CEUR-WS.org/Vol-2245/me_paper_2.pdf

Improving Trace-Based Propagation of Feature
Annotations in Model Transformations

Sandra Greiner and Bernhard Westfechtel

University of Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
{Sandral.Greiner,Bernhard.Westfechtel}Quni-bayreuth.de

Abstract. In annotative approaches to model-driven software prod-
uct line engineering variability annotations express in which variants
model elements are included. Although (single-variant) model transfor-
mations (SVMTSs) are mature by now, they cannot process these anno-
tations. Considering them calls for multi-variant model transformations
(MVMTSs) which ideally reuse existing transformations. In trace-based
approaches annotations are propagated by exploiting the information
of traces written alongside the transformation. Depending on the gran-
ularity of the trace, different strategies can be applied. For instance,
fine-granular traces record not only all source and target elements of a
rule application but list context elements. The latter have been created
in previous rule applications and are necessary for creating the new ele-
ments. In this paper we demonstrate an example in which a propagation
based on context elements fails. Contrastingly, we propose to propagate
only annotations of 1:1 mappings and to, thereafter, calculate the an-
notations for elements still missing one. Moreover, we introduce a new
evaluation criterion based on incremental transformations, allowing to
take the multi-variant context into account.

1 Introduction

In model-driven software engineering (MDSE) [17] model transformations are
the key technology to transform a source model (input) into a different rep-
resentation, the target model (output). While unidirectional transformations
convert a source into a target model, bidirectional transformations also consider
the backward direction in the same specification. A batch transformation cre-
ates the target model completely anew whereas an incremental transformation
applies changes made to the source model after a previous execution. In-place
transformations modify the input model itself, which, hence, is the target model.
Such transformation is always endogenous since the target metamodel remains
the same. In contrast, in out-place transformations a different physical repre-
sentation is created or modified, mostly in exogenous transformations where the
output metamodel differs from the input one. Often traces record the source and
their corresponding target elements for each rule application. Triple graph gram-
mars (TGG) [I5] and comparable approaches map exactly one source element
to one target element in a correspondence graphs.

2 S. Greiner and B. Westfechtel

Furthermore, in model-driven software product line engineering (MDPLE)
[6] models express a set of related products based on the principle of organized
reuse. The platform captures the complete functionality w.r.t. its commonalities
and differences. Typically, feature models [11] state the distinguishing factors as
features. A product is derived by filtering the platform by a feature configuration,
which provides each feature with a (de-)selected state. MDPLE heavily relies on
model transformations in various development stages in order to automatically
transfer a model to a new representation, e.g., in refactoring tasks or when
transforming in between design and realization models.

In annotative approaches to MDPLE [2] model elements are associated with
presence conditions which are boolean expressions over the features, defining,
in which variants a model element is visible. We refer to them as annotations.
Annotated platform models typically capture the whole product line, i.e., all its
variants. Therefore, we call such models multi-variant models (MVMs). Trans-
forming an annotated MVM in aforementioned transformations results in a tar-
get MVM missing annotations which are not recognized in single-variant model
transformations (SVMTs). A transformation considering annotations is called a
multi-variant model transformation (MVMT). Some approaches already realize
MVMTs, mostly by reusing SVMTs. Lifting [14] and approaches with variability-
based rules [I8] exploit the contents of (graph) transformation specifications.
More generally, the SVMT could be executed as a black-box. Thus, annotations
need to be propagated alongside the SVMT, usually, a posteriori. Trace-based
approaches [22][7], primarily realize the propagation based on trace information.

In this paper we contribute a novel trace-based approach to MVMTs solely
using 1:1 mappings. In a post-processing step annotations for target elements
still missing one are determined from dependencies inside the target model. Fur-
thermore, we introduce an incremental commutativity criterion to evaluate the
correctness of the annotated target MVM, allowing to consider the multi-variant
context in the evaluation. Applying the procedure on an example transformation,
in which other approaches fail, achieves the desired behavior.

In the next section we delimit our MVMT approach from existing ones. Then,
we describe an example violating commutativity and provide a solution to the
problem. From the findings future work is conducted.

2 Background

2.1 MVMT Realization Approaches

Different strategies for realizing MVMTSs can be roughly categorized in black-box
and white-box solutions, requiring no or all internals of the SVMT, respectively.

The lifting algorithm [I4] and combining it with variability-based rules [18]
are categorized as white-box solutions. Lifting executes (graph) transformation
rules with multi-variant semantics which requires to enumerate all rules for lifting
the product line. Although the algorithm is defined for in-place graph transfor-
mations, it was extended to out-place transformations with a graph-like DSL [5].

Improving Trace-Based Propagation of Feature Annotations 3

The proposal in [I§] is restricted by the same properties but is executed more
efficiently. The formalism based on category theory presented in [I9] relies on the
contents of the transformation as well. Alternatively, in [I6] ATL rules [10] are
extended to support variability and converted to a normal ATL transformation
in higher order transformations (HOT).

Contrastingly, black-boxr approaches only know the input and output of the
transformation. The SVMT remains exactly the same. Annotations can, then,
be propagated by applying different strategies: In [4] annotations are assigned by
manually defining corresponding elements of the source and target metamodel.
Thus, for each new transformation a mapping definition must be provided. In
contrast, in [8] the authors ”inject” annotations as preprocessor directives with
a generic aspect in Xpand [I2] transformations. This approach works indepen-
dently of the transformation specification and the metamodels.

2.2 Trace-based Propagation

Traces are another source of information for propagating annotations. A trace-
based solution [22] is rather categorized as grey-box approach since knowing the
source and target elements of rule applications implicitly exploits transforma-
tion contents. We can distinguish incomplete, generation-complete and complete
traces. Incomplete traces record only 1:1 mappings. If more than one element is
created, only the first (most important) target element is kept. Such ”trace” is
similar to correspondence graphs in TGGs. Languages and tools based on TGGs,
e.g., eMoflon [13] or BXtend [3], provide (at least) this level of knowledge. Con-
trastingly, a generation-complete trace stores all source and all target elements
associated with a rule application, like the trace written by the ATL/EMFTVM
[21]. Complete traces further partition the elements of the target model: an ele-
ment already existing in the target model upon the (later) execution of a rule is
called context element. Such elements may be needed to create new target ele-
ments and are, thus, distinguished in the trace. The tool medini QVT [9] stores
complete trace as well as eMoflon in a protocol besides the correspondence graph.

In a simplified way AlgorithmI]describes how to propagate annotations based
on a complete trace [22]. For each trace element, the annotation propagated to
its target elements (1. 8-9) is a conjunction (1. 6) of the annotations of its source
(1. 4) and its context (1. 5) elements.

For validating the correctness of the propagation, a commutativity criterion
(Figure [1)) is postulated for annotative approaches in [I4l8] and for feature-
oriented ones in [20]. It checks whether the result m; from transforming an
annotated source MVM m; with an MVMT is correctly annotated. The MVMT
consists of the reused SVMT (t4,) and the annotation propagation. Filtering
ms by a feature configuration and transforming the result m/ with t¢s, creates
a target product m; which should be equal to the model m} being filtered from
m; by the same configuration. This property must hold for all valid feature
configurations.

In [22] it is shown that trace-based propagation achieves commutativity for
specific transformations. Next, we demonstrate an example violating the postu-

4 S. Greiner and B. Westfechtel

Algorithm 1 Trace-based propagation of annotations.

1: procedure PROPAGATE(te)

2: in te > Trace composed of trace elements te
3 for te € te do > Process all trace elements sequentially
4 var anns = te.getSrcAnns () > Annotations of source elements
5 var ann. = te.getCntxtAnns () > Annotations of context elements
6: var anng = /\ anns N\ /\ anne > Annotation for target elements
7

8 for e; € te.getTrgElements() do > Process all target elements
9 e;.setTargetAnnotation(ann;) > Annotate the target element

lated computational model and, thus, failing to commute. For that reason, we
state the following questions:

1. To which granularity can the information of traces be helpful? Are context
elements (always) decisive for the success of the MVMT?
2. Are batch transformations appropriate for evaluating commutativity?

MVMT t
annotated i

m, annotation
propagation

annotated
m,

filter filter

Fig. 1. Commutativity of MVMTs.

3 Example

3.1 Setup

The following scenario is based on a benchmark evaluating bidirectional (and
incremental) model transformations [I]. Since we like to rather demonstrate key
ideas than to provide a complete evaluation, the models are kept small.

Let us migrate a database storing persons to one storing families. As depicted
on the left hand side of Figure [2 named persons (composed of the last name
followed by the first name) are registered as male or female. In contrast, the
family database records families by their last names and a family references its
members according to their role (mum, dad, etc.) inside the family.

The family database is created from the persons database as follows (ts,):
FEach person is inserted as member in a family with the respective last name.

Improving Trace-Based Propagation of Feature Annotations 5

H m, m; fdb:Farr;ily?f m
feature model ENIES

sf : Family n
ersons ersons

bs : Male ts : Male et i, dad sons
0.* | persons — p —
,‘,mm_c - ?‘lm_c - . trace-based annotation | bs : Member \ | ts : Member
Person Smith, Ben 'Smith, Tom' | |

name : String propagation name = ,Ben" ‘ name = "Tom"
o e i
'
________ filter T filter
DBA—-PAC DBA—PAC
FamilyDB B
0.% m’, m“, g
- s & [b - Famiy DB | A
families fdb : FamilyDB t
pdb : PersonDB l families = fdb : FamilyDB
name : String persons -
batch sf : Family
ts : Male
0.* 0.% by

name =
"Smith, Tom"

daughters | sons

Member
0.1 0.1

metamodels

Fig. 2. Metamodels (left) on which the transformation scenario (right) is based.

If there is no appropriate family, a Family element is created and the person is
inserted as parent. If the family exists but the parent role is not occupied, the
member will also be a parent. If both parents exist, the member becomes a child.

3.2 Multi-Variant Transformation

Now let us consider the example in the context of a software product line. The
feature model (top left of Figure consists of the optional features parent
(P) and children (C). As depicted on the right of Figure [2| on instance level,
the person model consists of two men with the same last name ’Smith’. Ben is
annotated with the feature P since he is the father of the family, and Tom should
be a child (feature C). Transforming this model with the t,, described above,
creates a Family Smith with a member Ben as father and a member Tom as son.
A complete trace would record three elements as listed in Table [1} Please note:
The last row states the rule application with Tom as source element. It lists the
family as context element because it already exists and is necessary for inserting
the member Tom as a child.

The trace-based propagation (Algorithm [1)) as explained in Section an-
notates the target elements as depicted in Figure 2} The member Ben and the
family receive Ben’s annotation as they are both recorded as its target elements.
Secondly, Tom’s annotation is the conjunction of the annotation of its source
element (C) and of its context element (P), the Family.

Finally, products are derived and commutativity is evaluated. Deriving, for
instance, a database containing only children, we filter both, ms and m;, by the
feature configuration DB A =P A C. The derived source product m/, includes

6 S. Greiner and B. Westfechtel

Table 1. Trace contents.

rule application H source elements ‘ target elements ‘ context elements

PDb2FDB pdb : PersonDB fdb:FamilyDB -
Male2Member bs : Male sf : Family, -

bs: Member
Male2Member ts : Male ts : Member sf : Family

the elements as expected: only the male Tom remains. Filtering m;, however,
results in a product m;} consisting of the database only. Although this is not
the desired semantic result, m; could still be correct w.r.t. the commutativity
criterion (in the case tg4, creates an equivalent model m} with m/ as input).
Hence, for verifying commutativity, we execute ts, with the product m/, as input.
The output, my, however, is semantically incorrect, too: Tom becomes the father
of the family as from the transformation’s point of view the family and a parent
are missing. Thus, Tom triggers the creation of the family and is added as father.
Since m} and m; are not equivalent, commutativity is violated.
Summing it up, (semantic) misbehavior appears at three locations:

1. The annotation attached to the Family element in m; is wrong since the
family must exist as soon as any member is present.

2. The annotation of Tom in m; might be wrong. Tom should be part of a
target product whenever its counterpart exists in a source product.

3. Applying ts, on the source product m/, creates a semantically wrong target
my.

4 Solution Approach

4.1 Procedure

The first two aforementioned problems tackle the propagation of annotations.
The new procedure should adhere to Algorithm assuming all metamodels
to be instances of the Ecore meta-metamodel (i.e., directed, acyclic graphs).
At first, only the annotations of 1:1 mappings are copied from the source to the
(main) target elementﬂ In the post-processing phase (1. 6-10), firstly, all elements
missing annotations are collected top-down. For each unannotated element e the
annotations of elements required for its existence (1. 7) and the ones requiring
e’s existence (1. 8) are determined. The contents of the sets are discussed in
Section Then, the annotation is calculated as in line 9 of Algorithm [2] i.e.,
e is present if all the elements it needs are present, and, if at least one of the
elements needing e’s presence exists. Finally, the annotation is set on e (1. 10).

For evaluating commutativity, batch transforming the source products re-
sults in an unintended target model (3rd problem). Therefore, we propose an
incremental commutativity criterion: Firstly, the MVMT is executed as before

! Copying the annotation of the source to its corresponding target is trivially correct
as the target element should exist when its corresponding source element exists.

Improving Trace-Based Propagation of Feature Annotations 7

Algorithm 2 Improved propagation of annotations.

1: procedure PROPAGATEIMPROVED(te, m)

2: in te > Trace composed of single trace elements te
3: in my > Multi-variant target model
4:
5: propagateBasicMappings (te)
6: for e € m;.getUnannotatedElements() do
> Process target elements without annotation in topological order
7: var anNpeeded = Mt . getAnns0fNeeded (e)
> Annotation of elements needed for the existence of e
8: var anNpeeding = Mt .getAnns0fNeeding(e)
> Annotation of elements needing the existence of e
9: var ann; := \ annnceded V \ aNNpeeding
10: e.setTargetAnnotation(ann:) > Annotate the target

by reusing the single-variant (batch) transformation ¢s,. As opposed to the com-
mutativity criterion postulated in Section source products (m}) are trans-
formed incrementally. Thus, decisions made in the multi-variant context, e.g., a

person’s role in the family, are taken into account.

m, m, fdb : FamilyDB
pdb : PersonDB m
persons persons batch t, sf : Family
bs : Male ts : Male o
trace-based annotation dad
ome = ame = ropagation
“Smith, Ben" "Smith, Tom" Propag; ‘ bs : Member | ‘ ts : Member |
‘ name = ,Ben" | l name = "Tom"

filter filter

‘ m ‘

fdb : FamilyDB m,
pdb : PersonDB

families

sf : Family

fdb : FamilyDB

families

persons

- sf: Family
s Male || incremental name = "Smith’
name = b BOS
"Smith, Tom"

name = "Tom"

Fig. 3. Commutativity based on the improved propagation and evaluation.

4.2 Results

Figure [3| depicts the improved example. Firstly, ts, is (batch) transformed with
the source MVM m producing the target MVM (without annotations) m;. Next,

8 S. Greiner and B. Westfechtel

the annotations of the basic mappings are applied. Tom and Ben alike receive
only the annotations of their corresponding source elements. Thereafter, the
Family still expects an annotation being calculated in the post-processing step.
The element receives the presence condition DBV (PV C). It is composed of the
annotations of the elements needed for its existence, the database (DB), and of
the elements requiring its existence (Ben and Tom) combined in a disjunction.

Evaluating commutativity by incrementally executing ts,, Ben is removed
and Tom’s role remains the same in m}. Moreover, filtering the annotated target
model m; by the same feature configuration behaves well: the family and Tom
are not removed anymore. Thus, the example now commutes.

Accordingly, the questions stated in Section may be answered as follows:

1. In our example context elements hinder the correct annotation of target ele-
ments. Context elements may change when switching from the multi-variant
to the single-variant context. Contrastingly, 1:1 mappings are trivially cor-
rect and do not require fine-granular trace information.

2. Commutativity should be evaluated based on incrementally transforming
source products considering, thus, decisions of the multi-variant context.

4.3 Discussion

Our solution is the first step to an automatic trace-based propagation supporting
the most general form of (an incomplete) trace. The two-step procedure is still
trimmed to the example needing further evaluation.

The key difficulty has been moved to the post-processing step. It seems to be
reasonable to combine annotations of required and requiring elements as stated
in Algorithm [2| However, the definition is silent on the elements belonging to
the respective sets. They must be determined from the output (meta-)model
and depend on the granularity of annotating model elements. For instance, re-
quired elements subsume at least the container but might also be the types of
all referenced typed elements, supertypes and operation parameters in the case
complete objects are annotated. Requiring elements are at least all contained
objects. Moreover, if too much elements are unannotated after the basic propa-
gation, calculating the annotation automatically may become impossible.

Finally, the incremental evaluation is beneficial when elements are deleted
upon filtering. However, if a filtered source model (m) adds a new element or
changes it differently than in the MVMT, this change will not be part of the
MVM m; and, hence, of m;ﬂ Moreover, not all, though many, languages support
incremental transformations in an unconstrained way.

5 Summary

To sum it up, we present a novel approach to circumvent problems arising in
trace-based approaches to MVMT. Instead of exploiting fine-granular traces,

2 For a correct MVM, changes resulting from transforming source products should be
integrated into m;, which may violate single-variant semantics.

Improving Trace-Based Propagation of Feature Annotations 9

which are rarely present, we only propagate annotations of 1:1 mappings. They
form part of every trace and copying them is definitely correct. Missing anno-
tations are calculated based on already present annotations and dependencies
inside the model. For evaluating commutativity we propose to perform incre-
mental transformations on product level taking into account the multi-variant
context. Applying the approach on initial examples achieves the desired result.

As next steps, we like to generalize the approach and provide extensive evalu-
ation. In particular, the post-processing should be investigated in greater detail.

References

1. Anjorin, A., Diskin, Z., Jouault, F., Ko, H., Leblebici, E., Westfechtel, B.: Bench-
marX Reloaded: A Practical Benchmark Framework for Bidirectional Transforma-
tions. In: Proceedings of the 6th International Workshop on Bidirectional Transfor-
mations co-located with The European Joint Conferences on Theory and Practice
of Software, BXQETAPS 2017, Uppsala, Sweden, April 29, 2017. pp. 15-30 (2017)

2. Apel, S., Janda, F., Trujillo, S., Késtner, C.: Model Superimposition in Software
Product Lines. In: Theory and Practice of Model Transformations, Second Interna-
tional Conference, ICMT 2009, Zurich, Switzerland, June 29-30, 2009. Proceedings.
pp- 4-19 (2009). https://doi.org/10.1007/978-3-642-02408-5_2

3. Buchmann, T.: BXtend - A Framework for (Bidirectional) Incremental Model
Transformations. In: Proceedings of the 6th International Conference on
Model-Driven Engineering and Software Development, MODELSWARD 2018,
Funchal, Madeira - Portugal, January 22-24, 2018. pp. 336-345 (2018).
https://doi.org/10.5220/0006563503360345

4. Buchmann, T., Greiner, S.: Managing Variability in Models and Derived Artefacts
in Model-driven Software Product Lines. In: Proceedings of the 6th International
Conference on Model-Driven Engineering and Software Development, MODEL-
SWARD 2018, Funchal, Madeira - Portugal, January 22-24, 2018. pp. 326-335
(2018). |https://doi.org/10.5220/0006563403260335

5. Famelis, M., Lucio, L., Selim, G.M.K., Sandro, A.D., Salay, R., Chechik, M., Cordy,
J.R., Dingel, J., Vangheluwe, H., Ramesh, S.: Migrating automotive product lines:
A case study. In: Theory and Practice of Model Transformations - 8th International
Conference, ICMT 2015, Held as Part of STAF 2015, L’Aquila, Italy, July 20-21,
2015. Proceedings. pp. 82-97 (2015). jhttps://doi.org/10.1007/978-3-319-21155-8_7

6. Gomaa, H.: Designing software product lines with UML 2.0: From use cases to
pattern-based software architectures. In: Software Product Lines, 10th Interna-
tional Conference, SPLC 2006, Baltimore, Maryland, USA, August 21-24, 2006,
Proceedings. p. 218 (2006). |https://doi.org/10.1109/SPLINE.2006.1691600

7. Greiner, S., Schwégerl, F., Westfechtel, B.: Realizing multi-variant model trans-
formations on top of reused ATL specifications. In: Pires, L.F., Hammoudi, S.,
Selic, B. (eds.) Proceedings of the 5th International Conference on Model-Driven
Engineering and Software Development (MODELSWARD 2017). pp. 362-373.
SCITEPRESS Science and Technology Publications, Portugal, Porto, Portugal
(February 2017). https://doi.org/10.5220,/0006137803620373

8. Greiner, S., Westfechtel, B.: Generating multi-variant java source code us-
ing generic aspects. In: Proceedings of the 6th International Conference
on Model-Driven Engineering and Software Development, MODELSWARD

https://doi.org/10.1007/978-3-642-02408-5_2
https://doi.org/10.5220/0006563503360345
https://doi.org/10.5220/0006563403260335
https://doi.org/10.1007/978-3-319-21155-8_7
https://doi.org/10.1109/SPLINE.2006.1691600
https://doi.org/10.5220/0006137803620373

10

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

S. Greiner and B. Westfechtel

2018, Funchal, Madeira - Portugal, January 22-24, 2018. pp. 36-47 (2018).
https://doi.org/10.5220,/0006536700360047

ikv++ technologies: = medini QVT. ikv++4 technologies (2018),
http://projects.ikv.de/qvt

Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I. ATL: A model
transformation tool. Sci. Comput. Program. 72(1-2), 31-39 (2008).
https://doi.org/10.1016/j.scico.2007.08.002

Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-
oriented domain analysis (FODA) feasibility study. Tech. Rep. CMU/SEI-90-TR-
21, Carnegie-Mellon University, Software Engineering Institute (Nov 1990)

Klatt, B.: Xpand: A closer look at the model2text transformation language. Lan-
guage 10(16), 2008 (2007)

Leblebici, E., Anjorin, A., Schiirr, A.: Developing emoflon with emoflon. In: Theory
and Practice of Model Transformations - 7th International Conference, ICMT 2014,
Held as Part of STAF 2014, York, UK, July 21-22, 2014. Proceedings. pp. 138-145
(2014). |https://doi.org/10.1007/978-3-319-08789-4_10

Salay, R., Famelis, M., Rubin, J., Sandro, A.D., Chechik, M.: Lifting model trans-
formations to product lines. In: 36th International Conference on Software Engi-
neering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014. pp. 117-128 (2014).
https://doi.org/10.1145/2568225.2568267

Schiirr, A.: Specification of graph translators with triple graph grammars. In:
Graph-Theoretic Concepts in Computer Science, 20th International Workshop,
WG ’94, Herrsching, Germany, June 16-18, 1994, Proceedings. pp. 151-163 (1994).
https://doi.org/10.1007/3-540-59071-4_45

Sijtema, M.: Introducing variability rules in atl for managing variability in mde-
based product lines. Proc. of MtATL 10, 39-49 (2010)

Stahl, T., Volter, M., Bettin, J., Haase, A., Helsen, S.: Model-driven software
development - technology, engineering, management. Pitman (2006)

Stritber, D., Rubin, J., Arendt, T., Chechik, M., Taentzer, G., Ploger, J.:
Variability-based model transformation: formal foundation and application. Formal
Aspects of Computing 30(1), 133-162 (Jan 2018). https://doi.org/10.1007 /s00165-
017-0441-3

Taentzer, G., Salay, R., Striiber, D., Chechik, M.: Transformations of software prod-
uct lines: A generalizing framework based on category theory. In: 20th ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems,
MODELS 2017, Austin, TX, USA, September 17-22, 2017. pp. 101-111 (2017).
https://doi.org/10.1109/MODELS.2017.22

Trujillo, S., Batory, D.S., Diaz, O.: Feature oriented model driven development:
A case study for portlets. In: 29th International Conference on Software Engi-
neering (ICSE 2007), Minneapolis, MN, USA, May 20-26, 2007. pp. 44-53 (2007).
https://doi.org/10.1109/ICSE.2007.36, https://doi.org/10.1109/ICSE.2007.36
Wagelaar, D., Iovino, L., Ruscio, D.D., Pierantonio, A.: Translational semantics
of a co-evolution specific language with the EMF transformation virtual machine.
In: Theory and Practice of Model Transformations - 5th International Conference,
ICMT 2012, Prague, Czech Republic, May 28-29, 2012. Proceedings. pp. 192—207
(2012). https://doi.org/10.1007/978-3-642-30476-7_13

Westfechtel, B., Greiner, S.: From Single- to Multi-Variant Model Transformations:
Trace-Based Propagation of Variability Annotations. In: 21st ACM/IEEE Interna-
tional Conference on Model Driven Engineering Languages and Systems, MODELS
2018, Copenhagen, Denmark, October 14-19, 2018. p. accepted for publication

https://doi.org/10.5220/0006536700360047
https://doi.org/10.1016/j.scico.2007.08.002
https://doi.org/10.1007/978-3-319-08789-4_10
https://doi.org/10.1145/2568225.2568267
https://doi.org/10.1007/3-540-59071-4_45
https://doi.org/10.1007/s00165-017-0441-3
https://doi.org/10.1007/s00165-017-0441-3
https://doi.org/10.1109/MODELS.2017.22
https://doi.org/10.1109/ICSE.2007.36
https://doi.org/10.1109/ICSE.2007.36
https://doi.org/10.1007/978-3-642-30476-7_13

	Improving Trace-Based Propagation of Feature Annotations in Model Transformations

