
Towards Providing Debugging in the Domain-Specific Modeling
Languages for Software Agents

Baris Tekin Tezel
Computer Science Department, Dokuz Eylul University

Izmir, Turkey
baris.tezel@deu.edu.tr

Geylani Kardas
International Computer Institute, Ege University

Izmir, Turkey
geylani.kardas@ege.edu.tr

ABSTRACT
Domain-specific modeling languages (DSMLs) for Multi-agent Sys-
tems (MAS) mostly provide checks and validations on modeled
systems according to the related syntax and semantics descriptions.
However, they do not have a built-in support for debugging MAS
models which makes the control of model correctness difficult.
Hence, in this paper, we present our ongoing work which aims at
providing debugging inside MAS DSMLs. We describe two possible
ways of deriving debuggers for MAS DSMLs. The first alternative
is based on the construction of a mapping between MAS model
entities and the generated code while the second one considers
the metamodel-based description of the operational semantics of
executing agents. Pros and cons of each approach are also discussed.

1 INTRODUCTION
Software agents are autonomous software entities acting to fulfill
its duties on behalf of users. Multi-agent systems (MASs) include
multiple interacting software agents within an environment to pro-
vide solutions for complex systems which cannot be easily solved
with individual agents or monolithic systems. However, the devel-
opment of MASs is not trivial due to the various agent properties
such as autonomy, responsiveness, and proactiveness, and the need
for realization of the many different agent interactions [7].

Agent-oriented software engineering (AOSE) [18] researchers
define various agent metamodels (e.g. [3, 13, 19]), which include
fundamental MAS entities and relations. Originating from these
metamodel definitions, many model-driven agent development ap-
proaches [14] are provided in order to facilitate design and imple-
mentation of software agents by enriching MAS metamodels with
some defined syntax and semantics (usually translational seman-
tics). In AOSE, perhaps the most popular way of applying model-
driven engineering (MDE) for MASs is based on creating Domain-
specific Modeling Languages (DSMLs) with including appropriate
integrated development environments (IDEs) in which both mod-
eling and code generation for system-to-be-developed can be per-
formed properly [15]. Proposed MAS DSMLs (e.g. [2, 6, 11, 12, 16]
usually support modeling both the static and the dynamic aspects of
agent software from different MAS viewpoints including agent in-
ternal behaviour model, interaction with other agents, use of other
environment entities, etc. Although IDEs of these MAS DSMLs
provide some sort of check and validation on modeled systems
according to the related DSML’s syntax and semantics descriptions,
they do not have a built-in support for debugging these MAS mod-
els. That deficiency causes the agent developers not to be sure on

MDEbug’18, October 2018, Copenhagen, Denmark
2018.

the correctness of the prepared MAS model at the design phase.
Hence, in this paper, we present our ongoing work which aims
at providing debugging inside MAS DSMLs. Thus, it is possible to
complete the debugging phase at the modeling level before the code
generation which leads to creating a MAS model conforming to
the specifications at the beginning. We currently investigate how
MAS DSMLs and debugging concepts and procedures pertaining
to general-purpose languages (GPLs) can be bridged. The paper
presents the initial findings of this investigation by describing two
ways of deriving debuggers for MAS DSMLs. A brief evaluation of
these two approaches are also included.

In section 2, we introduce possible debugging approaches which
can be applied for MAS DSMLs. In section 3, we discuss the advan-
tages and the disadvantages of the proposed debugging approaches
by taking into account software agents and MAS context. Finally,
section 4 concludes the paper.

2 DEBUGGING APPROACHES FOR MAS
DSMLS

In the context of software development, debugging support is
mostly provided by a language and an IDE which enable to watch
and change executed programs [23]. As indicated in [20], various
debugging techniques (e.g. using breakpoints, stepping operators,
symbolic execution) are used for GPLs. However, model devel-
opers need to debug models at the model level, not at the code
level in the domain-specific modeling [17], and this new require-
ment caused the researchers on developing new debugging ap-
proaches for model-driven development and DSMLs. Compared
with GPLs, very few debugging methods and tools currently ex-
ist for DSMLs. For instance, Moldable Debugger [8] provides the
construction of domain-specific debuggers by creating and com-
bining domain-specific debugging operations with domain-specific
debugging views. Omniscient debugging, which allows free traver-
sal of the states reached by a system during an execution, is also
used in creating debuggers for executable DSMLs (xDSMLs) [5]
or improving model transformations [9]. Motivating from these
efforts, we investigate different debugging approaches which can be
used for MAS DSMLs. Within the scope of our study, two different
approaches have been derived so far. The first one is focused on
constructing a mapping between MAS model entities and the gener-
ated code while the second approach covers the metamodel-based
description of the operational semantics of executing agents. The
following subsections briefly discuss these alternatives.



2.1 Construction of a Mapping Between MAS
Model Entities and the Generated Code

In this approach, we adopt existing, tried and well-known debug-
ging facilities for the domain-specific models of software agents.
Constructing a mapping between model entities and the generated
code allows the DSML developer to use target language debugging
facilities for generating debugging perspectives. For this purpose,
we propose a debugging approach based on the DSL Debugging
Framework (DDF) presented by Wu et al. [22].

The key technique of the proposed method is the mapping pro-
cess. This process is recording the link between an agent DSML
(e.g. DSML4MAS [12] or SEA_ML [6]) and the generated target
language code conforming to a MAS development framework (such
as JACK1 or JADE2) implemented with a GPL (e.g. Java). The map-
ping information required by the approach depends on both the
source language (an agent DSML) and the target language (a GPL).
The mapping components consist of the “source code mapping”,
“debugging methods mapping”, and “debugging results mapping”.

The results of these first two mapping processes along with the
generated GPL code are re-interpreted to generate GPL debugging
commands for the GPL debugger. The “source code mapping” com-
ponent is used to determine which entity of the DSML model is
mapped to which segment of GPL code. As a side effect of model-
to-text transformation, the source code mapping is generated when
an agent DSML model is transformed to target language code.

The traditional GPL debugging activities may not be appropriate
for the end user of an agent DSML. For this reason, domain-specific
debugging activities should be defined to be used in the debug-
ging perspective of the DSML level. So, the “debugging methods
mapping” component is used for receiving DSML user debugging
commands from the DSML-level debugging perspective to deter-
mine what types of debugging commands are needed from the
GPL-level command line debugger and explaining how debugging
activities at the DSML level are expressed at the GPL level.

The GPL-level debugger sends debugging results to the DSML
debugging perspective with the help of the “debugging results
mapping” component, which converts GPL debug output messages
back to the DSML level. Since the messages in the GPL debugger
are command line output that does not contain any information
pertaining to the DSML debugging perspective, it is necessary to
reconstruct the results to the DSML user perspective.

2.2 Metamodel-based Description of Agent
Operational Semantics

Originating from the methods described in [10] and [4], the debug-
ging process, in this approach, is accomplished by the metamodel-
based description of a MAS DSML’s operational semantics where
possible runtime states are modeled as part of the DSMLmetamodel
and transitions are defined as model-to-model (M2M) transforma-
tions. To apply this approach, an operational semantics based on
the metamodel is required in addition to the abstract syntax of the
language. By this way, it allows to access runtime state directly on
a model instance and to control execution by the M2M transforma-
tion.
1JACK Autonomous Software, http://aosgrp.com/products/jack/
2JAVA Agent DEvelopment Framework, http://jade.tilab.com/

The key technique of the approach is the step-by-step execution
of DSML instances (MAS models). This makes it possible to intro-
duce a generic debugger. Such a debugger can control a program
to suspend execution according to active breakpoints, which are
based on model elements. The breakpoint can be placed in model
elements representing program locations. If an element marked as
a breakpoint is included in a M2M transformation query, execution
is automatically suspended.

StepOperations are interpretedwithmodel transformation queries
for the target model locations, which extract the model elements.
Such target locations are loaded with temporary breakpoints, and
when one of these breakpoints is reached, execution is automati-
cally suspended. Thus, one step of the execution is provided on the
model.

It is worth indicating that the definition of a debugging perspec-
tive of a MAS model instance based on the metamodel is possible in
this approach, and hence the runtime state of agents can be entirely
contained in the MAS model. Thus, the debugging perspective that
uses domain-specific concepts at the model level, can be provided
to the users.

3 DISCUSSION
At first glance, it may seem that the first approach can be applied
to DSMLs developed for software agents. However, there are some
difficulties in implementation at this point, mainly originating from
using the GPL debuggers for debugging. First, the approach assumes
that all generated artifacts of a MAS DSML are executable. However,
many MAS DSMLs produce MAS specification / configuration files
(e.g. for defining agent beliefs in OWL ontology documents or
setting agent goals and plans in XML-encoded files) and hence
they can not be included in the debugging process within this
approach. For example; some of the artifacts generated from a
SEA_ML [6] MAS model instance are ontology documents of the
semantic web services interacting with the agents while some of
them are the codes pertaining to the target agent execution platform.
This is an important shortage of following the first approach in
implementing debuggers for MAS DSMLs. Another difficulty is that
the generated GPL code has to be used in GPL debugging tools, so
the GPL code must be complete. However, due to the high level of
abstraction of MAS DSMLs, the generated GPL codes are generally
code fragments / templates which are architectural and do not
mostly have behavioral logic. This causes a problem before using
the generated code in the GPL debugger since existing MAS DSMLs
do not have the ability to generate complete codes for implementing
MAS [7]. In addition, the DSML users with limited programming
skills may not have the ability to complete the generated code.

The second approach seems to be more appropriate than the
previous one while developing debuggers for MAS DSMLs since
the application of this approach is independent from the GPL de-
buggers. The implementation would not need to consider whether
generated outputs are not executable or the executable artifacts are
just template codes. Hence, that approach, i.e. constructing a de-
bugger over metamodel-based description of the agent operational
semantics, looks more suitable for complex modeling environments
of MAS DSMLs. However, applying this approach also has several
difficulties in the implementation phase. The difficulties will be



encountered at (1) parts describing the runtime state of a MAS
model to be added to the metamodel of the language, and (2) the
writing of the rules of the M2M transformation which will refer to
transitions between states. Considering the parts that represent the
runtime state to be added to the metamodel, if the complexity and
the size of the metamodel increase, the number of these elements
and the number of relations between both themselves and other
elements will also increase dramatically. This is a challenging situa-
tion for the language developer who will add these elements to the
MAS metamodel. The second problem that may arise in practice is
that most of the languages and technologies for M2M conversions
are based on rewriting a graph. However, the proposed approach
should not only rewrite MAS model instances that are caught by
traversing in accordance with the target metamodel, but rather
it has to represent the transitions in the runtime by looking at
the relevant model elements, relations and properties. In this case,
the M2M transformation environment has to be constructed from
scratch solely for a specific MAS DSML in order to be implemented
and can be used during transformations.

In fact, the difficulty of implementing both of these approaches
mainly arises from incomplete and/or informal modeling of runtime
agent behaviors in the current MAS DSMLs. In order to eliminate
this deficiency, one option can be the construction of transforma-
tions between MAS DSMLs and a formalism, such as Petri nets.
Hence, models for agent plans and tasks can be complete for ex-
ecution. Although such a model will include a non-deterministic
formalism due to the nature of agent programs, debugging of such
models can be assisted with newly emerging tools (e.g. [21]). Model
instrumentation [1] can also be used for debugging without modi-
fying the metamodels. Another alternative for debugging agents
at runtime can be providing xDSMLs for MAS at first and then
benefiting from the existing approaches on debugging xDSMLs
(e.g. [5], [9]). However, we should re-engineer both the syntax and
the semantics of each different MAS DSML as to be executable or
construct a brand new MAS xDSML in order to use this approach.

4 CONCLUSION
We have discussed some possible debugging approaches which may
be used for debuggingMASmodels conforming to MAS DSML spec-
ifications. A brief evaluation of these approaches showed that the
application of the first approach is easier since it benefits from using
already existing GPL debuggers. However, use of MAS DSMLs do
not only produce executable codes; other artifacts (e.g. agent config-
uration files, service descriptions) also need debugging. Moreover,
generated codes mostly do not contain complete behavioral logic re-
quired for the exact implementation of agents. These can make the
application of the first approach inefficient. The second approach,
utilizing the metamodel-based description of agent operational
semantics, seems promising since it is free from underlying GPL
structures. However, it is more difficult to apply because it needs
addition of parts describing the runtime state of MASmodel into the
language metamodel and writing the corresponding M2M transfor-
mation rules. Implementation of these debuggers can be facilitated
by methods consisting of strengthening MAS model formalism
and/or re-shaping existing MAS DSMLs as xDSMLs. However, both
providing implementation platforms for the proposed approaches

and enriching them with these methods need further investigation
which will be our future work.

ACKNOWLEDGMENTS
The first author would like to thank TUBITAK-BIDEB for their
financial support during his Ph.D. studies.

REFERENCES
[1] M. Bagherzadeh, N. Hili, and J. Dingel. 2017. Model-level, platform-independent

debugging in the context of the model-driven development of real-time systems.
In Proc. 11th Joint Meeting on Foundations of Software Engineering. 419–430.

[2] F. Bergenti, E. Iotti, S. Monica, and A. Poggi. 2017. Agent-oriented model-driven
development for JADE with the JADEL programming language. Computer Lan-
guages, Systems & Structures 50 (2017), 142–158.

[3] G. Beydoun, G. Low, B. Henderson-Sellers, H. Mouratidis, J. J. Gomez-Sanz, J.
Pavon, and C. Gonzalez-Perez. 2009. FAML: A Generic Metamodel for MAS
Development. IEEE Transactions on Software Engineering 35, 6 (2009), 841–863.

[4] A. Blunk, J. Fischer, and Daniel A. Sadilek. 2009. Modelling a Debugger for
an Imperative Voice Control Language. In Lecture Notes in Computer Science.
Vol. 5719. 149–164.

[5] E. Bousse, J. Corley, B. Combemale, J. Gray, and B. Baudry. 2015. Supporting
efficient and advanced omniscient debugging for xDSMLs. In Proceedings of the
2015 ACM SIGPLAN Int. Conf. Software Language Engineering (SLE 2015). 137–148.

[6] M. Challenger, S. Demirkol, S. Getir, M. Mernik, G. Kardas, and T. Kosar. 2014. On
the use of a domain-specific modeling language in the development of multiagent
systems. Engineering Applications of Artificial Intelligence 28 (2014), 111–141.

[7] M. Challenger, G. Kardas, and B. Tekinerdogan. 2016. A systematic approach
to evaluating domain-specific modeling language environments for multi-agent
systems. Software Quality Journal 24, 3 (2016), 755–795.

[8] A. Chiş, M. Denker, T. Gîrba, and O. Nierstrasz. 2016. Practical domain-specific de-
buggers using the Moldable Debugger framework. Computer Languages, Systems
& Structures 44, Part A (2016), 89–113.

[9] J. Corley, B. P. Eddy, E. Syriani, and J. Gray. 2017. Efficient and scalable omniscient
debugging for model transformations. Software Quality Journal 25, 1 (2017).

[10] G. Engels, J. H. Hausmann, R. Heckel, and S. Sauer. 2000. Dynamic meta modeling:
a graphical approach to the operational semantics of behavioral diagrams in
UML. In Lecture Notes in Computer Science. Vol. 1939. 323–337.

[11] E. J. T. Gonçalves, M. I. Cortés, G. A. L. Campos, Y. S. Lopes, E S.S. Freire, V. T. da
Silva, K. S. F. de Oliveira, and M. A. de Oliveira. 2015. MAS-ML 2.0: Supporting
the modelling of multi-agent systems with different agent architectures. Journal
of Systems and Software 108 (2015), 77–109.

[12] C. Hahn. 2008. A domain specific modeling language for multiagent systems. In
Proceedings of the 7th International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2008)-Volume 1. 233–240.

[13] C. Hahn, C.and Madrigal-Mora and K. Fischer. 2009. A platform-independent
metamodel for multiagent systems. Autonomous Agents and Multi-Agent Systems
18, 2 (2009), 239–266.

[14] G. Kardas. 2013. Model-driven development of multiagent systems: a survey and
evaluation. The Knowledge Engineering Review 28, 04 (2013), 479–503.

[15] G. Kardas and J. J. Gomez-Sanz. 2017. Special issue on model-driven engineering
of multi-agent systems in theory and practice. Computer Languages, Systems &
Structures 50 (2017), 140–141.

[16] G. Kardas, B.T. Tezel, and M. Challenger. 2018. Domain-specific modelling lan-
guage for belief-desire-intention software agents. IET Softw. 12, 4 (2018), 356–364.

[17] R.Mannadiar andH. Vangheluwe. 2011. Debugging inDomain-SpecificModelling.
In Lecture Notes in Computer Science. Vol. 6563. 276–285.

[18] O. Shehory and A. Sturm. 2014. Agent-Oriented Software Engineering: Reflections
on Architectures, Methodologies, Languages, and Frameworks. Springer-Verlag
Berlin Heidelberg.

[19] B. T. Tezel, M. Challenger, and G. Kardas. 2016. A metamodel for Jason BDI
agents. In 5th Symposium on Languages, Applications and Technologies (SLATE’16),
Vol. 51. 8:1—-8:9.

[20] S. Van Mierlo, E. Bousse, H. Vangheluwe, M. Wimmer, C. Verbrugge, M. Gogolla,
M. Tichy, and A. Blouin. 2017. Report on the 1st International Workshop on
Debugging in Model-Driven Engineering (MDEbug17). In Proceedings of the 1st
International Workshop on Debugging in Model-Driven Engineering. 441–446.

[21] S. VanMierlo and H. Vangheluwe. 2017. Debugging Non-determinism: a Petrinets
Modelling, Analysis, and Debugging Tool. In Proceedings of the 1st International
Workshop on Debugging in Model-Driven Engineering (MDEbug 2017). 460–462.

[22] H. Wu, J. Gray, and M. Mernik. 2008. Grammar-driven generation of domain-
specific language debuggers. Software: Practice and Experience 38, 10 (2008),
1073–1103.

[23] A. Zeller. 2009. Why Programs Fail: A Guide to Systematic Debugging. Morgan
Kaufmann.


	Abstract
	1 Introduction
	2 Debugging Approaches for MAS DSMLs
	2.1 Construction of a Mapping Between MAS Model Entities and the Generated Code
	2.2 Metamodel-based Description of Agent Operational Semantics

	3 Discussion
	4 Conclusion
	Acknowledgments
	References

