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Abstract.  

 

Nowadays robotic systems are a combination of complex software and 

hardware components providing sophisticated functionalities. Robotic control 

systems evolving in an uncertain environment are generally developed case by 

case for specific deployment platforms. For complex and realistic systems, sim-

ulation plays a central role during design by providing testing facilities. 

In this paper, we propose to model robotic architectures using the model-

driven framework AMSA. In order to facilitate simulation and testing, we pro-

pose to incorporate different behaviors in the model through parameterizations. 

For testing purpose, we define scenarios as a sequence of parameter modifica-

tions. From architectural and scenario models, code is generated for the robotic 

middleware ROS. During simulation, scenarios are used to evaluate different 

controller behaviors for different contexts.  

The approach has been experimented for the MDE challenge: a rover must 

follow another leader rover. The approach allows the evaluation of control law 

parameters for different contexts, different behaviors of the sensors, the actua-

tors and the rovers. 
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1 Introduction 

A robotic system evolving in an uncertain environment is generally composed of 

software and hardware components like sensors, actuators, communication ports, 

drivers, control laws, and so on. In most cases, due to the specificities of the hard-

ware, the environment and the robot mission, development follows a code-centric 

approach reducing reusability. 

Robotics middleware and libraries facilitate implementation by accessing in an ab-

stract manner to machines, networks, sensors and actuators. They also facilitate im-

plementation by providing domain-specific libraries to develop and simulate the con-

trolled system. ROS [4], Player [5], Stage [5] and Gazebo [6] are some of them 

amongst the most popular. Although these frameworks help to prototype the system, 

design remains essentially specific to hardware performances, the middleware API 

and the application domain, focusing on implementation. 



 

 

Reasoning from an abstract model of the system allows the designer to put aside all 

the implementation details for the benefit of more global properties of the system like 

structural, logical and temporal aspects. Model-Driven Engineering (MDE) [1,7] aims 

to span the conceptual gap between the model and its implementation. Literature pro-

poses lots of MDE-based frameworks to design embedded systems like BRICS model 

[14], V3CMM [16] and RobotML [17]. They provide facilities to describe robotic 

architectures. But, considering a given application, the designer still faced a design 

problem: how to build a correct and efficient system. Like in [15] for aerial robots, we 

propose to integrate domain-specificities by providing a dedicated architectural style. 

The approach provides design rules, templates and libraries to facilitate the integra-

tion of domain-specific aspects, here control and environment. From models, it is then 

possible to generate ROS code to target different robotic hardware. The framework is 

classically based on a component-based paradigm. Scenarios could be tested by con-

figuring, at different times parameter values associated to components. 

In this paper, we propose to evaluate the ability of the AMSA framework to set a 

control law for different contexts. The approach is applied to the leader/follower chal-

lenge. Here, the objective of the controller is to maneuver the follower towards a de-

sired position whilst keeping a reference distance. To test the leader-follower control-

ler, we consider different contexts (different sensor, actuator and leader behaviors), 

showing the facilities provided by AMSA to help on setting control parameters.  

The paper is organized as follows: Section 2 presents the AMSA framework and 

the underlying principles of the ROS code generator. In Section 3, AMSA is applied 

to the MDE challenge. Section 4 evaluates the approach on parameters setting for 

different contexts. Finally, Section 5 concludes the paper before presenting future 

works. 

2 The AMSA Framework 

The AMSA Framework (Advanced Multihull Simulator for Automation)[13] is a 

collection of models and tools dedicated to modeling, generation, simulation, evalua-

tion of adaptive control systems architectures evolving in an uncertain environment.  

2.1 AMSA Modeling 

The framework follows a set of generic principles for architecture modeling and 

simulation. 

 

AMSA structure The AMSA Framework follows the component-based paradigm [2]. 

All entities are modeled as Composite or Leaf components. A Composite contains 

other components. A specific Composite, called root, represents the system. 

 

Parameterization A Leaf component owns a list of configuration parameters defined 

by its name, type, description, default, minimal and maximal values. At execution 



stage, parameters are modified either by a user interface, a scenario definition or by 

exhaustive exploration.  

 

Communication Components communicate by exchanging data through Data buffers. 

Data has a single producer (component output) and zero or more consumers (compo-

nent input). A new data production overwrites the previous value, not consumed after 

reading operation.  

 

Types and instances Composite components are singletons (both a type and an in-

stance). Each Leaf component is associated to a template component. A template 

(playing the role of a class) defines a set of parameters, data inputs and data outputs. 

It can be instantiated several times, in order to create different components with the 

same behavior, but with different frequencies (see after) and parameter default values. 

 

Initialization Each Leaf component is initialized separately by calling a mandatory 

initialize() method. Composite components are in charge of calling an initialization 

method of all their children, so it is possible to initialize a simulator simply by initial-

izing the root component 

 

Behavior At execution, each component executes a doStep() function. The execution 

follows the Run-To-Completion paradigm. A doStep() function is executed inde-

pendently for other components, considering data inputs at the beginning and produc-

ing data outputs at the end of the function. 

 

Timing and scheduling The doStep() function is called periodically at the frequency 

required by the component, expressed in Hertz. The data dependency of components 

defines a dataflow used to compute a logical order of execution. If a loop is detected 

in the dataflow, the choice of the scheduling order is left to the user. 

 

Architectural Style For simulation, the framework defines six types of components 

which correspond to the main constituents of a control loop: the controlled system, its 

environment, the sensors, the actuators, the control law and system observers. Interac-

tions between types of components are constrained to follow classical control data 

flow (i.e. a sensor produces data only for the control law or system observers). 

 

Scenarios For simulation purpose, the framework proposes to define testing scenarios 

as a timed sequence of parameters setting. Two kinds of parameters are here consid-

ered. The first ones characterize the environment of the control law (the controlled 

process and its environment, the sensors and the actuators). Each set of parameter 

values defines a context. The second kind of parameters characterizes a control law 

configuration. Each set of parameter values leads to a certain quality of control. 

 

Tooling Three modeling tools are proposed by the framework. First, we describe, 

through a textual editor (based on Xtext [8]), the templates. Then, a graphical editor 

(based on Sirius [9]) is used to instantiate the components and create the links be-



 

 

tween them. At the end, a scenario is described through a textual editor (based on 

Xtext). All these editors are based on Ecore models [10] defining the AMSA meta-

model through 4 files
 (*)

 (a meta-model for each model and a meta-model for generic 

concepts). One code generator based on the Acceleo technology [3] is used to gener-

ate ROS code by analyzing the whole model (composition of the three models). 

2.2 Code generation principles 

The main principles of ROS code generation are (more details are given in [11]): 

- Software in ROS is organized in packages, where packages might contain 

ROS nodes and dataset. Using AMSA, a single ROS package is created with 

the name of the root-component. 

- A ROS node is created for each Leaf component. Reuse of existing code (fil-

tering and control laws) is based on domain-specific functions calls. 

- For communication, a ROS topic (publish/subscribe paradigm) is defined for 

each Data. A ROS parameter is defined for each Parameter. We then use the 

ROS facilities (topic publication and Parameter modification user interface) 

to modify at execution the behavior of a component. A topic and a parameter 

are identified by its name and are strongly typed. 

- A scenario is generated as a specific ROS node implementing a sequence of 

parameter modifications for a fixed period of time.   

- The language of the generated code is C++. 

3 Experimentation and results 

3.1 MDE challenge 

 

 

 

 

 

 

 

Fig. 1. The leader-Follower challenge 

As presented in Figure 1, the proposed approach is illustrated with a system con-

sisting of two rovers: a leader and a follower. The follower must follow the leader 

while always staying at a safe distance from it. The follower is controlled by control-

ling the power of the left and right wheels as percentages of max power (-100 to 100). 

A set of observation commands can be used by the controller that allows obtaining 

relevant information such as the position of the leader, the position of the follower 

and the distance between the leader and the follower. 

 

(*) https://github.com/Hbaccouri/AMSA 



To reach the given objective, one key challenge is to determine the optimal values 

of parameters related to control law. Problems are generally related to the unpredicta-

ble behavior of the environment of the controller: a sensor may not provide sufficient-

ly accurate measurements, motors are worn, and the leader may have different behav-

iors. Thus, it is crucial to anticipate and test representative scenarios even an exhaus-

tive check aiming at producing a robust robot. We explore here this problem with two 

illustrative scenarios: 

- First, the nominal scenario with neither error induced by sensors nor power 

loss, the leader follows a straight trajectory with a constant speed. 

- Second, a realistic scenario with the leader following a random trajectory 

along with reduced motor efficiency and GPS data loss.  

3.2 AMSA modeling  

We now describe the process followed to model the system using the AMSA 

framework
 (*)

. As seen in Figure 2, the system under study is composed of eight Leaf 

components: one for the controlled rover (Follower), one for its environment (here the 

other rover called Leader), four for the sensors (FollowerGPS, FollowerCompass, 

LeaderGPS, MyDistanceMonitor), one for the actuator (MyNormalizedPower), and 

finally one for the control (MyFollowerController).  

The position and the heading of the follower (posX, posY and heading) depend on 

its behavior (defined by Follower considering normalizedPowerL/R). Compass, resp. 

GPS, is a simple sensor communicating the rover heading, resp. the rover position. 

MyFollowerController computes the Left/Rightpower commands to correct distance 

error between the follower and the leader by comparing GPS positions and consider-

ing rovers’ distance and speed. MyNormalizedPower ensures that the emitted power 

(normalized_power) is in the range of -100 to 100. MyDistanceMonitor computes the 

real distance between the two rovers, based on posX and posY values. 

Before the description of components, a template is edited for each Leaf compo-

nent (7 templates here). Then it is possible to instantiate the 8 Leaf components (GPS 

template is instantiated twice) through the AMSA graphical editor. 

 

As mentioned before, parameters characterize the different contexts. Here, we de-

fine three parameters for the sensors, actuators and environment of the controlled 

process: 

- The parameter lostDataGPS characterizes the percentage of lost data by the 

LeaderGPS; 

- The parameter motorCoef defines the percentage of the power actually con-

sidered; 

- The parameter behavior characterizes the different trajectories followed by 

the leader.  

 

Other parameters are used to configure the control law which is a proportional reg-

ulator inspired by [12]. Hence, two proportional gains noted Kv and Kw are defined, 

the former for the linear velocity and the latter for the angular velocity. The linear and 

(*) https://github.com/Hbaccouri/AMSA 



 

 

angular velocities are corrected proportionally to the follower position error. Since we 

want the follower to be in line and behind the leader, the error is decomposed in two 

components with respect to the angle between the axis linking the two rovers and the 

heading of the follower. 

 

The last modeling step is the definition of the scenarios (see Figure 3). We start 

first with the simple case where the leader goes straight (Behaviors 1 and 3) with no 

error induced by the GPS and the motor operating correctly. In this context we test 

four different values of the Kv gain (0.05, 0.1, 0.15 and 0.35) aiming at determining 

the best value by evaluating the quality of control (here the maximal distance between 

the two rovers).  

In the second scenario, we suppose that the leader moves randomly (Behavior 4), 

the leader GPS provides 90% of the actual posX/Y and the actuator MyNormal-

izedPower ensures only 60% of the required power. We test here two values of the Kv 

gain (0.35 and 0.05). 

 

 
 

 

Fig. 2. AMSA modeling of the system under study via a Sirius diagram 



 

 

Scenario scenario1 { 
ParamEvent at 0 on scenarioNode { 

scenarioNode.motorCoef = 100; 
scenarioNode.lostDataGPS = 0; 

     scenarioNode.behavior = 1;  
scenarioNode.Kv = 0.35;  
scenarioNode.Kw = 0.005; }       

ParamEvent at 200 on scenarioNode { 
     reset(); 

     scenarioNode.behavior = 3;  
     scenarioNode.Kv = 0.15; } 
ParamEvent at 400 on scenarioNode { 
    reset(); 

    scenarioNode.behavior = 1;  
    scenarioNode.Kv = 0.1; } 
ParamEvent at 600 on scenarioNode { 
    reset(); 

    scenarioNode.behavior = 3;  
    scenarioNode.Kv = 0.05; } } 

Scenario scenario2 { 
ParamEvent at 0 on scenarioNode { 
    scenarioNode.motorCoef = 60; 

scenarioNode.lostDataGPS = 10; 
scenarioNode.behavior = 4;  

     scenarioNode.Kv = 0.35;    
scenarioNode.Kw = 0.005; }    

 ParamEvent at 100 on scenarioNode { 
     reset(); 

     scenarioNode.Kv = 0.05;  } } 

 

 

Fig. 3. AMSA scenarios to test the Leader/Follower controller 

3.3 ROS generation  

Once the model is instantiated through the graphical editor, Acceleo scripts generate 

the C++ code associated to each ROS node.  The generation leads to 9 C++ files
 (*)

 (a 

ROS node file for each Leaf component node and one for the scenario).  A launch file 

and commands for the CMakeLists.txt file are also generated. As presented in Figure 

4, the ROS architecture follows the AMSA architecture.  

 

 

Fig. 4. ROS graph at runtime: nodes as ovals, topics as squares 

(*) https://github.com/Hbaccouri/AMSA 



 

 

4 AMSA evaluation 

4.1 ROS simulation 

The purpose of this section is to illustrate how to evaluate a set of parameter values 

for the controller. MyFollowerController is the main node since it implements the 

control algorithm and applies control effort aiming at preserving a reference distance 

between the leader and the follower. The Qt Guide User Interface dedicated to ROS is 

used in order to assist the user to evaluate the quality of control, here the distance 

between the leader and the follower. 

 

 

Fig. 5. Scenario 1 results:  Leader-Follower distance with Kv=0.35, Kv=0.15, Kv=0.1 and 

Kv=0.05 (X-axis represents time in seconds) 

Figure 5 illustrates the nominal scenario where there is neither error induced by 

GPS nor power loss. In this context, we tested 4 different gain values. First, we start 

with the leader going straight ahead with a gain value Kv=0.35. In this case the fol-

lower could not catch up with the leader. Using Kv=0.15, we note that the maximal 

distance between the two rovers was 32m and it takes almost 150s to reach the refer-

ence distance. Oscillations have also noted. By reducing the gain value to Kv=0.1, the 

maximal distance has not exceeded 29m with less oscillations. A gain value of 

Kv=0.05 is here a best value for this nominal context, since that the maximal distance 

observed was 25 and it took the follower only 120s to be within a safe distance.    

 

 

 

 

Fig. 6. Scenario 2 results:  Leader-Follower distance with Kv=0.35, Kv=0.05 

(X-axis represents time in seconds) 

 



 Figure 6 shows the result for the second scenario. We note that a gain value of 

Kv=0.35 (on the left side of the Figure) is a better value here despite the random tra-

jectory of the leader, leader GPS data loss and a less power efficiency of the motor. 

Apart from the beginning, where the follower has not yet received the current position 

of the leader, the maximal distance between the two rovers oscillates around the ref-

erence distance fixed here at 15. Although, we note also some local peaks and maxi-

mal distance not exceeding 22. At t=100, we test Kv =0.05 (on the right side of the 

Figure). Obviously the best value for the nominal scenario is not well suited here. The 

maximal distance between the rovers is practically stable at 18, more than expected 

(15 here). To conclude, an optimal set of parameter values for control law depends on 

the context of the controller. 

4.2  Discussion 

As illustrated previously, the use of the AMSA framework has been beneficial on 

several aspects. The main advantage of the proposed approach consists on using sim-

ple models defined at a high level of abstraction. The introduction of models hides 

technological details and the architecture style helps the designer in combining the 

different elements. Code generation improves the code generation productivity by 

limiting the number of lines to program to domain-specific parts. The ROS generated 

code can be used for simulation and may be embedded on a ROS-compatible robot.  

The development of context-aware applications is always a challenging and com-

plex task. There is a growing need for more flexible adaptive systems able to operate 

in dynamic environments coping with unanticipated situations. An optimal behavior 

for a context may be inappropriate for another. To deal with this issue, AMSA allows 

defining different simulation scenarios to determine the optimal value for each scenar-

io. To do so and instead of dealing with different versions of the code, we propose to 

just add parameters to components. There are two types of parameters. Parameters 

related to the controlled component, its environment, the sensors and actuators repre-

sent the context. Parameters associated to the controller are used to evaluate different 

behaviors of the control law. To conclude, AMSA allow testing multiple scenarios by 

changing parameter values in our quest for the adaptability of the control law to re-

spond to context changes. 

 

5 Conclusion 

In this paper, we present an approach to generate ROS simulation code from a 

model of the architecture based on the AMSA framework. The case of the MDE chal-

lenge based on a leader/follower problem has been used for experiments. It illustrates 

the interest of having parameterization, scenario modeling features in order to evalu-

ate different control configuration regarding different environmental contexts. 

For future works, we will include adaptive behavior to the robot by a dynamic re-

configuration of the parameters at any time depending of the context. 



 

 

6 References 

1. A. Ramaswamy, B. Monsuez, and A. Tapus, “Model-driven software development ap-

proaches in robotics Research” International Workshop on Modeling in Software Engi-

neering, 43-48, Hyderabad, India, 2014. 

2. H. Bruyninckx, M. Klotzbucher, N. Hochgeschwender, G. Kraetzschmar, L. Gherardi, and 

D. Brugali, “The BRICS Component Model:  A Model-Based Development Paradigm for 

Complex Robotics Software Systems” ACM Symposium on Applied Computing, SAC, 

1758-1764, New York, USA,  2013. 

3. https://www.eclipse.org/acceleo/ 

4. M. Quigley, B. Gerkey, K.Conley, J. Faust, T.Foote, J. Leibs, E. Berger, R. Wheeler, A. 

Ng, “Ros: an open-source robot operating system” IEEE International Conference on Ro-

botics and Automation, ICRA, Kobe, Japan, 2009. 

5. B. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage project: Tools for multi-

robot and distributed sensor systems” International Conference on Advanced Robotics, 

vol. 1, 317–323, Coimbra, Portugal, 2003. 

6. N. Koenig and A. Howard, "Design and use paradigms for Gazebo, an open-source multi-

robot simulator," International Conference on Intelligent Robots and Systems, IROS, vol.3, 

2149-2154, Sendai, Japan, 2004. 

7. C. Schlegel, T. Hassler, A. Lotz and A. Steck, "Robotic software systems: From code-

driven to model-driven designs," International Conference on Advanced Robotics, 1-8, 

Munich, Germany, 2009. 

8. https://www.eclipse.org/Xtext/ 

9. https://www.eclipse.org/sirius/ 

10. http://www.eclipse.org/ecoretools/ 

11. H. EL Baccouri, E. Lavigne, G. Guillou and JP. Babau, “ROS code generation from 

AMSA framework for robotic systems testing”. National Conference on Software and 

Hardware Architectures for Robots Control, Saint-Tropez, France, 2018. 

12. Choi IS., Choi JS. “Leader-Follower Formation Control Using PID Controller” Interna-

tional Conference on Intelligent Robotics and Applications, 625-634, Montreal, Canada, 

2012. 
13. E. Lavigne, G. Guillou and JP. Babau, “AVS, a model-based racing sailboat simulator: ap-

plication to wind integration”. IFAC Conference on Embedded Systems, Computational 

Intelligence and Telematics in Control, CESCIT, 88-94, Faro, Portugal, 2018. 

14. M. Klotzbuecher, N. Hochgeschwender, L. Gherardi, H. Bruyninckx, G. Kraetzschmar, D. 

Brugali, A. Shakhimardanov, J. Paulus, M. Reckhaus, H. Garcia, et al, “The brics compo-

nent model: A model-based development paradigm for complex robotics software sys-

tems” ACM Symposium on Applied Computing, SAC, Coimbra, Portugal, 2013. 

15. JL Sanchez-Lopez, R. A. Suarez Fernandez, H. Bavle, C. Sampedro, M.Molina, J.Pestana, 

and P. Campoy, ”AEROSTACK: An Architecture and Open-Source Software Framework 

for Aerial Robotics”. International Conference on Unmanned Aircraft Systems, 332-341, 

Arlington, USA, 2016.  

16. D. Alonso, C. Vicente-Chicote, F. Ortiz, J. Pastor, and B. Alvarez, “V3cmm: A 3-view 

component meta-model for model-driven robotic software development”, Journal of Soft-

ware Engineering for Robotics, vol.1 3–17, 2010. 

17. S. Dhouib, S. Kchir, S. Stinckwich, T. Ziadi, and M. Ziane, “Robotml, a domain-specific 

language to design, simulate and deploy robotic applications”. Simulation, Modeling, and 

Programming for Autonomous Robots, vol.7628, 149–160, 2012. 

 


