
An evaluation of Papyrus-RT for solving the
leader-follower challenge problem

Karim Jahed

Queen’s University, Kingston, ON
jahed@cs.queensu.ca

Abstract. We discuss and evaluate the use of Papyrus-RT modeling
environment to solve the leader-follower challenge problem. We present
a Papyrus-RT solution to the problem and highlight the tool’s strengths
and weaknesses in that context. Furthermore, we show how some recent
third-party extensions to the tool can help in mitigating some of its
shortcomings.

Keywords: UML-RT · Papyrus-RT · MDD.

1 Introduction

The goal of the challenge problem1 is to design and develop a rover controller
using a Model-Driven Development (MDD) approach. The rover, dubbed fol-
lower, runs in a simulated environment and is tasked with following the leader,
while always keeping a safe distance. The leader is a computer-controlled rover
that follows a random path in its environment.

As shown in Figure 1, the simulation environment exposes two TCP ports
to allow interaction with third-party applications. The observationPort allows
an application to query the environment for information such as the rovers’
position, orientation, and distance. Likewise, the controlPort allows external
applications to control the follower by, for instance, applying power to its wheels.

In this work, we use Papyrus for Realtime (Papyrus-RT) to design and im-
plement the follower controller. We highlight the strengths and weaknesses of
the tool in regard to different aspects of the challenge problem. While our so-
lution shows that Papyrus-RT’s support for modeling composite systems, along
with its powerful code generator, is adequate for addressing the requirements of
the challenge problem; it’s reliance on C++ as an action language and lack of
intrinsic support for TCP communication proved cumbersome while developing
our solution. However, these shortcomings has not gone unnoticed, and there is
an ongoing effort by the community to remedy some of these challenges. We will
discuss some of the effort that is directly related to the challenge problem and
can help in improving our solution.

1 Available at https://mdetools.github.io/mdetools18/challengeproblem.html



The rest of this paper is organized as follows. Section 2 lay out some back-
ground related to Papyrus-RT and UML-RT. In Section 3 we describe our so-
lution to the challenge problem. In Section 4 we highlight the strengths and
challenges faced during the development of our solution, and evaluate the per-
formance of our solution in realizing the simulation goal. We conclude this work
in Section 5.

Fig. 1. Overview of the challenge problem (from [3])

2 Papyrus-RT

Papyrus-RT2 is an open-source, industrial-grade modeling environment for the
design and development of complex, real-time, embedded system. Papyrus-RT
is based on the Papyrus modeling environment and has three main components:
a modeling environment, a code generator, and a runtime system.

2.1 Modeling Environment

Papyrus-RT implements a graphical modeling environment that supports the
structural and behavioural specification of software systems using the UML for
Realtime (UML-RT) profile. UML-RT is a subset of the UML language tailored
for realtime embedded systems.

UML-RT adopts a distributed message passing model based on the actor
paradigm. Figure 2 shows a rough summary of the main concepts in UML-RT
(see [5, 4] for a comprehensive discussion). Capsules are active, self-contained
classes that encapsulate certain functionalities or represent a system component.
A capsule can nest other capsules to describe a system’s composition. Each
capsule maintains an internal state and can receive messages through its ports.
Each port is typed with a specific protocol that defines the set of messages that
can be sent and/or received through that port. Unlike a network protocol, a

2 Available at https://www.eclipse.org/papyrus-rt



protocol in UML-RT does not define ‘how’ messages are exchanged nor a specific
message sequence. It simply define a set of input and output signals, as well as
their formal parameters, that might be sent and received by any port typed with
the protocol. A pair of ports typed with the same protocol can be linked using a
connector which allows them to exchange the messages defined by the protocol.
A port can be conjugated to reverse its role in the protocol. In a conjugated port,
input and output signals are reversed, i.e., input signals becomes output signals
and vice-versa. A signal sent by an un-conjugated port can only be received by
a conjugated port using the same protocol.

A capsule’s behaviour is specified using a statechart whose transitions are
triggered exclusively by signals received from one of the capsule’s ports. In order
to send signals to other capsules, modify the capsule’s internal attributes, and
perform arbitrary calculations, snippets of action code (C++, in the case of
Papyrus-RT) must be attached to transitions and/or states.

Fig. 2. The main concepts of UML-RT

2.2 Code Generator

Papyrus-RT implements a code generator capable of generating fully executable
code from UML-RT model. The default code generator provided with Papyrus-
RT generates C++ code packed into an Eclipse C/C++ Development Toolkit
(CDT) project. Since Papyrus-RT is based on Eclipse, this allows the execu-
tion and debugging of the generated code right from within the modeling en-
vironment. While the default code generator is for C++, generators for other
languages can be easily integrated via an extension point.



2.3 Runtime System

The Runtime System (RTS) is the glue that allows the model (generated code)
to execute. The RTS is a set of libraries that provide implementations for the
different UML-RT concepts such as capsules, ports, and protocols; as well as
abstractions for OS-specific processes such as threading and semaphores. In ad-
dition, the RTS implements the mechanisms for message passing between cap-
sules, and expose a set of services to facilitate modeling such as a timing and
logging services.

3 Solution

In this section, we describe our solution34 to the challenge problem using Papyrus-
RT. We start by describing the structure of the system and its components
followed by the behaviour of each of those component.

3.1 Composition

The main component of our system is the Follower capsule shown in Figure
3. The Follower implements a statechart to steer the follower rover in the
direction of the leader while keeping a safe distance. The statechart’s actions
rely on information gathered from two sub-components: the LeaderObserver

capsule and the FollowerController capsule. The LeaderObserver commu-
nicates with the Follower capsule through an internal port typed with the
ObservationProtocol protocol. Similarly, the FollowerController capsule ex-
change messages with the Follower capsule via an internal port typed with the
ControlProtocol protocol.

Fig. 3. Composition diagram for the Follower capsule

The main purpose of the FollowerController and LeaderObserver cap-
sules is to hide the network communication detail from the Follower capsule.

3 Available at https://github.com/kjahed/mdetools18-challenge
4 While the challenge problem was devised in the same research group that the author

is part of, the author did not participate in its design. Both, the challenge problem
and the solution presented here, were developed completely independently.



Both of these capsules implements the necessary details to connect to the simula-
tion environment over TCP, query it, and control it. Figure 4 shows the interface
provided by both of these capsules through their port. Note that both of these
capsules are nested within the main Follower capsule as sub-components. It is
entirely possible to move these capsules to same hierarchy level as the Follower.
However, out design choice is intentional, as both the FollowerController

and LeaderObserver implements auxiliary services that are needed only by the
Follower. This allows us to encapsulate the Follower and all of its dependency
in one component that can be easily embedded into larger models.

In addition to the two internal ports used to communicate with the sub-
capsules, the Follower capsule also has two additional internal ports that con-
nect the capsule to services provided by the runtime system. The timer port
allows the follower to set timers and schedule events, while the logger port is
used to output messages to the console.

Fig. 4. The protocols used by the Follower to query/effect the simulation environment

3.2 Behaviour

Network communication. As mentioned earlier, the FollowerController and
LeaderObserver capsules implements behaviour to facilitate communication
with the simulation environment. Since the behaviour of both capsules is closely
similar, we limit the discussion in this section to the LeaderObserver capsule.

The statechart for the LeaderObserver capsule is shown in Figure 5. The
initial transition leading to the WAITING state executes a standard piece of C++



action code (not shown) to establish a TCP socket connection with the simu-
lation environment. The statechart then transitions into the WAITING state and
remains in that state until a request is received from the Follower capsule. A
request is simply one of the output signals defined in the ObservationProtocol

(Figure 4. These output signals are input signal to the LeaderObserver and used
to trigger the transitions of its statechart. Whenever such signal is received, the
LeaderObserver transitions into the appropriate state to process the Follower’s
request. Upon entry to the new state, a message encoding the request, along with
any parameters, is constructed and transmitted over the TCP socket to the sim-
ulation environment. The LeaderObserver remains in that state until a response
message is received (from the simulation environment), and the appropriate re-
sponse signal (an input signal defined in the ObservationProtocol) is sent back
to the Follower. The LeaderObserver then returns to the WAITING and waits
for the next signal.

Fig. 5. Statechart for the LeaderObserver capsule

Follower. The Follower’s statechart (Figure 6) implements the main behaviour
that steers the follower rover into the leader’s direction while keeping a pre-
determined safe distance. The behaviour is divided into two phases:

– In the first phase, the Follower waits until the leader rover starts mov-
ing. Upon entry to the IDLE state, the Follower sends a getDistance()

signal to the LeaderObserver capsule. The LeaderObserver queries the
simulation environment and responds with a distance(dist) signal to the
Follower. This signal triggers the Follower to move into a choice state
to check whether the received distance is greater than zero. In this case,
the Follower transitions into the START state to begin tracking the leader.
Otherwise, the Follower returns to the IDLE state and queries the distance
again.

– The second phase starts when the Follower moves into the START state. The
START state is a composite state containing itself a nested statechart.

Upon entry to the START state machine, the follower first collects all the neces-
sary information from the simulation environment by querying the LeaderObserver



and FollowerController capsules. The information collected includes the cur-
rent distance between the two rovers, their position in the environment, and the
orientation of the follower in space.

Upon collection of all the information and exit from the GET MY ORIENT state,
a piece of action code is executed to determine whether a rotation of the follower
river is necessary to face the leader. The is done by taking the difference between
the current orientation and the angle between their current positions. If the
difference is larger than a certain threshold, the Follower moves into the ROTATE
state. The ROTATE states rotates the follower by calculating the appropriate
power to apply to each of its left and right wheels, and applying the power by
sending a setPower(leftPow, rightPow) signal to the FollowerController

capsule.

In case no rotation is necessary, the Follower moves into the FOLLOW state
which applies the same amount of power to both wheels in order to move the
rover in a straight line. To keep a safe distance from the leader, the power applied
to the wheels is calculated proportionally to the current distance between the
two rovers.

Finally, the Follower enters a DELAY state where a timer is set to repeat the
entire process after a fixed amount of time.

Fig. 6. Statechart for the Follower capsule



4 Evaluation

4.1 Solution evaluation

In order to evaluate the effectiveness of our control algorithm, we ran the simula-
tion while varying the straightPercent variable of the simulation environment.
This variables determines how straight the random path taken by the leader is.
Obviously, the least straight the path is, the harder it is for the follower to
stay within the required distance. Table 1 shows the results.

Table 1. Percent of time in safe zone with varying path ‘straightness’

Straight % 20 40 60 80 100

Safezone % 66.48 72.49 76.25 88.58 97.16

4.2 Tool evaluation

UML-RT proved to be very suitable for modeling the challenge problem. The in-
herent actor-oriented nature of the language allowed us to isolate certain ‘dirty’
aspects of the solution, such as network communication, for the main computa-
tion. Message passing between the different components by means of well-defined
protocols offers strong encapsulation of each component’s internal state, and
thus, simplifies the design.

Moreover, the powerful code generator allowed us to focus entirely on the
models. At no point during the development process we resorted to editing or
modifying the generated code. The automatic generation of an Eclipse CDT
project allowed us to build and execute the generated code right from within the
modeling environment, without having to switch workspaces.

The debugging facilities provided by the generated executable were very help-
ful in understanding the inner-working of the program. The Papyrus-RT Run-
time System library, linked to the generated executable, allows us to activate
several command-line flags to output debug messages at different levels of gran-
ularity. These debug messages enabled us to examine the full messaging sequence
between the capsules.

The development process was not without challenges, however. The main
culprit was the use of plain C++ as an action language. Unfortunately, Papyrus-
RT does not yet offer any content-assist features when inputting the action code.
Not even automatic indentation nor syntax highlighting. Essentially, the code
generator takes the action code ‘as-is’ and places it in the appropriate location
in the generated code. This means that syntax errors go unnoticed until the
generated code is actually built. We also noticed that, in some very specific
cases, the code generator might generate erroneous (uncompilable) source code.
One example is when a protocol signal’s name collides with a C++ reserved
word such as break.



Calur [2] (Core Action Language for UML-RT) is an alternative action lan-
guage for UML-RT that is currently under development. Calur attempts to rem-
edy the aforementioned problems by providing a restricted language designed
specifically for UML-RT, along with many ‘smart’ editing features integrated
within Papyrus-RT. The language supports basic arithmetic operations, condi-
tional statements, as well as UML-RT specific commands to, for example, send
messages to other capsules and set timers. Its implementation within Papyrus-
RT offers many traditional content-assist features such as syntax highlighting
and auto-completion, in addition to the detection of certain UML-RT specific
abnormalities in the action code and offering quick fixes. One example is the ab-
sence of an internal ‘timing’ or ‘log’ port in a capsule whose action code includes
a log or timing statement.

A second challenge we experienced was the disconnection between the model
and the running executable when it comes to debugging. While we could examine
the sequence of messages exchanged between capsules at runtime, a manual
effort was required to associate this information with model-level elements, and
additional debugging statements where needed to examine the internal state
of each capsule. MDebugger [1] attempts to remedy this problem by offering a
model-level, platform-independent debugger for UML-RT models.

Finally, a third challenge we faced was the absence of intrinsic TCP com-
munication support in Papyrus-RT. Essentially, all TCP related operations such
as establishing connections with the simulation environment and sending and
receiving messages were entirely specified in the action code using C++. This,
of course, limits the expressiveness of the statechart. Moreover, the only way
to trigger a statechart’s transitions in Papyrus-RT is using a signal received
from one of the capsule’s ports. Therefore, in Figure 5 for example, the TCP
response message received from the environment cannot be used to move back
to the WAITING state. Since a trigger signal is necessary, whenever a state (e.g.,
QUERY GPS) finishes processing a request, it sets a dummy timer in the action
code to trigger the transition back to the WAITING state.

Our previous work on enabling Papyrus-RT for the development of Internet-
of-Things applications remedies this problem by adding support for TCP com-
munication to the Runtime System (RTS), and exposing a simplified interface
to connect, send, and receive TCP messages using a special internal port, much
like a timer port. This extension5 enables capsules to communicate with exter-
nal TCP devices by simply sending a UML-RT protocol signals to the RTS, and
allows incoming TCP messages to trigger statechart transitions. Figure 7 shows
how the QUERY GPS state of the LeaderObserver capsule can be turned into a
composite state to handle the TCP request using an internal port typed with a
TCPProtocol defined by the RTS.

5 Available at https://github.com/kjahed/papyrusrt-tcp



Fig. 7. Statechart for the QUERY GPS state to handle TCP requests using an internal
port typed with an RTS defined TCPProtocol

5 Conclusion

In this work, we presented a solution to the Leader-Follower challenge problem
using the Papyrus-RT modeling environment. While the tool was in general
well-suited to address the challenge, several weaknesses were noted. The most
prominent being its reliance on C++ as an action language and lack of built-in
TCP communication support. Several third-party extensions, some of which are
still under active development, are attempting to curb some of these challenges.

References

1. Bagherzadeh, M., Hili, N., Seekatz, D., Dingel, J.: Mdebugger: a model-level debug-
ger for UML-RT. In: Proceedings of the 40th International Conference on Software
Engineering: Companion Proceeedings. pp. 97–100. ACM (2018)

2. Hili, N., Posse, E., Dingel, J.: Calur: an action language for UML-RT. In: 9th Euro-
pean Congress on Embedded Real Time Software and Systems (ERTS 2018) (2018)

3. MDETools’18: Challenge Problem. https://mdetools.github.io/mdetools18/

challengeproblem.html (2018), [Online; accessed 10-July-2018]
4. Posse, E., Dingel, J.: An executable formal semantics for UML-RT. Software &

Systems Modeling 15(1), 179–217 (2016)
5. Selic, B.: Using uml for modeling complex real-time systems. In: Languages, com-

pilers, and tools for embedded systems. pp. 250–260. Springer (1998)


