
Towards a Metamodel for
Modular Simulation Environments

Sandro Koch, Frederik Reiche, and Robert Heinrich

(sandro.koch,frederik.reiche,robert.heinrich)@kit.edu

Chair for Software Design and Quality
Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany

Abstract. Long-living systems often cope with fast-changing trends in
the current market. Changes originating from new features or bug fixes
can create great effort. Therefore, it is desirable to know the impact of
the changes on quality aspects of a system beforehand. Simulating the
system allows estimating the impact of a change without the time and cost
investment of an actual implementation. Nevertheless, the code quality of
simulations is often neglected. This results in increased development cycles
for the simulation until the cycle time is no longer sustainable. Therefore,
we propose using a metamodel to describe modular simulations. This will
allow reusing simulations and because of the modularity, the simulations
will be composable. Consequently, it will also reduce maintenance and
development efforts because simulations can be smaller designed and
reused. Smaller means that a simulation could serve only one purpose. In
this paper, we propose an excerpt of our metamodel with the focus on
coupling and interoperability of simulations.

1 Introduction

In software engineering designing and running long-living systems is a hot topic.
Software is getting older. Distinct releases with long development cycles are
disappearing. Instead, short development cycles and incremental releases are
advancing. Companies like Microsoft (Office365) or Adobe (CreativeCloud) use
subscription models for their software portfolio. Therefore, maintenance and
implementing new features while not breaking the code are getting more im-
portant. To achieve short development cycles without breaking the software
system, the impact of these changes should be known beforehand. A simulation
allows analyzing impacts to a software system without actually implementing
these changes [10]. As Tolk et al. [13] remark, simulations reduce development
time and thus costs. Consequently, simulations are a key tool to develop and
maintain software systems. However, developing simulations does not emphasize
reusing or maintaining the simulation itself. Simulations are mainly developed
ad-hoc. As a result, maintaining a simulation alongside the main system will
increase the duration of development cycles and thus, the time to market of
the software. We intend to improve the development of simulations by using
a metamodel. Therefore, we have analyzed existing approaches in simulation

2 S. Koch et al.

modeling, and simulation coupling and interoperability. Challenges to consider
when modularizing simulations are described in our previous work [7]. In this
paper, we want to introduce the current state of our metamodel while presenting
excerpts of the metamodel. The paper is organized as follows. A motivating
example is introduced in Sec. 2. State of the art is described in Sec. 3. Sec. 4
gives an overview of the developed metamodel. The paper concludes in Sec. 5.

2 Motivating Example

As a motivational example, we will introduce two independent simulations. One
simulation analyzes a public transport system with bus stops and buses. Each
bus has a fixed number of seats and is part of a bus line. A bus line consists
of a number of bus stops. These bus stops must be visited in a given order.
Furthermore, people waiting at a bus stop will enter a bus if not all seats are
occupied. If all seats of a bus are occupied, the remaining people will wait for
the next bus to arrive. The second simulation simulates a person’s daily routine.
However, the routine is simplified and does not represent a real person’s life.
A person has a fixed home and workplace. The way to work can be walked or
driven by public transportation. Each person has two bus stops which have to be
used on their way to work. Whether a person walks or drives can be random,
fixed or also be influenced by the weather. The difference between random and
weather is that the first is individual for each person and the second affects a
batch of people. Nevertheless, bus stops are present in both simulations. The
population of the bus stops of the bus simulation is normally generated within
the bus simulation. However, now the bus stops will be populated by the people
of the life simulation. Therefore, the two simulations will affect each other. We
will introduce how these two simulations can be coupled. Hence, in this paper,
we focus on the coordination of the data exchange of these two simulations.

3 State of the Art

Approaches to improve the evolution of software simulations are divided into
two categories. The composition of simulations and the interoperability between
simulations, and the modeling of simulations. Approaches to composition and
interoperability are presented together.

Simulation Composition and Interoperability Reusing a simulation or
parts of a simulation require composability and interoperability. The Distributed
Interactive Simulation (DIS) [5] approach is decentralized. Data is specified at
the protocol level. Information about the whole simulation has to be present for
each participant. The successor of DIS is the High Level Architecture (HLA) [4].
Information is stored by a central manager, the Runtime Infrastructure (RTI).
Composable Discrete-Event scalable Simulation (CoDES) by Teo et al. [12] is
a component-based approach. It allows semantic composition of simulations if

Towards a Metamodel for Modular Simulation Environments 3

implemented strictly according to the CoDES specification. Zeigler et al. [15] de-
veloped the Discrete Event System Specification (DEVS) approach. DEVS allows
formal definitions for simulation states and transactions between simulations.
However, these approaches are very restrictive and cannot easily be mixed with
other approaches.

Simulation Modeling Data and behavior of an HLA simulation has been
modeled by Topcu et al. [14]. Scerri et al. [11] introducing agent-based models
and shared variables to extend the HLA approach. In the context of autonomous
systems, the modeling language Systems Modeling Language (SysML [6]) was
extended by Bocciarelli et al.[2]. The work of Benjamin et al. [1] asserts that
an ontology facilitates the modeling of simulation. Model-driven development
approaches are utilized by Cetinkaya et al. [3]. Despite not using an ontological
or metamodeling approach, Law’s reference book ”Simulation Modeling and
Analysis” [9] is giving an overview of general modeling approaches in the do-
main of simulations. All approaches have in common that the composition and
interoperability aspect is not considered.

4 Modular Simulation Environment Metamodel

If a simulation has to be coupled with other simulations the coupling and commu-
nication have to be managed. In [8] the coupling on an abstract level is described.
However, the management of the connected simulations is not considered. Man-
agement of simulations is to ensure data that must be exchanged is sent to the
right simulation at the right time. Additionally, the sent data must be in the
right format for the receiving simulation. Accordingly, we introduce a manage-
ment element for coupling simulations. The Modular Simulation Environment
(MSE) fulfills a similar role as the HLA RTI. In contrast to the RTI, the MSE
describes the coupling on an architectural level. We will introduce the MSE and
its advantages in contrast to the aforementioned approaches in Sec. 3. Fig. 1
shows an excerpt of our metamodel with a focus on the MSE. The metamodel
and model of the bus and human simulation coupling can be found on GitHub1.

Coordinator The Coordinator serves as the root element of the MSE. All el-
ements regarding connection, data specification, and management are part of
the Coordinator. A Coordinator stores all Connectors necessary for connect-
ing simulations to the Coordinator. Multiple simulations can be connected to
the Coordinator. In contrast to the HLA, several simulations coordinated by
different Coordinators can be combined to create a more extensive simulation.
Consequently, specific parts of a simulation can be encapsulated with a dedicated
Coordinator and if necessary combined to form a substantial simulation. All data
types available to the Coordinator are defined in the DataSpecificationContainer.
Therefore, no simulation has to know which other data types are used by other
simulations connected via the Coordinator. The Annotation Interface allows data

1 https://github.com/MoSimEngine

4 S. Koch et al.

Modular Simulation Environment

Coordinator Connector

Service Interface Management Service

Annotation Interface

Data Specification
Container

Annotation
Container

+

1 + 1

*

*

1

Adapter

*
* *

**
Annotation * 1

Fig. 1. Modular Simulation Environment (MSE)

exchange between simulations. Even if these simulations are developed indepen-
dently. Conversion information necessary for the Coordinator is defined in the
Service Interface. The Service Interface provides a set of coordinator functions
callable by the connected simulations.

Connector The Connector enables communication between a simulation and
the MSE. Each simulation and the Coordinator have to implement a Connector.
The Connector of a simulation invokes functions of the Coordinator. These
functions are provided by the Connector. However, an existing simulation will
not have a Connector automatically built in. Therefore, a wrapper has to provide
the Connectors functionality. The Wrapper will encapsulate the simulation. If
changes will occur either for the simulation or the MSE, it will only affect the
wrapper but not the whole system. A concrete realization of a Connector is
not part of our metamodel, because the actual implementation is depending on
the domain. Each simulation has to implement a Connector in order to access
the Connector. Regarding the motivating example, a Coordinator has to be
implemented. Otherwise, no data could be received or sent by the simulations.

Adapter In order to combine different simulations, the required and provided
data of these simulations need to be aligned. The problem is that each simulation
can require and provide different data types. As a result, a simulation has to know
what data types are provided by the other simulations to enable a data exchange.
However, reusing simulations may require a change when it will be coupled
with new simulations. Therefore, we propose the Adapter. An Adapter can be
developed independently of the used simulations and the MSE. For instance, two
simulations using time information but one calculates in hours and the other in
seconds. Thus, if these two simulations need to exchange time information the
transformation can be defined in the Adapter. The motivating example needs one
Adapter. The adapter transforms the walking distance of the human simulation
from a floating point value to an integer value.

Towards a Metamodel for Modular Simulation Environments 5

Annotation Interface Data provided by a simulation must have context in-
formation, so that the data can be processed by the Coordinator. Therefore, we
introduce the Annotation Interface to allow annotating context information to a
datum. Annotations are a part of the Annotation Interface. These Annotations
can be divided into two categories. The Scheduling Annotation defines in which
order data has to be sent by the Coordinator to the receiving simulation. Further,
the Update Annotation defines under which circumstances a datum has to be sent
by the simulation. Three types of Update Annotation can be specified. Either on
a fixed time interval, if a predefined condition occurs, or if a simulation requests
a datum. Regarding the motivating example, we defined one Annotation for the
incoming data order, which is ordered by timestamp.

Management Service The Management Service is responsible for the internal
processes of the coordinator. For instance, a dedicated time management service
is responsible for the advancing time of the simulation. Another Management
Service may handle data in the Coordinator, it creates and destroys data if
necessary. In order to handle data, the defined annotations which are stored
in the Annotation Container, are accessible by the management services. The
Annotation Container is stored in the Coordinator, thus an Annotation can be
defined at a central point and reused if necessary. Also, the ownership of the data
can be supervised by a Management Service. Each Management Service fulfills
one purpose and can be reused by other coordinators. For the motivating example,
three Management Services have to be implemented. A publishing service sends
events to the right receiver (e.g., number of waiting persons at a bus station
when a new person arrives). A subscribing service allows the subscription for
events and a time advancing service manages the triggering of events regarding
the time advancement.

Data Specification Container All data types present in the Coordinator are
defined in the Data Specification Container. A central specification allows reusing
the defined data types for different simulations. Furthermore, if a change requires
to modify a data type then the modification can be made at the Data Specification
Container. The Data Specification Container of our motivating example contains
an Integer (number of seats, occupied seats, waiting persons and distances), a
String (bus line name, person name, etc.), and a Bool (is raining) data type.

5 Conclusion and Future Work

In this paper, we proposed the metamodel for a modular simulation environment.
We introduced a motivating example with a bus and a human simulation. These
two simulations had to be coupled to create a more detailed simulation. Based
on these two simulations, we described the necessity of the Modular Simulation
Environment Metamodel. The purpose and functionality of each metamodel
element were explained. We have shown that our metamodel allows describing the
coupling and interoperability on an architectural level. However, the metamodel

6 S. Koch et al.

has not been used for an actual coupling scenario. Therefore, we have to evaluate
our metamodel as the next step. We have to ensure that the behavior of the two
simulations is not negatively affected by the coupling. Thus, the behaviour of a
simulation must be integrated in the metamodel. Currently we are working on
a Domain Specific Language which uses the metamodel as base. Our goal is to
allow a automated generation of the code which is necessary for the coupling.

Acknowledgement

This work was partially supported by the MWK (Ministry of Science, Research
and the Arts Baden-Württemberg) in the funding line Research Seed Capital
(RiSC). We would like to thank Prof. Shmuel Tyszberowicz for his valuable input.

References

1. Benjamin, P., et al.: Using ontologies for simulation modeling. In: Winter Simulation
Conference. pp. 1151–1159. IEEE (2006)

2. Bocciarelli, P., et al.: A model-driven framework for distributed simulation of
autonomous systems. In: Proceedings of the Symposium on Theory of Modeling;
Simulation: DEVS Integrative. pp. 213–220. DEVS ’15 (2015)

3. Cetinkaya, D., et al.: MDD4MS: A model driven development framework for
modeling and simulation. In: Proceedings of the Summer Computer Simulation
Conference. pp. 113–121. Society for Modeling & Simulation International (2011)

4. Dahmann, J.S., et al.: The department of defense high level architecture. In: 29th
conference on Winter simulation. pp. 142–149. IEEE (1997)

5. DIS Steering Committee, et al.: The DIS vision: A map to the future of distributed
simulation (1994)

6. Friedenthal, S., et al.: A practical guide to SysML: The systems modeling language
(2012)

7. Koch, S.: Challenges in modularization of discrete event simulations. In: Collabora-
tive Workshop on Evolution and Maintenance of Long-Living Software Systems.
CEUR-WS (2018)

8. Koch, S.: Towards semantic composition of event-based simulation. In: 5th Design
For Future Workshop. Softwaretechnik-Trends (2018)

9. Law, A.M., Kelton, D.W.: Simulation modeling and analysis. McGraw-Hill (1991)
10. Reussner, R.H., et al.: Modeling and simulating software architectures: The Palladio

approach. MIT Press (2016)
11. Scerri, D., et al.: An architecture for modular distributed simulation with agent-

based models. In: Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems: Volume 1. pp. 541–548 (2010)

12. Teo, Y.M., Szabo, C.: CoDES: An integrated approach to composable modeling
and simulation. In: Simulation Symposium, 2008. ANSS 2008. 41st Annual. pp.
103–110. IEEE (2008)

13. Tolk, A.: Metamodels and mappings - ending the interoperability war. In: Fall
Simulation Interoperability Workshop (2004)

14. Topçu, O., et al.: Distributed Simulation - A Model Driven Engineering Approach.
Springer (2016)

15. Zeigler, B.P.: Multifacetted modelling and discrete event simulation. Academic
Press (1984)

