
On the model-driven synthesis of adaptable choreographies
Marco Autili, Amleto Di Salle, Francesco Gallo, Claudio Pompilio, Massimo Tivoli

University of L’Aquila, Italy
{marco.autili,amleto.disalle,francesco.gallo,massimo.tivoli}@univaq.it

claudio.pompilio@graduate.univaq.it

ABSTRACT
Service choreographies represent a powerful and �exible approach 
to compose software services in a distributed way. A key enabler 
for the realization of choreographies is the ability to automatically 
compose services, and perform exogenous coordination and adap-
tation of their interaction. This is a nontrivial and error prone task. 
Automatic support is needed. Adapters are used to bind concrete 
services to (abstract) choreography roles by solving possible proto-
col mismatches. In this paper we focus on the synthesis of adapters, 
each of them realized as a suitable composition of adaptation prim-
itives. We show our method at work on a use case in the domain of 
Smart Mobility & Tourism.

Reference Format:
Marco Autili, Amleto Di Salle, Francesco Gallo, Claudio Pompilio, Massimo 
Tivoli. 2018. On the model-driven synthesis of adaptable choreographies. In 
Proceedings of ACM/IEEE Models Conference Workshops (ModComp’18).
6 pages. 

1 INTRODUCTION
Service choreographies represent a powerful and flexible approach 
to compose software services in a distributed way. Many theoretic 
approaches have been proposed [9, 14, 15, 17, 23], just to mention 
a few.

With the objective of bringing the adoption of choreographies to 
the development practices currently adopted by IT companies, our 
research and development activity has been focused on practical 
and automatic approaches to realize service choreographies [1–7] 
by possibly reusing third-party services. During the last decade, this 
research and development activity has been funded (in particular) 
by two EU projects: the FP7 CHOReOS and its follow-up H2020 
CHOReVOLUTION1.

The need for service choreographies was recognized in the Busi-
ness Process Modeling Notation v.2.02 (BPMN2), which introduced 
Choreography Diagrams to offer choreography modeling constructs. 
In BPMN2 choreography diagrams, a participant role models the 
expected behaviour (e.g., the expected interaction protocol) that 
a concrete service should support in order to be able to play the 
role of the participant in the choreography. When third-party ser-
vices are involved, usually black-box services to be reused, one of 
the main problems to be solved when realizing choreographies is 
automatic realizability enforcement. It can be informally phrased 
as follows: given a choreography specification and a set of existing

1www.choreos.eu – www.chorevolution.eu
2http://www.omg.org/spec/BPMN/2.0.2/

services to be reused, externally coordinate their interaction so to ful�ll
the collaboration prescribed by the choreography speci�cation.

To address this problem, beyond coordination, adaptation must
be achieved automatically. To this extent, in the CHOReVOLUTION
project we have developed a process to synthesize a set of soft-
ware entities that interposed among the concrete services enforce
the collaboration prescribed by the choreography speci�cation. In
particular, Adapters solve possible protocol mismatches between
services and choreography roles. In [8], we de�ned an approach
to the automatic synthesis of service Adapters by employing En-
terprise Integration Patterns [16] (EIPs). EIPs serve as adaptation
primitives to realize the required adaptation logic. In this paper, we
describe how the adaptation logic of an Adapter is obtained as a
chain of adapter components implementing the related EIPs.

The paper is structured as follow. Section 2 provides the back-
ground. Section 3 focuses on the approach to choreography adapta-
tion, and Section 4 describes it at work on an explanatory example.
Related work is discussed in Section 5, and conclusions are given
in Section 6.

2 BACKGROUND

Figure 1: Background scenario

Service choreography is a decentralized approach, which pro-
vides a loose way to compose service by specifying the participants
(i.e., roles) and the (message-based) interaction protocol between
them. As already introduced, a role in a BPMN2 choreography dia-
gram models the expected behaviour (e.g., the expected protocol)
that a concrete participant service should match in order to be
able to play the role of the choreography. In other words, roles
characterize the behavioural boundaries that services playing them
must obey. Within these boundaries, the behaviour of the concrete
participant services can be adapted. This means that there is a gap
between the abstract protocol of the choreography participant roles
and the protocol of the concrete services, as shown in Figure 1.
This gap consists of mismatches between protocols by means of
(possibly complex) data mappings over both operation names and

https://doi.org/10.1145/nnnnnnn.nnnnnnn
www.choreos.eu
www.chorevolution.eu
http://www.omg.org/spec/BPMN/2.0.2/
https://doi.org/10.1145/nnnnnnn.nnnnnnn


ModComp’18, Oct. 14-16, 2018, Copenhagen, Denmark M. Autili et al.

Figure 2: Adapter Component Metamodel

I/O messages, and their �ows. In [8], we represented this matching
through an Adapter metamodel. It considers the subset of EIPs [16]
that belong to the classes of Message Routing and Message Trans-
formations Patterns. In particular, Message Routing EIPs are applied
to adapt sequences of messages, and hence realizing Flow-driven
adaptation. Instead, Message Transformation EIPs are applied to
adapt the content of a single exchanged message, and hence realiz-
ing Data-driven adaptation. Moreover, in [8], we de�ned a set of
rules corresponding to the EIPs adaptation primitives underlying
the synthesis of Adapters.

To better understand the problem that is being solved, we intro-
duce a case study from the CHOReVOLUTION project named Smart
Mobility and Tourism (SMT). An excerpt of the SMT case study is
used as running example in the remainder of this paper. The main
scope of the SMT scenario is to realize a Collaborative Travel Agent
Systems (CTAS) through the cooperation of several content and
service providers, organizations and authorities. The SMT use case
envisages a mobile application as an “Electronic Touristic Guide”,
by exploiting the CTAS in order to provide both smart mobility
and touristic information. Concerning the smart mobility informa-
tion, one of the involved participant is the Parking participant. It
provides parking information to the Mobility Information Planner
(MIP). The choreography prescribes that this information is gath-
ered through a single message exchange. Moreover, it contains both
the data of the nearest parking according to the user position and
the directions to reach it.

The concrete service that plays the role of the Parking partic-
ipant has an interface that does not perfectly match the related
abstract interface in the choreography. In particular, it provides
an operation to get the nearest parking in a speci�c area and an
operation to calculates the related route. Furthermore, several data
items are encoded in di�erent formats and the response messages
of concrete service have more details than the related choreography
message. An Adapter model represents the gap between the abstract

protocol of the MIP choreography participant and the protocol of
the concrete service playing the role of the Parking participant.

In this paper, we de�ne a metamodel, namely the Adapter Com-
ponent metamodel, that represents the structure of an adapter as
a chain of adapter components implementing the considered EIPs.
Furthermore, we specify a model-to-model transformation from
an adapter model to an adapter component model. The adapter
component metamodel is a platform-independent representation.
Thus, several technologies, such as Spring Integration3, Apache
Camel4, can be supported by de�ning the related model-to-code
transformation. In CHOReVOLUTION we adopted Spring Integra-
tion framework as target implementation.

3 APPROACH
In this section we describe the proposed approach. First, we present
the adapter component metamodel. Then, we discuss the model-to-
model transformation to obtain an adapter component model from
an adapter model.

3.1 Adapter Component Metamodel
The adapter component metamodel in Figure 2 represents the struc-
ture of an adapter. It contains an inbound channel and an outbound
channel, if needed. Each channel is a chain of adapter components
implementing the considered EIPs. In particular, a Splitter has an
input message and two or more messages as output, whereas the
opposite holds for the Aggregator. A Resequencer has two or more
messages both as input and output. The desired order of the out-
put messages is speci�ed by a a property of the Resequencer (not
shown in the �gure). A Message Filter has two or more input mes-
sages and one or more messages as output. The Content Filter and
Message Translator operate at the granularity of the data items

3https://spring.io/projects/spring-integration
4https://camel.apache.org/

https://spring.io/projects/spring-integration
https://camel.apache.org/


On the model-driven synthesis of adaptable choreographies ModComp’18, Oct. 14-16, 2018, Copenhagen, Denmark

Figure 3: Adaptation scenarios

constituting the message. Thus, they have a single message both
as input and output. The Content Filter removes the data items
should not be present in the output message, whereas the Message
Translator transforms data items to convert a message from one
format to another one. This conversion is de�ned by associating
one or more input data items with one output data item, possibly
with a transformation rule. Moreover, if the involved data items are
enumerated, the conversion can be further detailed by associating
the enumerated values.

3.2 Adapter Component Transformation
This section describes the Adapter component transformation. It
takes as input an adapter model and generates the related adapter
component model. We recall that an adapter model contains the
mapping among choreography messages and service messages
together with their data items [8].

For the sake of space, we provide a high-level description of
the main steps of the transformation algorithm. First, it parses the
adapter model to detect the required adaptation scenario. Figure 3
reports the possible adaptation scenarios derived from the adapter
generation rules de�ned in [8]. Then, the transformation de�nes the
adapter channels as a chain of adapter components implementing
the considered EIPs. In particular, Adapters have inbound channels
to adapt request messages and outbound channels to adapt response
messages, if present.

As said in Section 1, the CHOReVOLUTION process synthesizes
a set of software entities to enforce the collaboration prescribed
by the choreography speci�cation. In particular, Adapters are con-
nected with the software entities in charge of coordinating the in-
teractions, called Coordination Delegates (CDs). Therefore, Adapters
mediate two kinds of interactions: CD-to-Service and Service-to-
CD. The adaptation scenarios are symmetric according to the kind
of interactions mediated by the adapter. Thus, the adapters have
on each side both a coordination delegate and a service.

All the channels of the adapters are labelled with an EIP–based
noun. This noun indicates the main EIP of the chain applied accord-
ing to the behaviour of the adapter channel. In particular, if there
is a one–to–many mapping between the request messages, the in-
bound channel splits the request message (Splitter–based inbound
channel in (a), (b) and (c)). The outbound channel can combine
the response messages (Aggregator–based outbound channel in
(a)). Otherwise, it can �lter the response messages (Message Filter–
based outbound channel in (b)). If there is one response message,
the outbound channel can translate it into another format (Message
Translator–based outbound channel in (c)).

The same applies for the outbound channels in (d), (e), (f), (g),
(h) and (i) associated with the inbound channels that can either
re-order the request messages (Resequencer–based inbound chan-
nel in (d), (e) and (f)) or convert them into another format (Mes-
sage Translator–based inbound channel in (g), (h) and (i)). These



ModComp’18, Oct. 14-16, 2018, Copenhagen, Denmark M. Autili et al.

adapters are generated when there is a many–to–many mapping
between the request messages.

In case of a many–to–one mapping between the request mes-
sages, the inbound channel can either combine (Aggregator–based
inbound channel (l)) or �lter the request messages (Message Filter–
based inbound channel (m)), whereas the outbound channel can
only transform the response message into another format (Message
Translator–based outbound channel in (l) and (m)).

As said above, the transformation after detecting the required
adaptation scenario, it de�nes the adapter channels as a chain
of adapter components implementing the considered EIPs. The
following describes the structure of the EIP–based channels. The
dashed elements indicate the optional adapter components.

Figure 4 shows the EIPs chain of the Splitter–based channel.
In particular, �rst, a Content Filter removes the data items not
mapped by any relation. Then, a Message Translator converts the
resulting message into an intermediate message as prescribed by
the data items relations. Finally, the intermediate message is split
into several messages. The Splitter EIP is applied at the end since
there could be data items involved in di�erent relations. This means
that splitting the message at the begin into several intermediate
messages containing the data items to be translated is not always
possible.

Figure 4: Splitter–based channel

Concerning the Aggregator–based channel, its EIPs chain is
illustrated in Figure 5. First, a Message Filter drops the messages
not involved in any message relation. Then, for each remaining
message, a Content Filter removes the data items not mapped in
any relation. After, the intermediate messages are combined by an
Aggregator. Finally, a Message Translator converts the resulting
message into the format prescribed by the data items relations. The
Message Translator is applied after the Aggregator because there
could be data items relations involving di�erent messages. Thus,
the conversion can be realized only after aggregating the messages
into a single message.

Figure 5: Aggregator–based channel

Figure 6 shows the EIPs chain of the Message Filter–based chan-
nel. In particular, �rst, the messages are �ltered. Then, a Content
Filter removes the data items of the remaining message not mapped
in any relation. Finally, a Message Translator converts the resulting
message into the format prescribed by the data items relations.

Regarding the Resequencer–based channel, its chain is illus-
trated in Figure 7. First, a Content Filter removes the data items
not mapped in any relation. Then, for each resulting message, a

Figure 6: Message Filter–based channel

Message Translator converts it into the format prescribed by the
data items relations. Finally, a Resequencer re-orders the messages
into the required permutation.

Figure 7: Resequencer–based channel

Figure 8 shows the EIPs chain of the Message Translator–based
channel for a single exchanged message. In case the Message
Translator–based adapter channel transforms more than one mes-
sage (Message Translator–based inbound channel in (g), (h) and (i))
this EIPs chain is applied to each exchanged message. In particular,
a Content Filter removes the data items not mapped in any relation.
Then, a Message Translator converts the resulting message into the
format prescribed by the data items relations.

Figure 8: Message Translator–based channel

4 APPROACH ATWORK
This section describes our approach at work on the SMT case
study introduced in Section 2. We focus on the interaction between
the MIP and the Parking participant to gather parking informa-
tion. In particular, MIP sends the message parkingRequest to the
receiving participant Parking. Then, it replies with the message
parkingResponse. The concrete service that plays the role of the
receiving participant Parking has an interface that does not match
the related abstract interface in the choreography. Thus, an Adapter
that mediates the interaction CD-to-Service is needed. The related
adapter model is not reported in this paper, but its messages and
data items mappings are used to describe the adapter component
transformation at work. Figure 10 shows the resulting adapter com-
ponents model, whereas Figure 9 shows the related adapter.

In the following we describe the adapter components model
by considering the most representative messages and data items
relations according to the chains of EIP constituting the inbound
and the outbound channels.

The concrete service has an interface with two opera-
tions: getParkingRequest provides information about the near-
est parking in a speci�c area and getParkingDirections
calculates the related route. The former involves the mes-
sages getParkingRequest and getParkingResponse; the lat-
ter involves the messages getParkingDirectionsRequest and
getParkingDirectionsResponse.



On the model-driven synthesis of adaptable choreographies ModComp’18, Oct. 14-16, 2018, Copenhagen, Denmark

Figure 9: Adapter parking

Figure 10: Adapter parking component model

Concerning the request messages, the choreography mes-
sage parkingRequest is mapped to the service messages
getParkingRequest and getParkingDirectionsRequest. This
results in a splitter-based inbound channel. Regarding the re-
sponse messages, the service messages getParkingResponse and
getParkingDirectionsResponse are mapped to the choreogra-
phy message getParkingResponse. This leads to an aggregator-
based outbound channel. The transformation identi�es the adap-
tation scenario (a) in Figure 3. Then, it de�nes the inbound and
outbound channels by applying the chain of EIPs speci�ed in the
Figures 4 and 5 respectively.

The message parkingRequest contains the current position, the
upper left and lower down points of the parking area of interest
represented by the latitude and longitude coordinates. Moreover,
it contains the start and the end time of the parking. The mes-
sages getParkingRequest and getParkingDirectionsRequest
contains the starting position and the boundaries of the park-
ing area of interest represented as a string consisting of the lat-
itude and the longitude coordinates. Furthermore, the message
getParkingRequest contains the parking start and end date.

With respect to the inbound channel (Figure 4), a Content Filter
is not needed because all the data items of the request message are
involved in some relation. Instead, a Message Translator (relation 1
of Figure 10) is required to convert the data items of the message

parkingRequest into an intermediate message as prescribed by the
data items relations. In particular, it concatenates the coordinates
of the current position, upper left and lower down points of the
parking area by using the comma as a separator (relation 2 for the
upper left point). Furthermore, it converts the start and the end time
of the parking into the related date representations by appending
them to the current date (relation 3 for the end time). Then, the
resulting message is split into the messages getParkingRequest
and getParkingDirectionsRequest (relation 4).

Regarding the outbound channel (Figure 5), a Message Filter is
not needed because all the response messages are involved in some
message relation. The message getParkingDirectionsResponse
contains the name, address and the route from the current position
to the parking. All these data items except for the route are not
involved in any data item relation so a Content Filter drops them
(relation 5). The message getParkingResponse contains the name,
latitude, longitude, operator name, type, status, address, price, ca-
pacity and the parking rate of the parking. In particular, the type
and the status item are represented by an enumeration of integer
numbers, whereas in the message getParkingResponse they are
represented as an enumeration of strings. The capacity and the
parking rate items are not involved in any data item relation so
they are dropped by a Content Filter (relation 6). Then, the result-
ing �ltered messages are combined into an intermediate message
(relation 7). Finally, a Message Translator converts this message
into the message parkingResponse (relation 8). It copies the data
items that do not require a conversion, and it translates the type and
the status enumerated integer values into the related enumerated
string values. Regarding the type data item (relation 9), the integers
{0, 1, 2, 4} are translated respectively into the strings {unknown,
open, multistorey, subterranean} (relations 10, 11, 12 and 13).

5 RELATEDWORK
The work described in this paper is related to approaches conceived
for providing choreography developers with support for specifying
participant adapters and generating their code out of their speci�ca-
tion. Thus, in the following, we do not consider on-the-�y adapters
generation performed at run time.

The mediation/adaptation of protocols have received attention
since the early days of networking. Indeed, many e�orts have been
done in several directions including for example formal approaches
to protocol conversion, like in [11, 18].

With the emergence of web services and advocated universal in-
teroperability, the research community has been studying solutions
to the automatic mediation of business processes [25].



ModComp’18, Oct. 14-16, 2018, Copenhagen, Denmark M. Autili et al.

Spitznagel and Garlan propose an approach to formally spec-
ify adapter wrappers as protocol transformations, modularizing
them, and reasoning about their properties, with the aim to resolve
component mismatches [24].

Bennaceur and Issarny presented an approach that, exploiting
ontology reasoning and constraint programming, allows for auto-
matically inferring mappings between components interfaces [10].
Importantly, these mappings guarantee semantic compatibility be-
tween the operations and data. Although valuable and powerful,
this approach does not account for development e�ort whose aim
is to bring the adoption of choreographies to the development
practices currently adopted by IT companies.

Do et al. propose a catalog of criteria for documenting the evalu-
ations of schema matching systems [12]. In particular, the authors
discuss various aspects that contribute to the match quality ob-
tained as the result of an evaluation. In [13] the authors present a
generic schema match system called COMA, which provides an ex-
tensible library of simple and hybrid match algorithms and supports
a framework for combining match results. This framework can be
used for systematically evaluate di�erent aspects of match process-
ing, match direction, match candidate selection, and computation
of combined similarity, and di�erent matcher usages.

Paolucci et al. propose a base algorithm [21] for semantic match-
ing between service advertisements and service requests based on
DAML-S, a DAML-based language for service description. The al-
gorithm proposed di�erentiate between four degrees of matching
and can be used for automatic dynamic discovery, selection and
inter-operation of web services.

In [19] the authors discuss an extensions of the Jolie orchestra-
tion language [20], namely JoRBA framework that allows to develop
dynamically adaptable service oriented applications. In [22] the
AIOCJ choreography language is presented, where leveraging on
adaptability features of JoRBA, allows for developing adaptable
choreographies.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we presented how the model-based approach used
within the CHOReVOLUTION project combines di�erent EIPs as
adaptation primitives to achieve choreography adaptation. The ap-
proach is that of automatically generating a platform-independent
representation of the adaptation logic as a chain of adapter compo-
nents implementing the considered EIPs. In particular, in CHOReV-
OLUTION we used this representation for generating the related
Adapter by using Spring technologies. An explanatory example,
taken from the Smart andMobility Tourism use case of the CHOReV-
OLUTION project, has been used to show the approach at work.

As future work, we plan to extend the supported implementation
technologies of the model-based approach. Furthermore, we will
investigate how to support adaptation scenarios involving chore-
ography tasks with multi-instance Participant.

7 ACKNOWLEDGMENTS
This research work has been supported by (i) the EU H2020 Pro-
gramme under grant agreement number 644178 (project CHOReV-
OLUTION - Automated Synthesis of Dynamic and Secured Chore-
ographies for the Future Internet), (ii) the Ministry of Economy and

Finance, Cipe resolution n. 135/2012 (project INCIPICT - INnovating
CIty Planning through Information and Communication Technolo-
gies), and (iii) the GAUSS national research project funded by the
MIUR under the PRIN 2015 program (Contract 2015KWREMX).

REFERENCES
[1] Marco Autili, Amleto Di Salle, Alexander Perucci, and Massimo Tivoli. 2015.

On the Automated Synthesis of Enterprise Integration Patterns to Adapt
Choreography-based Distributed Systems. In Proc. of 14th Coordination Lan-
guages and Self-Adaptive Systems (FOCLASA) (EPTCS). 33–47.

[2] Marco Autili, Amleto Di Salle, and Massimo Tivoli. 2013. Synthesis of Resilient
Choreographies. In SERENE.

[3] Marco Autili, Paola Inverardi, Filippo Mignosi, Romina Spalazzese, and Mas-
simo Tivoli. 2015. Automated Synthesis of Application-Layer Connectors from
Automata-Based Speci�cations. In 9th Int. Conf. on Language and Automata
Theory and Applications LATA. 3–24.

[4] Marco Autili, Paola Inverardi, and Massimo Tivoli. 2014. CHOREOS: Large scale
choreographies for the future internet. In 2014 SW Evolution Week - IEEE Conf. on
SW Maintenance, Reengineering, and Reverse Engineering, CSMR-WCRE. 391–394.

[5] M. Autili, P. Inverardi, and M. Tivoli. 2015. Automated Synthesis of Service
Choreographies. Software, IEEE 32, 1 (Jan 2015), 50–57.

[6] Marco Autili, Leonardo Mostarda, Alfredo Navarra, and Massimo Tivoli. 2008.
Synthesis of decentralized and concurrent adaptors for correctly assembling
distributed component-based systems. Journal of Systems and Software 81, 12
(2008), 2210–2236.

[7] Marco Autili, Davide Ruscio, Amleto Di Salle, Paola Inverardi, and Massimo
Tivoli. 2013. A Model-Based Synthesis Process for Choreography Realizability
Enforcement. In FASE. LNCS, Vol. 7793.

[8] Marco Autili, Amleto Di Salle, Francesco Gallo, Claudio Pompilio, and Massimo
Tivoli. 2018. Model-driven adaptation of service choreographies. In Proc. of the
33rd ACM Symposium on Applied Computing, Pau, France, April 09-13. 1441–1450.

[9] Samik Basu and Tev�k Bultan. 2011. Choreography conformance via synchro-
nizability. In Proc. of WWW ’11.

[10] Amel Bennaceur and Valérie Issarny. 2015. Automated Synthesis of Mediators to
Support Component Interoperability. IEEE Trans. Soft. Eng. 41, 3 (2015), 221–240.

[11] Kenneth L. Calvert and Simon S. Lam. 1990. Formal Methods for Protocol Con-
version. IEEE Journal on Selected Areas in Communications 8, 1 (1990).

[12] Hong Hai Do, Sergey Melnik, and Erhard Rahm. 2002. Comparison of Schema
Matching Evaluations. InWeb, Web-Services, and Database Systems, NODe Web
and Database-Related Workshops, Erfurt, Germany, October 7-10, 2002. 221–237.

[13] HongHai Do and Erhard Rahm. 2002. COMA - A System for Flexible Combination
of Schema Matching Approaches. In VLDB 2002, Proceedings of 28th International
Conf. on Very Large Data Bases, August 20-23, 2002, Hong Kong, China. 610–621.

[14] Matthias Güdemann, Pascal Poizat, Gwen Salaün, and Lina Ye. 2016. VerChor: A
Framework for the Design and Veri�cation of Choreographies. IEEE Transaction
on Services Computing 9, 4 (2016), 647–660.

[15] Sylvain Hallé and Tev�k Bultan. 2010. Realizability analysis for message-based
interactions using shared-state projections. In Proc. of the 18th ACM SIGSOFT
international symposium on Foundations of software engineering (FSE ’10). 27–36.

[16] Gregor Hohpe and Bobby Woolf. 2004. Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions - Fiftheenth printing 2011. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[17] RamanKazhamiakin andMarco Pistore. 2006. Analysis of Realizability Conditions
for Web Service Choreographies. In 26th IFIP WG FORTE. 61–76.

[18] Simon S. Lam. 1988. Correction to "Protocol Conversion". IEEE Trans. Software
Eng. 14, 9 (1988).

[19] Ivan Lanese, Fabrizio Montesi, and Gianluigi Zavattaro. 2015. The Evolution of
Jolie. In Essays Dedicated to M. Wirsing on the Occasion of His Retirement from the
Chair of Programming and Soft. Eng. (Lect. Notes in Computer Science). 506–521.

[20] Fabrizio Montesi, Claudio Guidi, Roberto Lucchi, and Gianluigi Zavattaro. 2007.
JOLIE: a Java Orchestration Language Interpreter Engine. Electronic Notes in
Theoretical Computer Science 181, Supplement C (2007), 19 – 33.

[21] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia P. Sycara. 2002.
Semantic Matching of Web Services Capabilities. In The Semantic Web - ISWC
2002, First Int. Semantic Web Conf., Sardinia, Italy, Proceedings. 333–347.

[22] Mila Dalla Preda, Saverio Giallorenzo, Ivan Lanese, Jacopo Mauro, and Maurizio
Gabbrielli. 2014. AIOCJ: A Choreographic Framework for Safe Adaptive Dis-
tributed Applications. CoRR abs/1407.0975 (2014). http://arxiv.org/abs/1407.0975

[23] Gwen Salaün, Tev�k Bultan, and Nima Roohi. 2012. Realizability of Choreogra-
phies Using Process Algebra Encodings. IEEE Trans. Services Computing 5, 3
(2012), 290–304. https://doi.org/10.1109/TSC.2011.9

[24] Bridget Spitznagel and David Garlan. 2003. A Compositional Formalization of
Connector Wrappers. In ICSE.

[25] Roman Vaculín, Roman Neruda, and Katia P. Sycara. 2008. An Agent for Asym-
metric Process Mediation in Open Environments.. In SOCASE.

http://arxiv.org/abs/1407.0975
https://doi.org/10.1109/TSC.2011.9

	Abstract
	1 Introduction
	2 Background
	3 Approach
	3.1 Adapter Component Metamodel
	3.2 Adapter Component Transformation

	4 Approach at work
	5 Related work
	6 Conclusions and future work
	7 Acknowledgments
	References

