
geographical location given by its x and y coordinates, and the
timestamp in which the event is produced.

Our example contains six event patterns. The pattern called
TempIncreasematches Home events in a timewindow of oneminute
and checks whether the temperature of the house has increased
in 2 or more degrees. If so, it generates a complex event with the
same name. Similarly, the pattern COHigh creates a complex event
each time the sensors detect CO levels above 5000 ppm.

Pattern TempWarning detects if four events of type TempIncrease
occur in a five-minute window where the first one starts from a
temperature equal to or greater than 33 degrees, and the rest of
them detect a temperature increase of two or more degrees.

A FireWarning event is created every time an event of type
COHigh is detected, followed by another of type TempWarning, ev-
erything within less than 5 seconds.

A NobodyHome event is created from the primitive events Home
and Person when the main door of the house is closed and there is
nobody whose geographic coordinates are within the perimeter of
the house.

Finally, pattern CallFireDepartment creates an event of the
same name when there is nobody at home and a fire warning has
been detected. In these cases, the central system must react and call
the fire department.

In Esper EPL, as can be inferred from previous patterns, each
complex event created has a type and set of attributes indicated in
the select clause of the pattern.

2.2 Problems with patterns
Due to the nature of rule-based declarative languages such as Esper
EPL, their patterns (rules) could be executed in any order. Pattern
execution of course depends on the arrival of the events and thus
the event arrival would constrain the order in which patterns will
execute. However, CEP systems can generate complex events that
are added to the event stream, and there are rules that depend on
these complex events to produce further complex events. The order
in which these rules are triggered may have a significant effect on
the final output of the program. This makes the execution of CEP
programs non-deterministic and hard to maintain, test and debug.

The two main source of problems we detect in this work are rule
acyclicity conditions and rule race conditions. Rule acyclicity takes
place, for instance, when a pattern A generates events of type a,
which are consumed by another pattern B, which at the same time
generates events of type b that are consumed by A.

Rule race conditions occur when there are input-output depen-
dencies between rules in uncontrollable or non-deterministic sit-
uations. In the case of CEP, rule race conditions happen when a
pattern consumes complex events that have not been produced by
the time it is being executed, but afterwards. Hence, the pattern
misses them and its match and execution never take place although
they should. For example, pattern A produces complex event a;
pattern B produces complex event b; and pattern C requires the oc-
currence of the events a andb to produce the event c . What happens
if pattern C is checked before patterns A or B are triggered?

3 STATIC ANALYSIS
In order to address the problems presented in Section 2.2, we repre-
sent CEP programs as directed graphs where the patterns are nodes
and the dependencies between patterns are the graph edges. Note
that two patterns can generate the same complex event. In the case
that that complex event is consumed by a third pattern, this third
pattern has dependencies with the two former patterns.
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Figure 1: Rule dependencies

3.1 Rule acyclicity detection
Rule acyclicity is not a problem in itself but it can cause problems,
such as infinite loops that flood the system with useless events.
Thus, we decided to detect those cycles and inform the engineer
about them.

First of all, we build the graph corresponding to the Esper EPL
code. As mentioned before, a node is created for each pattern. Edges
are created as follows. For each pattern R, we analyze its from
pattern to detect the events involved in its matching phase, track
the patterns in which these events are produced, and create an edge
in the graph associating the pattern R with each one with which it
has dependencies. In a second step, once the dependency graph is
built, we apply the Kosaraju-Sharir algorithm [21] to detect cycles.

Imagine that due to copy-paste, the code of our example con-
tains errors. Imagine that the rule TempIncrease stated in its from
pattern that depends on FireWarning events, and the COHigh rule
consumed its own events. The generated graph following our ap-
proach would be the one presented in Figure 1. Note how cycles
are depicted in red to catch the engineer’s attention.

3.2 Rule race detection and solving
In Esper EPL, priorities can be assigned to patterns by using the
label @Priority(n)where n is a non-negative integer. By default, if
the priority is not specified, the CEP engine assumes that the pattern
has the highest priority, which is 0. Users may assign priorities to
rules in order to avoid the rule race conditions described in Sect. 2.2.

The lack of priority assignation, or errors in their assignments,
can lead to race conditions between patterns—specially those that
consume complex events. In order to detect these conditions, we
also rely on the graph representation of the Esper EPL programs.

Firstly, the acyclicity analysis has to be performed. If it detects
cycles, we cannot make any conclusion about the correctness of
the priorities. On the contrary, if the graph does not contain cycles,
we are able to generate the priority of each node given their depen-
dencies. In order to do so, we make use of the graph topological
order of their nodes. The priority of each node is the maximum of
the priorities of its predecessors plus one.

Home

COHigh

NobodyHomeTempIncrease

Person

CallFireDepartment

TempWarning

FireWarning

Figure 2: Priority problems

Once we calculate the priority that each pattern should have, we
compare them with the priorities assigned by the user. With the
result of the analysis we generate two files. One with the program
dependency graph that, when interpreted and visualized, shows in
red every node for which the priorities do not coincide, and one
with the Esper EPL code containing the same code as the original
file in which the priorities have been fixed.

As an example, Figure 2 shows the graph generated from the code
in Listing 1. We can see how, due to the lack of priorities (which
the Esper engine assumes as priority 0), patterns TempWarning,
FireWarning and CallFireDepartment are suggested for review.
Listing 2 shows the excepts of the new generated Esper file in which
the right priorities are explicitly defined. In this context, right means
that the rule priorities ensure the correct order of triggering, in
order to avoid rule race conditions.

4 THE CEPA TOOL
We have created an Eclipse plug-in called CEPA1, 2 to give support
to our approach.We have used Xtext,3which allows the definition of
Domain-Specific Languages (DSL) and offers a parser, typechecker
and compiler for free; and GEF, 4 which permits the integration of
the Graphviz5 tool for graph visualization within Eclipse.

Using Xtext, we have defined a simplified grammar that parses
any valid Esper EPL program, and builds an Abstract Syntax Tree
(AST) that focuses only on the parts of interest needed to extract
the pattern dependencies. In this way, the AST only contains in-
formation about the select and from pattern parts of the CEP
programs, ignoring the rest of the language syntax.

Given the AST provided by Xtext, we have built a Java program
that creates a graph containing the primitive events and pattern
dependencies and perform the analyses mentioned in Section 3.

If the acyclicity analysis detects cycles, we use the Xtend6 code
generator to automatically generate the textual code that represent
1https://github.com/Garlo13/CEPStaticAnalysis
2CEPA stands for CEP Analysis. Cepa is also the Spanish word for strain.
3https://www.eclipse.org/Xtext/
4https://www.eclipse.org/gef/
5http://www.graphviz.org/
6http://www.eclipse.org/xtend/

https://github.com/Garlo13/CEPStaticAnalysis
https://www.eclipse.org/Xtext/
https://www.eclipse.org/gef/
http://www.graphviz.org/
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Listing 2: Esper EPL patterns with priorities
1 @Name( "TempIncrease" )
2 in se r t into TempIncrease

3 @Priority ( 0 )
4 s e l e c t . . .
5

6 @Name( "TempWarning" )
7 in se r t into TempWarning

8 @Priority ( 1 )
9 s e l e c t . . .

10

11 @Name( "COHigh" )
12 in se r t into COHigh

13 @Priority ( 0 )
14 s e l e c t . . .
15

16 @Name( "FireWarning" )
17 in se r t into FireWarning

18 @Priority ( 2 )
19 s e l e c t . . .
20

21 @Name( "NobodyHome" )
22 in se r t into NobodyHome

23 @Priority ( 0 )
24 s e l e c t . . .
25

26 @Name( "CallFireDepartment" )
27 in se r t into CallFireDepartment

28 @Priority ( 3 )
29 s e l e c t . . .

Esper EPL
Program

Parse Program
and create AST

(Xtext)
AST Create Graph

(Java) Graph

Generate
Graphviz

Code
(Xtend)

Graphviz
Graph

Perform Acyclicity
Analysis
(Java)

Cycles?
Yes

Perform Race
Condition Analysis

(Java)

No

Race
Cond?

No

AND

Generate
Graphviz

Code
(Xtend)

Graphviz
Graph

Generate
Graphviz

Code
(Xtend)

Graphviz
Graph

Generate Esper
EPL Program w/

Priorities
(Xtend)

Esper EPL
Program

Yes

Figure 3: CEPA workflow

the pattern dependency graph showing the cycles with red arrows.
This graph is interpreted by Graphviz and shown to the user.

In case the acyclicity analysis does not report the presence of cy-
cles, the race condition analysis is carried out. If rule race conditions
are detected, Xtend is used to generate two files: one containing
the Graphviz graph with the result of the analysis, and another one
with the Esper code with the right priority for each pattern. If no
rule race condition is detected, only one file is generated with the
Graphviz graph.

For clarity, Figure 3 depicts the CEPA workflow diagram, with
the main steps of its internal behavior. For illustration purposes,
Figure 4 presents a screenshot of our tool, showing its graphical
interface to the user.

5 VALIDATION
In order to validate our approach, we used a real CEP application
that currently runs across the Andalusian region in southern Spain,
and controls the quality of the air in real time, using the index
proposed by the U.S. Environmental Protection Agency (EPA) [17].
The raw data is obtained from the Andalusian Regional Govern-
ment’s sensor network, which is composed of 61 sensor stations.
Each station measures every 10 minutes six air pollutants: carbon
monoxide, ozone, nitrogen dioxide and sulfur dioxide. The EPA
proposes the analysis of these pollutant every 1, 8 or 24 hours and
express the results in a 6-grade scale, from Good to Hazardous.

The definition of this CEP program7, which is written in Esper
EPL [8], contains 43 patterns. The information about each pollutant
measurement is aggregated by one pattern, and other six patterns
per pollutant determine the air quality grade for it. This makes
seven patterns for every pollutant, and therefore the CEP program
uses 42 patterns to analyze the six pollutants of interest. A final
pattern, AirQualityLevel, calculates the global air quality level by
computing the maximum of the grades obtained for each pollutant.

Interestingly, we discovered that, although there are no cycles in
this program, these 43 patterns suffered from rule race conditions
due to dependencies between the patterns. These dependencies may
cause that some patterns are triggered before the patterns on which
they depend, hence leading to erroneous results and conclusions
about the quality of the air in the region.

Our tool was able to detect this error and to propose the cor-
rect assignment of priorities to the application CEP patterns that
permitted solving the rule-race condition problem.

6 RELATEDWORK
Rabinovich et al. [19] analyze the behavior of CEP applications us-
ing static and dynamic techniques using formal methods. Cugola et
al. [7] transform the property checking task into a set of constraint
solving problems. Although these approaches offer more kinds of
analyses than we do, for the ones we provide support, given the
exploratory nature of CSP solutions, their approaches are not as
efficient as ours.

In the context of Active DBMSs [22] there is a group of works
related to the analysis of rule-based reactive systems, including
confluence [2, 5], termination [3], and correctness [11, 14]. Our
work is similar to those, applied to the context of CEP systems.

Race detection in event-driven systems have been previously
studied [12, 20]. The novelty of our approach is that here we deal
with race conditions between complex events generated by the CEP
rules, and therefore the order in which the rules are triggered has
effect on the final output of the program. This is not the same as
possible race conditions among the simple events that arrive to the
data stream.

There are other works modeling CEP systems using Petri Nets.
An an example, Ahmad et al. [1] model CEP applications using
Timed Net Condition Event Systems (TNCES), a formalism based
on Timed Petri Nets. This approach checks whether the system
satisfies certain properties or not. However, a simple EPL pattern
such as every (A -> B), is transformed into a vast and hardly
readable TNCES model that is difficult to understand and debug.
7Available from http://atenea.lcc.uma.es/projects/FormalizingCEP.html

http://atenea.lcc.uma.es/projects/FormalizingCEP.html
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Figure 4: Screenshot of the CEPA tool showing its graphical interface to the user.

Finally, some of the issues discussed here were identified in our
previous work [4]. This paper reports on the tool we have developed
to implement the analyses hinted in that work, and how we have
realized it.

7 CONCLUSIONS
In this contribution, we present our approach to statically analyze
Esper EPL programs, and to automatically check two properties:
rule acyclicity and rule race conditions. Furthermore, when rule
race conditions are detected, we suggest how to repair the Esper
code to avoid non-confluence problems. We have built an Eclipse
tool, called CEPA, that offers support for conducting such tests.

In the future we plan to increase the list of analyses supported
by our tool, such as for example dead-end detection. Furthermore,
we would like to extend our current scope, by integrating into our
tool the dynamic analyses we explored in [4]. Finally, although the
performance of the algorithm currently used for detecting cycles
in the graph is acceptable, we would also like to evaluate other
algorithms [16], in particular the one by Johnson [13].
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