
Modeling and programming a leader-follower challenge
problem with scenario-based tools

Joel Greenyer1, Michael Bar-Sinai2, Gera Weiss2, Aviran Sadon2, and Assaf Marron3

1 Leibniz Universität Hannover, Hannover, Germany
2 Ben-Gurion University of the Negev, Be’er Sheva, Israel

3 Weizmann Institute of Science, Rehovot, Israel

Abstract. Scenario-based modeling (SBM) is an approach for creating executable
models for reactive systems that are comprised of scenarios, each of which describing a
separate aspect of the overall desired and undesired system behavior. SBM advantages
include model intuitiveness, executability, amenability to formal verification, alignment
with the requirements, and incrementality of the development. Here, we showcase two
new SBM frameworks (which join the ones for LSC, SML, Java, C++, and others) by
demonstrating the respective solutions to the MDETools18 Rover Follower challenge.
One is IOSM-K, an LSC/SML-style inter-object scenario modeling framework for the
Kotlin language, and the other is BPjs, a framework for behavioral programming
for Javascript. We illustrate how the SBM advantages are manifested in developing
such composite control logic, and discuss the differences, relative advantages of, and
considerations in choosing, each of these SBM frameworks.

1 Introduction

Embedded systems become increasingly complex with inter-system connectivity (e.g.,
automotive, IoT), and the need to control complex processes in the physical world. This makes
it inherently difficult to translate behavioral requirements into working software. Scenario-based
modeling (SBM) helps engineers in this task. Specifically, with Live Sequence Charts
(LSC) [5, 12] or the Scenario Modeling Language (SML) [8], individual behavioral concerns
can be modeled as loosely-coupled scenarios. Each scenario describes how the system may,
must, or must not react to external events. A scenario specification can be directly executed by
running all scenarios in parallel and complying with all their constraints and demands, yielding
a coherent system behavior that satisfies the requirements. The execution is useful for analysis
and simulation; the scenarios can even serve as the system’s final implementation.

Behavioral Programming (BP) [13] transfers the scenario modeling concepts of LSC/SML
into a general modeling and programming paradigm, of which LSC and SML are only two
manifestations, with additional frameworks developed for Java, C++, Erlang, and other
languages. LSC and SML follow an Inter-Object Scenario Modeling (IOSM) approach, which
assumes that the system consists of communicating objects, and that the events are messages
sent from one object to another. This setting especially fits distributed applications. BP
generalizes this concept: events can, but are not required to, be bound to behaving objects.

We present two different solutions4 for the MDETools’18 leader-follower challenge. Based
on sensor input of two rovers’ coordinates, and the orientation of the follower rover, speeds for
the wheels of the follower rover are set such that it maintains a certain distance from the leader.
4 source code and executable JARs can be found at scenariotools.org/mdetools2018.

scenariotools.org/mdetools2018


The first solution is based on the novel Inter-Object Scenario Modeling for Kotlin
(IOSM-K) framework, which offers a Kotlin-based programming framework and internal DSL
for LSC/SML-style scenarios. IOSM-K is based on a Behavioral Programming for Kotlin
(BPK) framework (BPK and IOSM-K were developed by the first-listed author), which exploits
Kotlin’s coroutines for executing concurrent scenarios. Kotlin is a JVM-based language, but it
can also be compiled into native machine code, which is interesting for embedded systems.

The second solution is based on the Behavioral Programming for JavaScript (BPjs)
framework that uses the Mozilla Rhino interpreter to execute Javascript code of the b-threads [2].
This yields a rich and intuitive language for modeling and executing the scenarios, while
maintaining full access to the underlying state-space, which enables features such as run-time
lookahead and verification through back-tracking as explained in Sect. 5.

The advantages of SBM and of both solutions are, first, that they allow engineers to
translate behavioral concerns from the requirements directly into operational software with
straightforward tracing of bugs to specification inconsistencies. Second, SBM allows for
incremental extensions and refinements, supporting a trial-and-error-style development that is
often essential in embedded software development. Third, the code-based models can be
formally analyzed, e.g., by model checking.

In Sect. 2, we explain the foundations of IOSM and BP; in Sect. 3 and 4 we describe the
IOSM-K and BPjs solutions; in Sect. 5 we elaborate on the amenability of SBM to formal
verification and synthesis; in Sect. 6 we discuss common and distinguishing features of the
solutions, discuss related work, and conclude.

2 IOSM and BP Foundations

2.1 Inter-Object Scenario Modeling with the LSC and SML Languages

The concepts of SBM were introduced with the language of Live Sequence Charts (LSC5). An
LSC specification describes how objects in an object system shall interact by sending messages.
Each LSC chart is a form of sequence diagram where lifelines represent objects, and arrows
represent events of messages being sent between objects. Fig. 1 shows an example of an LSC
specification for the challenge problem. LSC lifelines represent system or environment objects,
with the latter (the telemetry sensors and the follower rover actuators in Fig. 1) marked with
cloud-shaped headers.

By default, LSC charts specify properties to be satisfied by all runs of the system (LSCs
can also describe example runs, test cases, etc.). LSC messages can be hot (red) or cold (blue)
and monitored (dashed) or executed (i.e., ‘to be executed’) (solid). Fig. 1 shows annotations
(c,m)/(h,m)/(h,e) for clarity. Cold messages are events that may occur, and hot ones must occur.
Moreover, when a scenario has progressed to a hot message, all events that appear elsewhere in
that scenario are blocked, enforcing strict ordering of events. When the scenario is at a cold
message, it is allowed to have another message occurring out of order, but it leads to an
immediate termination of the scenario.

For execution, an execution engine runs the scenarios in parallel, selects one of the
messages whose execution is requested by some scenario and is not blocked by any scenario. It
then triggers this event and advances all scenarios in which this message is presently enabled
5 The acronym LSC is used also to refer an individual live sequence chart; plural: LSCs.



(as executed or monitored). When there are no enabled executed messages, the system waits for
an environment event. Messages from environment objects can only be monitored and they are
triggered externally.

PredictLeaderPos
lPosPredictor

:LeaderPosPredictor
fCtrl

:FollowerCtrl

telemetries(bind t1) predictedTelemetries(
predictTelemetries(t1,t2))telemetries(bind t2)

Move
lPosPredictor

:LeaderPosPredictor
fCtrl

:FollowerCtrl
predictedTelemetries

(bind t)

fDriveCmd
:DriveCmd

alt
move(FWD)

[t.distance > 13]

move(BWD)
[t.distance < 12]

move(STOP)
[12 ≤ t.distance ≤ 13]

Turn
lPosPred

:LeaderPosPredictor
fCtrl

:FollowerCtrl
predicted-

Telemetries(bind t)

fDriveCmd
:DriveCmd

move(*)

alt
turn(LEFT)

[ra>10 && ra<180]

turn(RIGHT)
[ra>180 && ra<350]

turn(NONE)
[12 ≤ rt.distance ≤ 13]

ra = relativeAngle(t)
SetLRPower

fDriveCmd
:DriveCmd

fCtrl
:FollowerCtrl

move(bind mk)
turn(bind tk)

(speedL, speedR) = 
computeLRSpeeds(mk, tk) setLRPower

(speedL, speedR)

sensors
:Sensors

fDriveAdapter
:DriveAdapter

(c,m)
(c,m) (h,e)

(h,e)

(h,e)

(h,e)

(c,m)
(h,m)

(c,m)

(c,m)
(c,m)

(h,e)

(h,e)

(h,e)

(h,e)

Fig. 1: Rover Follower Live Sequence Charts Specification

The charts in Fig. 1 model the following behavior: Rover telemetries (leader and follower
coordinates, their distance, and the follower’s orientation) are sent regularly by the sensors. The
scenario PredictLeaderPos says that whenever two telemetries are received, the leader position
predictor must calculate where the rovers are expected to be a few steps into the future, and
send this to the follower control. We omit the details of predictTelemetries. Note that on every
telemetries message a new instance of the scenario is activated, so that calculations are based
on telemetries 1 and 2, 2 and 3, 3 and 4, etc.

A predicted telemetries message triggers the Move and Turn scenarios. Based on the
predicted distance, the Move scenario determines whether the rover should move forward,
backward, or stop. The Turn scenario calculates the angle between the follower’s heading and
the leader’s bearing, and the rover must accordingly turn left, right, or not turn. Before
requesting the turn commands, the Turn scenario waits for the move commands, so move
commands occur before the turn commands. Finally, the chart SetLRPower calculates the speed
setting for the left and right wheels of the follower rover based on the move and turn commands.

Listing 1.1 shows the Move scenario in SML textual syntax. Executed hot messages in LSC
are modeled as urgent and strict messages in SML. Strict messages enforce strict event ordering
and urgent ones must occur before the next environment message.

2.2 Behavioral Programming

Behavioral programming (BP) generalizes the scenario-based modeling in LSC or SML. While
in LSC/SML scenarios are centered around objects that send and receive messages, events in BP
can stand on their own. In BP frameworks for programming languages the scenarios, also called
behavioral threads or b-threads, are modeled using standard programming constructs rather
than lifelines and messages. This allows for a natural embedding of scenario models in code.

As in LSC, scenario coordination is done by an execution mechanism: it views each
b-thread as a (possibly infinite) sequence of synchronization points marked by each b-thread’s



1 guarantee scenario Move{
2 var t : Telemetries
3 lPosPred -> fCtrl.predictedTelemetries(bind t)
4 alternative if [t.distance > 13]{
5 urgent strict fCtrl -> fDriveCmd.move(MoveKind.FWD)
6 } or if [t.distance < 12] {
7 urgent strict fCtrl -> fDriveCmd.move(MoveKind.BWD)
8 } or if [t.distance <= 13 && t.distance >= 12] {
9 urgent strict fCtrl -> fDriveCmd.move(MoveKind.STOP)

10 }
11 }

Listing 1.1: The Scenario Modeling Language version of the Move scenario

invocation of the method bp.sync to which the b-thread passes events that it requests, events
that it blocks and events that it waits for. The execution mechanism runs all b-threads up to their
first bp.sync. Then, it chooses an event that some b-thread requested and no b-thread blocked
and resumes all the b-threads that requested or waited-for the triggered event. The b-threads
re-synchronize and the process repeats. Again, when there is no event to trigger, the system
waits for external events.

We adopt the assumption of Logical Execution Time [15] in which the execution rate of
internal events is much higher than that of external events, so that a burst of internal events
between two external ones (super-step) takes zero time relative to the external dynamics. For
example, the code in Listing 1.3 repeatedly waits for Telemetry and reacts with a movement
event. As common, e.g., with interrupt-handlers, we assume that the selection of the event is
done in a negligible time.

3 Inter-Object Scenario Modeling for Kotlin (IOSM-K) solution

Listing 1.2 shows the IOSM-K code for the scenarios explained in Sect. 2.1 (cf. Fig. 1).
Scenarios inherit from the abstract class Scenario provided by the IOSM-K framework.
Scenarios are activated when a message event occurs that matches an initializing (first
waited-for) message event as can be specified by overriding the initEvents() function.
Once activated, the main logic of the scenario (mainScenario) is executed, where message
events are requested or waited for via the functions request and waitFor. These functions
take as arguments the sending and receiving objects, the message type, and parameters of the
requested resp. waited-for message events. The request and waitFor functions map to
bsync calls in the underlying BPK framework. In a static system with a fixed number of
objects, the objects can be specified as singleton objects (declaration omitted for brevity).

Messages in LSC/SML that contain wildcard parameter placeholders (‘*’) are modeled in
IOSM-K as symbolic message events, where ANY stands for the wildcard. See, e.g., the move
message in the Turn scenario and line 7 of Listing 1.2. Also, where in LSC/SML we have a
message that binds a scenario variable (e.g., t1, t2 in PredictLeaderPos, see Fig. 1), this is a
symbolic message in IOSM-K, and the variable values can be assigned by accessing the
parameters of the last event that progressed the scenario, via by the variable lastME (the ‘!!’
is required by Kotlin when accessing a nullable variable without a check for null).

The IOSM-K scenarios very closely represent the LSC/SML scenarios shown above. Only
the blocking and interrupting semantics implied by hot/strict resp. cold/non-strict messages



must be modeled explicitly. The Turn scenario shows how a set blockedEvents can be
filled with events that shall be blocked between specific request/waitFor synchronization
points. For interrupting events, the set interruptingEvents can be used accordingly. This
explicit definition may even help engineers and developers to see and understand details that
may be difficult to follow in larger LSC/SML scenarios.
1 class PredictLeaderPos() : Scenario("PredictLeaderPos", ScenarioKind.GUARANTEE) {
2
3 override fun initEvents() = SymbolicMessageEvent(Sensors,PosPredictor, PosPredictor::

telemetries, ANY)
4
5 override suspend fun mainScenario() {
6 val t1 = lastME!!.parameters[0] as Telemetries
7 waitFor(Leader,PosPredictor, PosPredictor::telemetries, ANY)
8 val t2 = lastME!!.parameters[0] as Telemetries
9 request(PosPredictor, FollowerCtrl, FollowerCtrl::predictedTelemetries,

predictTelemetries(t1,t2))
10 }
11
12 private fun predictTelemetries(t1 : Telemetries, t2 : Telemetries) : Telemetries{...}
13 }
14
15 class Move() : Scenario("Move", ScenarioKind.GUARANTEE) {
16
17 override fun initEvents() = SymbolicMessageEvent(PosPredictor,FollowerCtrl,FollowerCtrl::

predictedTelemetries, ANY)
18
19 override suspend fun mainScenario() {
20 val t = lastME!!.parameters[0] as Telemetries
21 if (t.distance > 13) request(FollowerCtrl,DriveCmd, DriveCmd::move, MoveKind.FWD)
22 else if (t.distance < 12) request(FollowerCtrl,DriveCmd, DriveCmd::move, MoveKind.BWD)
23 else request(FollowerCtrl,DriveCmd, DriveCmd::move, MoveKind.STOP)
24 }
25 }
26
27 class Turn() : Scenario("Turn", ScenarioKind.GUARANTEE) {
28
29 override fun initEvents() = SymbolicMessageEvent(PosPredictor,FollowerCtrl,FollowerCtrl::

predictedTelemetries, ANY)
30
31 override suspend fun mainScenario() {
32 val t = lastME!!.parameters[0] as Telemetries
33 val relativeAngle = relativeAngle(t)
34 blockedEvents.add(SymbolicMessageEvent(FollowerCtrl, DriveCmd, DriveCmd::turn, ANY))
35 waitFor(FollowerCtrl, DriveCmd, DriveCmd::move, ANY)
36 blockedEvents.clear()
37 if (relativeAngle > 10 && relativeAngle < 180 ) // turn left
38 request(FollowerCtrl,DriveCmd,DriveCmd::turn, TurnKind.LEFT)
39 else if (relativeAngle > 180 && relativeAngle < 350 ) // turn right
40 request(FollowerCtrl,DriveCmd,DriveCmd::turn, TurnKind.RIGHT)
41 else
42 request(FollowerCtrl,DriveCmd,DriveCmd::turn, TurnKind.NONE)
43 }
44
45 private fun relativeAngle(t: Telemetries){...}
46 }
47
48 class SetLRPower() : Scenario("SetLRPower", ScenarioKind.GUARANTEE) {
49
50 override fun initEvents() = SymbolicMessageEvent(FollowerCtrl,DriveCmd,DriveCmd::move,ANY)
51
52 override suspend fun mainScenario() {
53 var mk = lastME!!.parameters[0] as MoveKind
54 waitFor(FollowerCtrl, DriveCmd, DriveCmd::turn, ANY)
55 var tk = lastME!!.parameters[0] as TurnKind
56 val (speedLeft, speedRight) = computeLRSpeeds(mk, tk)
57 request(DriveCmd, DriveAdapter, DriveAdapter::setLRPower, speedLeft, speedRight)
58 }
59
60 private fun computeLRSpeeds(mk : MoveKind, tk : TurnKind) : Pair<Int, Int>{...}
61 }

Listing 1.2: IOSM-K code for the Rover Follower.



The solution also contains two scenarios (omitted for brevity) that interact with the ‘real’
rover’s sensors and actuators, i.e., the respective network interfaces of its simulator: one
regularly retrieves the rovers’ telemetries, the other assigns the wheel speeds.

IOSM-K is similar to a BPJ-based IOSM framework that we presented earlier as part of a
Scenario-Based Development Process (SBDP) for dynamic topology systems [7, 9]. In SBDP,
the modeling starts with SML, for which ScenarioTools [8] supports formal analysis. Then
code is generated that can even be executed in a distributed setting. With IOSM-K, we created
an alternative compilation target; supporting distributed execution for IOSM-K is ongoing work.

The inter-object modeling concept of IOSM-K is especially suited for systems where
collaborating objects can be identified in the problem domain. For this challenge problem, it
was merely a design choice to introduce the components ‘leader position predictor’, ‘follower
control’, ‘drive commands’. In a components-based development approach, we would define
such components in order to encapsulate the different parts of the control logic. However, in
scenario-based modeling, the behavior is separated in different scenarios—and it is not
mandatory to define components, and tie events to them, in order to have a good separation of
concerns, as our second solution shows.

4 The Behavioral Programming for Javascript (BPjs) solution

The second solution is based on the BPjs tool described in [2]. The model consists of a set of
b-threads, each corresponding to a specific case-study requirement. Specifically, we focus on the
two requirements that (1) the rover needs to follow the leader, and (2) the rover should always
stay at a safe distance from the leader. The model listing 1.3) illustrates how blocking can be
used to integrate competing requirements that are isolated in separate b-threads. Our actual
development steps also showed how, as stated above, BP can facilitate incremental development
of control software where trial-and-error is often a preferred way for defining the desired
behavior. We designed the b-threads such that each b-thread represents a separate requirement.
1 importPackage(Packages.il.ac.bgu.cs.bp.leaderfollower.events);
2
3 var AnyTelemetry = bp.EventSet("Telemetries", function (e) {
4 return e instanceof Telemetry;
5 });
6
7 var esFBwardEvents = bp.EventSet("FBwardEvents", function (e) {...});
8
9 bp.registerBThread("Go", function () {

10 while (true) {
11 bp.sync({waitFor: AnyTelemetry});
12 bp.sync({request: StaticEvents.GO_TO_TARGET});
13 }});
14
15 bp.registerBThread("SpinToTarget", function () {
16 while (true) {
17 var et = bp.sync({waitFor: AnyTelemetry});
18 var degToTarget = compDegToTarget(et.LeadX, et.LeadY, et.RovX, et.RovY, et.Compass);
19 while (Math.abs(degToTarget) > 4) { // must correct rover orientation
20 if (degToTarget > 0) {
21 bp.sync({request: StaticEvents.TURN_RIGHT, block: esFBwardEvents});
22 } else {
23 bp.sync({request: StaticEvents.TURN_LEFT, block: esFBwardEvents});
24 }
25 et = bp.sync({waitFor: AnyTelemetry, block: esFBwardEvents});
26 degToTarget = compDegToTarget(et.LeadX, et.LeadY, et.RovX, et.RovY, et.Compass);
27 }}});
28
29 var tooClose = 12.5;
30 var tooFar = 15;



31
32 bp.registerBThread("NotTooClose", function () {
33 while (true) {
34 var lastTelemetry = bp.sync({waitFor: AnyTelemetry});
35 while (lastTelemetry.Dist < tooFar) {
36 if (lastTelemetry.Dist >= tooClose-(tooFar-tooClose)) {
37 var slowDownPower=Math.round((lastTelemetry.Dist-tooClose)/(tooFar-tooClose)*100);
38 bp.sync({waitFor: [StaticEvents.TURN_RIGHT,StaticEvents.TURN_LEFT],request:

GoSlowGradient(slowDownPower), block: StaticEvents.GO_TO_TARGET});
39 } else {
40 bp.sync({waitFor: [StaticEvents.TURN_RIGHT,StaticEvents.TURN_LEFT],request:

GoSlowGradient(-100), block: StaticEvents.GO_TO_TARGET});
41 }
42 lastTelemetry = bp.sync({waitFor: AnyTelemetry, block: StaticEvents.GO_TO_TARGET});
43 }}});
44
45 function compDegToTarget(xL, yL, xR, yR, CompassDeg) {...}

Listing 1.3: Follower Rover Control program in BPjs (abbreviated for brevity)

The first line imports a Java package that abstracts from the interaction between the
scenario-based model and the (simulated) rover. Specifically, this Java application sends
Telemetry events that carry the rovers’ telemetry data. Additionally, it translates actuation
events into commands sent to the rover wheels.

Line 3 defines an event set that is used to wait for all events of type Telemetry. Since
telemetry events differ in their data, a b-thread cannot list all of them individually. Instead it can
specify to wait for a set of events that satisfy a given predicate. This technique is also used also
in lines 7 for waiting for all forward/backwards movement events.

Lines 9 to 13 are a b-thread modeling the requirement that the rover should drive forward to
follow the leader. It is a two-step scenario that waits for a telemetry event, and reacts with
requesting the GO_TO_TARGET event.

Lines 15 to 27 are a b-thread for the requirement of the follower to aim at the leader before
driving towards it. The scenario uses a helper function compDegToTarget that computes the
angle in degrees between the follower and the leader. If this angle is outside of a defined range,
the b-thread requests the event of turning right or left while blocking all forward/backwards
movement events. The abstraction layer changes wheel speeds to actuate the turn, and the
orientation is checked again. When the angle is within the allowed range, i.e., the follower is
aimed at the leader, forward movement is no longer blocked. Note that the b-thread is modeled
to be self-contained as much as possible. By contrast, say, in a classical a rule-based approach
(which SBM is reminiscent of) coding these two movements as separate rules, may appear
similar to the BP solution. But for implementing event blocking and compositional behavior,
one would have to maintain shared variables, helper-events and additional application logic.

In our development, we started by running the above two b-threads to see how they perform.
After a short debug process, we realized that these were not enough: indeed the rover followed
the leader, but sometimes it got too close to it, violating a requirement that has not yet been
implemented. We could, of course, adjust the existing b-threads such that the GO_TO_TARGET
event is not requested when the distance to the leader is below the threshold, which is how such
issues are usually dealt with in standard modeling and programming languages. However, as
this is a separate behavioral concern, using SBM, we decided to implement this requirement in
a separate scenario. Thus, lines 32 to 43 are an ‘anti-scenario’ b-thread that uses the BP event
blocking idiom to forbid the GO_TO_TARGET event (which means going at maximum speed) if
the distance is too small. Instead we use feedback-like control logic that requests the event



GoSlowGradient(power) which adjusts wheels speeds proportionally to the distance.
power can be positive or negative, so the follower may drive in reverse if needed.

Note the waitFor: [TURN_RIGHT, TURN_LEFT] part in the third b-thread. This is
a general design pattern we term “break-upon” [1], where a pending request of some b-thread
becomes obsolete when certain events are triggered. In such a case, it is the responsibility of the
requesting b-thread to drop its request to avoid undesired behavior. See Sect. 5 for a discussion
of how such bugs can be detected automatically.

While small and simple, this model already demonstrates how blocking can be used to
integrate positive and negative specifications when new requirements emerge during the
development process. As demonstrated, this is especially useful for command and control
software where typical trial-and-error creates new requirements that are better implemented in
separate b-threads for maintenance and readability purposes.

5 Formal Analysis

A key advantage of SBM is the amenability of the model to formal analysis that is focused on
conflicts and omissions among the requirements and among the key design decisions from very
early stages in prototype development.

In the BPjs solution, formal explicit-state model checking can be done via exhaustive
execution with back tracking. To this end, BPjs can store the state of each b-thread at each
synchronization point. Using this built-in model checker and simple rover-simulation b-threads,
we detected, for example, that if the follower’s speed cannot exceed 120% of the leader’s speed,
it is possible that the distance between the vehicles will grow above the threshold. We also
detected the lack of the “break upon” part discussed in Sect. 4 by asserting that all actuation
events should be consistent with the last telemetry data. The result was an automatically
generated trace of the system where a GoSlowGradient appears at a wrong time, a problem
whose solution is described in Sect. 4 above. See the online repository for more details.

For the IOSM-K language, no such built-in model checker exists. However, IOSM-K can be
generated from SML, for which realizability-checking and controller synthesis algorithms are
offered by ScenarioTools. These algorithms check whether a strategy exists to correctly
execute the scenarios for all admissible environment behaviors [8, 14]).

Other verification techniques for SBM include standard model checking of the composite
set of state machines as abstracted from the scenarios’ code (see, e.g. [11]), and using SMT
solvers like Z3 or CVC4 to prove correctness of system behaviors based on assumptions and
guarantees of the individual scenarios (see, e.g., [10]).

6 Discussion and Conclusion

Advantages and commonalities of both solutions: The above demonstrations of SBM in
Kotlin and in Javascript first show the common SBM advantages: intuitiveness of scenarios
(despite presence of few technical programming constructs), alignment of scenarios with
requirements and design documents, weaving-in of new scenarios with little or no change to
existing ones, formal verification capabilities, and, most importantly, direct executability of the
model, without transformation or synthesis.



Differences in the solutions: There are also differences in the solutions, which, in fact, were
developed by separate teams. The conceptual key differences include:

Inter-object vs. standalone events: The IOSM-K solution is based on inter-object message
events and the BPjs one uses events not tied to objects. This raises the question of when to
choose which style of modeling. Our answer is that inter-object events are suited where
interacting objects are identifiable in the problem domain, e.g., when modeling a system of
collaborating cars, robots, etc. However, decomposing the system into sub-components, as in a
classical component-oriented approach, is not required to have a good separation of concerns in
the scenarios. Indeed, with both frameworks, IOSM-K and BPjs, it would be possible to mix
both event styles and use either where it fits best.

Scenario-composition styles: The second difference in the two solutions is the style in which
the scenarios compose. The first solution (IOSM-K) reflects a rather sequential composition of
the control logic: first compute the predicted rover coordinates, then decide on move and turn
options, then set the wheel speeds. The scenarios trigger each other in a sequential fashion, with
the exception that the Turn scenario synchronizes with the Move scenario for ensuring a
particular order in the move and turn events. In the BPjs solution, the SpinToTarget and
NotTooClose scenarios may block the GO_TO_TARGET event requested in the Go scenario.
Here, the Go scenario is a default behavior that can be blocked if there are overriding concerns.
We do not prefer one style of scenario composition over the other—which one to choose
depends on how the behavioral concerns are conceived in the requirements.
Related Work. The main property of SBM distinguishing it from standard programming,
executable modeling in, say, fUML [18] and Alf [17], rule-based or publish-subscribe
systems [6], or highly intuitive visual languages like Statecharts or UML-RT [20], is its
compositional semantics. Specifically, in SBM, independently specified threads of behavior that
run in parallel can be automatically composed by the infrastructure with support for, e.g.,
forbidden behavior, strict event ordering, or satisfying multiple concurrent requests with a
single event triggering. This also enables alignment of the software structure with the original
requirements. The same advantage holds also in comparing to systems geared towards
parallel synchronized executions and optional voting like SystemC [19], Esterel [3], or
multi-agent systems. SBM is distinguished from the separation of concerns in Aspect Oriented
Programming (AOP) [16] and similar techniques in that there is no distinction of base
and modifications or exceptions thereto, and that the anchors of specifications are usually
meaningful system events rather than particular pre-existing method names. Scenarios also
manage states conveniently; state management in AOP join points requires non-trivial
programming. The BIP (behavior, interaction, priority) [4] language has similar goals and
terminologies, however, it focuses on developing a system that is correct-by-construction
while SBM concentrates on programming in a natural way, and turns to techniques like
model-checking to discover design issues. We refer to previous publications introducing SBM,
IOSM, and BP concepts like [5, 12, 13], for a more detailed analysis of related work.
Conclusion:We demonstrated the scenario-based modeling approach by two different
solutions to the follower rover challenge problem. This highlights the general principles of SBM
and their power and applicability regardless of the underlying technology. Moreover, it shows
that SBM principles enable language designers and tool builders to create powerful modeling
environments that meet specific engineering needs, thus contributing to the community’s
ongoing efforts to accelerate and simplify the development of high-quality systems.



References

1. A. Ashrov, M. Gordon, A. Marron, A. Sturm, and G. Weiss. Structured behavioral programming
idioms. In EMMSAD 2017.

2. M. Bar-Sinai, G. Weiss, and R. Shmuel. BPjs – a framework for modeling reactive systems using a
scripting language and BP, 2018. https://arxiv.org/abs/1806.00842.

3. G. Berry. The foundations of Esterel. In Proof, Language, and Interaction, 2000.
4. S. Bliudze and J. Sifakis. A notion of glue expressiveness for component-based systems. CONCUR,

2008.
5. W. Damm and D. Harel. LSCs: Breathing life into message sequence charts. In Formal Methods in

System Design, volume 19, pages 45–80, 2001.
6. P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec. The many faces of publish/subscribe. ACM

Computing Surveys (CSUR), 35(2):114–131, 2003.
7. J. Greenyer, L. Chazette, D. Gritzner, and E. Wete. A scenario-based MDE process for dynamic

topology collaborative reactive systems – early virtual prototyping of car-to-x system specifications.
In Proc. Workshops zur Modellierung in der Entwicklung von kollaborativen eingebetteten Systemen
(MEKES), volume 2060. CEUR, 2018.

8. J. Greenyer, D. Gritzner, T. Gutjahr, F. Konig, N. Glade, A. Marron, and G. Katz. ScenarioTools - a
tool suite for the scenario-based modeling and analysis of reactive systems. Science of Comp. Prog.,
149(Supplement C):15 – 27, 2017. Spec. Issue on MODELS’16.

9. J. Greenyer, D. Gritzner, J. Shi, and E. Wete. A scenario-based MDE process for developing reactive
systems: A cleaning robot example. In MODELS’17 Satellite Events. CEUR, 2017.

10. D. Harel, A. Kantor, G. Katz, A. Marron, L. Mizrahi, and G. Weiss. On composing and proving
correctness of reactive behavior. EMSOFT, 2013.

11. D. Harel, G. Katz, A. Marron, and G. Weiss. Non-intrusive repair of safety and liveness violations in
reactive programs. Tran. on Comp. Collective Intelligence (TCCI) XVI, 2014.

12. D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using LSCs and the
Play-Engine. Springer, 2003.

13. D. Harel, A. Marron, and G. Weiss. Behavioral programming. Comm. of the ACM, 55(7).
14. D. Harel and I. Segall. Synthesis from live sequence chart specifications. Jour. Computer System

Sciences, 78:3:970–980, 2012.
15. T. Henzinger, C. Kirsch, M. Sanvido, and W. Pree. From control models to real-time code using

Giotto. Control Systems Magazine, IEEE, 2003.
16. G. Kiczales, J. Lamping,A. Mendhekar, C. Maeda,C. Lopes, J. Loingtier, and J. Irwin. Aspect-Oriented

Programming. Euro. Conf. on Object-Oriented Prog. (ECOOP), 1997.
17. OMG. Action Language for Foundational UML (Alf), V. 1.1, July 2017. OMG document

formal/17-07-04.
18. OMG. Semantics of a Foundational Subset for Executable UML Models (fUML), Version 1.3, July

2017. OMG document formal/17-07-02.
19. OSCI. Open SystemC Initiative. IEEE 1666 Lang. Ref. Manual. http://www.systemc.org.
20. E. Posse and J. Dingel. An executable formal semantics for uml-rt. Software & Systems Modeling,

15(1):179–217, Feb 2016.

https://arxiv.org/abs/1806.00842

	Modeling and programming a leader-follower challenge problem with scenario-based tools

