
ProVer: An SMT-based Approach for Process Verification

Souheib Baarir
1
, Reda Bendraou

1
, Hakan Metin

1
, Yoann Laurent

2

1Laboratoire d'Informatique de Paris 6, Paris, France

FirstName.LastName@lip6.fr

2 IQVIA, laurent.yoann@gmail.com

Abstract

Business processes are used to represent the enterprise’s

business and services it delivers. They are also used as a

means to enforce customer’s satisfaction and to create an

added value to the company. It is then more than critical to

seriously consider the design of such processes and to make

sure that they are free of any kind of inconsistencies.

This paper highlights the issues with current approaches

for process verification and proposes a new approach called

ProVer. Three important design decisions will be motivated:

1) the use of UML AD as a process modeling language, 2) the

formalization of the UML AD concepts for process

verification as well as a well-identified set of properties in

first-order logic (FOL) and 3) the use of SMT (Satisfiability

Modulo Theories) as a mean to verify properties spanning

different process’s perspectives in a very optimal way. The

originality of ProVer is the ability for non-experts to express

properties on processes than span the control, data, time, and

resource perspectives using the same tool.

Introduction

Processes, whatever the field (ex. software, military or

healthcare), are everywhere. They represent the building

block of any information system nowadays. Business

processes are used to represent the enterprise’s business and

services it delivers. They are also used as a mean to enforce

customer’s satisfaction and to create an added value to the

company. Software processes are critical as well since they

represent the guaranty to respect development process’s

deadlines and to ensure a certain quality of the delivered

software, which in some cases will end up being the

company’s information system itself. It is then more than

critical to seriously consider the design of such processes and

to make sure that they are free of any kind of inconsistencies.

Inconsistencies can range from very basic syntactical

errors, to more complex issues such as deadlocks, inconsistent

allocation of resources and time on process’s activities or any

proprietary business constraints that might be violated by

potential process executions.

Some process models, depending on the business domain (ex.

Healthcare or military), can be very complex and may contain

more than 250 activities with very sophisticated control and

data flows, resource and time constraints [Christov

14][Simidchieva 10]. Trying to analyze these processes and

to verify them without the help of a tool would be

unmanageable. In [Mendling 09], a study demonstrated that

over 2000 inspected process models, 10% of these models

where unsound. An equivalent study on SAP repository

containing more than 600 complex process models

demonstrated that more than 20% had flaws. [Mendling 06,

07]. Similarly, Gruhn et al. [Gruhn 07] collected 285 EPC

(Even-Driven Process Chains) from different sources i.e.,

repositories, scientific papers, thesis, etc., and came to the

conclusion that even though process models were

syntactically correct, more than 38% of them were unsound.

Finally, Vanhatalo et al. [Vanhatalo 07] analyzed more than

340 Business process models with a focus and the control

flow aspect to realize that half of them were invalid i.e.,

contained deadlocks or unreachable activities.

More than 20 years after the introduction of business

processes, it is quite surprising to realize that, despite the

different approaches and tools provided by the literature for

model verification, such ratio of errors still persist in the

domain of process models. One possible reason could be the

complexity of some process models and the fact that they

integrate different perspectives and properties that need to be

checked, each one requiring a specific tool or approach to

validate it [Gruhn 06].

In the following we give a motivating example to explain

our point.

Figure 1. The ProcessOrder business process example extracted from the UML Specification.

Motivating Example. Process models are mainly driven

by three perspectives: Control flow, Data flow and Resources.

In addition, more complexity can be introduced by other

constraints related to the “Time” perspective as well as to

some project’s specific business constraints (ex. some

resources can be substitutable under some circumstances,

some activities can be skipped under some conditions, etc.).

Figure 1 presents an example which highlights process

perspectives. The notation used is UML Activity diagrams.

The goal of this process is to manage the reception,

processing, payment and shipping of customers’ orders. The

process contains 7 actions connected to control nodes

(DecisionNode, ForkNode…) and represents the control flow
perspective. The data perspective is represented through the

so-called input/output Pins (see notation details in the figure).

They represent what an action might require to trigger its

execution or what it might produce as the result of its

execution. Some organizational aspects/constraints are

annotated on the diagram such as the resources used by

actions (ex. BankConnector) and time constraints on top of

each action in terms of hours. Time units could also be used

instead.

One way to validate such process models is to use formal

verification techniques such as Model-Checking. In the field

of business processes many approaches have been proposed

for process verification [Eshuis 06, Wong 07, Liu 07, Trck 09,

Fahland 09, Van der Aalst 11]. They address essentially what

it is called soundness properties [Van der Aalst 11]. These

properties guarantee the absence of deadlocks, unreachable

activities, and other anomalies that can be detected without

domain knowledge. However none of these approaches was

really adopted in the industry [Morimoto 08]. Their

complexity, the requirement of a mathematical background to

use them and very often, a lack of a user-friendly tooling

support was an obstacle for their adoption [Gruhn 06,

Mendling 09]. But more specifically, let’s illustrate what we

believe to be an issue in the current approaches and the

problems we intended to contribute to with our work. In the

following we categorize the different issues we identified

after a review of the state of the art in the domain of software

and business process verification. A detailed review of the

different approaches (more than 23) is given in [Laurent 18]

Identified issues in process verification. A major

point with current process verification approaches is about the

formalism and tools they rely on for performing the

verification. Whatever the process modeling language (PML),

a formal semantics is given to the language by mapping its

constructs to either variants of automata [Guelfi 05, Eshuis

06], Petri nets [Van der Aalst 98 & 11, Trcka 09, Fahland 09,

Jung 10] or process algebra [Wong 07, Liu 07]. However, this

means that we are relying on the semantics of the targeted

formal language concepts in terms of expressiveness, e.g.

Petri Nets, instead of the modeling language itself. For

instance, if one wants to check the following

property/constraint: “is the Close Order action always

executed?”, he can use classical Petri nets to represent the

process model [Peterson 81]. However, verifying the property

“is the invoice always produced after the execution of the Fill

Order action?” (cf. Figure 1), implies using data from the

system domain and imposes to use Colored Petri Nets

(CPN)[Jensen 87]. Even if Petri nets, with their different

variants, can represent anything defined in terms of an

algorithm, this does not imply that the modeling effort is

acceptable. Hofstede's and Wohed’s paper [Hofstede 02]

gives concrete examples of some Workflow Patterns that need

very complex Petri nets extensions and tricks to represent

them while this is expressed very naturally in UML Activity

diagrams (AD) [Wohed 05] or Business Process Modeling

Notation (BPMN) [OMG 11] which are among the modeling

languages that support most of the workflow patterns as

demonstrated in [Van der Aalst 03]. When it comes to the

properties to be checked on process models, most of the

approaches focus on the control flow aspect [Van der Aalst

11b], only a few of them address the data perspective [Awad

09, Trcka 09, Knuplesch 10] or the time perspective [Eshuis

02, Guelfi 05, Watahiki 11]. No approach proposes to address

all these perspectives in a unified way. For instance, in the

process depicted in figure 1, expressing a property such as “is

it possible to reach the end of the process in less than 8 hours

while making sure that the invoice artifact is produced and

without using the BankConnector resource?” would be

challenging.

Another obstacle for the limited adoption of formal

techniques and approaches for process model verification in

the industry comes from the process modelers’ resistance to

express process constraints and properties using formal

languages [Emerson 90, Smith 02, Keleppe 03, Awad 07 &

08]. Due to the lack of mathematical background, properties

are usually expressed in natural language and then given to

experts that will translate these properties into a mathematical

formalism with the eventual risk of misinterpreting what was

initially required by the process modeler [Smith 02]. Other

process modelers would prefer going through the process

model and double checking it or by adding some exception

handlers in the process model and extra checks in order to

make sure that the process is sound. Of course, this is not

feasible in the case of complex and sophisticated process

models. These will definitely need a Model-Checking tool to

ensure that the properties/constraints are satisfied whatever

the process execution. LTL (Linear Temporal Logic) [Pnueli

77] or CTL (Computation Tree Logic)[Hafer 87] are usually

used to express these properties.

Finally, current approaches and Model-Checking tools

are not fully integrated to process modeling tools and the

verification workflow is not always fully automated. Some

translation steps of the process models and of the properties to

be checked towards the verification formalism have to be

done manually in some approaches [Van der Aalst 99,

Dijkman 08]. Moreover, usually the results of the verification

in case of a counter-example is found is not explicitly

reported graphically on the process model so that the process

modeler can clearly identify the problem. Instead, the existing

approaches propose a list of states representing the process

execution that failed.

In conclusion, the issues we identified during a thorough

study of the literature for process model verifications are: 1)

the need to rely on the semantics of a target formal language

which may limit the expressiveness of process models; 2) the

inability of current approaches to support the different process

perspectives (control flow, data flow, time and resources) in a

unified way; 3) lack of a user-friendly tooling support which

discourages the use of the current approaches and limits their

adoption by the industry.

In the following section we draw the main lines of our

approach for process verification called ProVer. Three

important design decisions will be highlighted and motivated:

1) the use of UML AD as a process modeling language, 2) the

formalization of the UML AD concepts for process

verification as well as a well-identified set of properties in

first-order logic (FOL) and 3) the use of SMT (Satisfiability

Modulo Theories) as a mean to verify properties spanning

different process’s perspectives in a very optimal way.

Section 3 gives more details about the role of SMT in ProVer

while Section 4 will detail the tooling support and the

validation aspects. Section 5 concludes this work and draws

future steps of this contribution

ProVer: a framework for Process

Verification

The traditional approach to achieve the verification of a

model (a process model in our case) with respect to a given

property consists beforehand in defining the two entities

formally: a) the process modeling language concepts and b)

the properties to be verified. A process model is then

submitted to a so-called model-checker tool, which will

answer the question of (un)satisfaction of the given property

by the process model.

In the following sub-sections, we will detail our design

choices and contributions regarding the ProVer framework.

UML Activity Diagram formalization for process modeling:
our choice of UML as PML was mainly driven by the

following arguments:

- UML is a standard and widespread modeling language in

the industry with a mature tooling support.

- UML AD has proven to be a good candidate as PML in

many works presented in the literature [Bendraou 10].

- UML AD has proven to be one of the most expressive

languages in terms of satisfying the so well-known

workflow patterns as presented by [Van Der Aalst 03].

However, the approach presented here can be applied to any

PML such as BPMN but a formalization of BPMN concepts is

required in order to achieve that. This represents the cost to

adapt our approach to other PMLs.

One of the main challenges we had to face was that the

semantics of UML AD is given in natural language in the

standard specification which could be ambiguous and a source

of misinterpretations. However, the OMG (Object

Management Group) issued a new standard called fUML

(Semantics of a Foundational Subset for Executable UML

Models) that aims at giving a precise semantics to a subset of

UML [OMG 11b]. The operational semantics of this subset

are given in a pseudo java-code which is supposed to reduce

ambiguity however; there are no mathematical and formal

representations of this semantics that can be used

straightforwardly as input to model-checking tools.

To face this issue, we decided to provide a formalization

of UML AD semantics based on the fUML specification

instead of relying on a translation of UML AD towards

other formalisms such as Petri nets for instance. We aimed

to define a formal model of fUML using First-Order Logic

(FOL). The formalization addresses a subset of fUML that

includes the set of concepts required for process modeling as

identified in [Bendraou 05]. Current formalizations proposed

in the literature focus mainly on the control-flow aspects of

the process preventing to verify many kinds of properties

related to data-flow, resources and timing constraints [Van der

Aalst 11]. Therefore, our formalization covers both control

and data-flow of the process through the use of the UML AD

notations and takes into account organizational data such as

resources and time constraints.

At this aim, we have formally reduced the representation

of a software process to a vertex-labeled graph. Each graph's

node corresponds to a UML Activity node according to its

type (i.e. Control, Executable or Object Node). Each graph's

arc corresponds to a UML Activity edge (i.e. Control or

Object Flow). The execution semantics of this formalism is

based on the notions of states, enabling and firing of

transitions, similar to those used in the Colored Petri Nets

[Jensen 87]. To be able to reason about each dimension of the

process, the formalization covers both control and data-flow

of the process through the use of the AD notations, and takes

into account the associated organizational data such as

resources and timing constraints. We partially published this

formalization in [Laurent 14] and we extended it for the

purpose of this work in order to cover more UML Concepts.

Due to space constraints we can introduce it here but the

interested reader can find it in [Laurent 18].

Once we had formalized the UML AD in FOL, we opted

for an implementation based on Satisfiability Modulo

Theories (SMT) technologies. SMT is an area of automated

deduction that studies methods for checking the satisfiability

of first-order formulas with respect to some logical theory T

of interest [Barret 09]. What distinguishes SMT from general

automated deduction is that the background theory T need not

be finitely or even first-order axiomatizable, and that

specialized inference methods are used for each theory. By

being theory-specific and restricting their language to certain

classes of formulas (such as, typically but not exclusively,

quantifier-free formulas), these specialized methods can be

implemented in solvers that are more efficient in practice than

general-purpose theorem provers. Typical theories of interest

include formalizations of various forms of arithmetic, arrays,

finite sets, bit vectors, algebraic datatypes, strings, floating

point numbers, equality with uninterpreted functions, and

various combinations of these. These theories are supported

by a standard called SMT-LIB

[http://smtlib.cs.uiowa.edu/language.shtml] and are

implemented in many efficient solvers (z3, Yices, CVC4, etc.)

Categorization of process perspectives and properties: as

mentioned earlier, the literature addresses essentially what it

is called soundness properties [Van der Aalst 11] which aim

to detect some Behavioral issues on process executions vs.

Syntactical errors. Business processes and more particularly

software processes are concerned with additional and critical

constraints related to their human-oriented nature. They imply

many creative tasks that rely on many factors such as time,

human agents and resource management. The success of a

software process depends also on the application of many best

practices and organizational constraints. We call these

constraints Organizational properties and we consider them as

a subcategory of Behavioral properties since a state space

exploration is required to guarantee their preservation for all

possible process's executions. They are related to the Time

and Resource perspectives of a process. Examples of such

properties are to make sure, for instance, that the process or an

activity will terminate before a given deadline whatever the

execution path, make sure that there will be enough agents to

perform the activities of the process, etc. A detailed

identification and formalization of such properties are then

required in order to verify them on process models and to

integrate them into our process verification tool.

Once we formalized the UML AD, we also formalized a

set of process properties that we identified through a detailed

study of the literature. This set addresses the four process

aspects introduced earlier (Control and Data flow, Time and

Resources) plus another one that we called Business

properties which refers to every project’s specific constraints

that have to be defined by the process modelers depending on

the project’s context. This set comes in the form of a library

of properties described both in natural language and LTL

which is the logic we have chosen to express our properties

and which covered all of them in terms of expressivity. In a

separate work [Khelladi 15], we also studied the four most

Category Definition

(1) Syntactical

SynWorkflow Syntactical errors on the process (e.g. the source and target of an edge are different)

SynOrganizational
Syntactical errors on the organizational part of the process (e.g. the same agent cannot be
assigned more than one time to the same activity)

(2) Soundness

OptionToComplete A started process can always complete

ProperCompletion No other activity should be running when the process terminates

NoDeadTransition All the activities must be reachable

Soundness with data

MissingData Data is always present when needed (e.g. no data missing to start an activity)

UselessData Data created is always used (e.g. no data created but never used before the process ends)

InconsistentData
Data can never be in an inconsistent state (e.g. no data modified by multiple activities in
parallel)

(3) Organizational

InTime
There is enough time to perform the activities (e.g. the process will terminate before X
hours/days)

MissingResource No missing resource to start an activity (e.g. there are enough agents to do the process)

InefficientResourceUse No resources that are inefficiently used (e.g. the agents have always activity to do)

(4) Business

ExistenceActivity A is executed more / less / (between) X (and Y) times

ExistenceTimeActivity A is executed before / after / (between) X (and Y) time unit

ExistenceTimeData ArtefactA is available before / after/(between) X (and Y) time unit

ExistenceTimeResource ResourceA is used before / after/(between) X (and Y) time unit

Relation A is executed before / after / in-parallel / in-exclusion / (between) B (and C)

RelationData ArtefactA is available before /after / in-exclusion of ArtefactB

RelationActivityData
ArtefactA is available before / after/in-parallel / in-exclusion / (between) the execution of B
(and C)

LogicBased e.g. Existence(A) implies Existence(B) else Existence(C)

…. e.g. Existence(A) implies (ExistenceData(ArtefactA) and ExistenceData(ArtefactB))

Table 1. Overview of the software properties we identified

http://smtlib.cs.uiowa.edu/language.shtml

used software development methods namely RUP, SCRUM,

XP and KANBAN in order to extract from each of them, a set

of best practices and constraints that should be enforced

during the development process. This resulted in a ready-to-

use library of constraints that we integrated to our process

modelling and verification tool so process modelers can

annotate their process models with one of these

properties/constraints to make sure that the process model

doesn’t violate any of them.

Table 1 depicts the set of properties we identified and

their categorization.

Now that we have introduced the formalization of both the

PML and the properties, the next sub-section gives an

overview of the ProVer tool.

Overview of the approach. In this section, we briefly

highlight the different steps required to run a process model

verification using ProVer, then we present its internal

architecture and the steps we followed in order to build this

framework.

First, the process modeler needs either to design a process

model or to import an existing one (see (1) in figure 2). In our

tool, UML AD is used as a process modeling language.

Secondly, the process modelers can choose among the library

of predefined properties proposed by ProVer and which

covers different process perspectives (Control/ Data flow,

Time or Resources). This is done either by checking boxes

(see (2.a) in figure 2) or by using an annotation-based

language we defined in [Khelladi 15] (see (2.b) in figure 2).

Process models and the properties are then translated into

SMT specification which implements the semantics of UML

AD as defined by our FOL formalization and based on the

fUML standard (see (3) in figure 2). The SMT solver

performs the verification (see (4) in figure 2) and if a counter-

example is found, this is highlighted in the process model

editor on the process model in red with a message of the

unsatisfied property (see (5) in figure 2).

As we can see in the figure, the steps we followed in order to

realize ProVer were 1) formalization of UML AD semantics

as well as the set of properties in FOL; 2) implementation of

the UML AD / Properties semantics and UML AD syntax in

SMT; 3) implementation of the translations from UML AD/

Properties specifications => SMT; 3) graphical integration of

the result into the process model editor.

In the following sections we will zoom-in SMT choice

and the translation details. We will give examples of some

concepts and properties expressed in SMT before to present

the graphical interface of our tool. A user guide of the tool

presenting all the details of the GUI is given here

[Bendraou16].

Use of SMT for process verification

The verification process that we adopted is the well-

known Bounded Model Checking (BMC) procedure

[Clarke01]. Classically, this procedure inputs, 1) an initial

state (for the system), 2) the transition relation, 3) a property

to verify and, 4) a length bound k, then outputs the

(un)satisfaction of the of system w.r.t the property up the

bound k.

The implementation of such a procedure is done by

constructing a logical formula that is satisfiable if and only if

the underling transition system can realize a sequence of k

state transitions that satisfy the property. If such a path

segment cannot be found at the given length k, the search

continues for larger k. The procedure is symbolic, i.e.,

symbolic Boolean variables are utilized; thus, when a check is

done for a specific path segment of length k, all path segments

of length k are being examined. The formula that is formed is

given to a satisfiability solving program and if a satisfying

assignment is found, that assignment is a witness for the path

segment of interest.

Figure 3. A process model with UML AD representing a

selling process

If the formula is propositional and not very large then a basic

Boolean SAT-solver can solve it efficiently. Things become

more complicated when the formula is FOL! Actually, a first

attempt to solve such formula is to transform it to

propositional one and use SAT-solvers. However, this

transformation is memory and time consuming and, most of

all degenerative! For example, when comparing two 32-bits

integer variables, we have to use 64 binary variables and

compare them bitwise. So, the approach will have serious

efficiency issues when the treated models are large.

The other option is to explore Satisfiability Modulo Theories

(SMT). This area handles FOL formulae directly by use of

simple transformation based on the SMT-LIB standard

[Barret 15]. The SMT option seems to be very promising and

is strengthened by the results obtained by SMT-solvers in the

last SMT competitions (2014 and 2015).

Figure 2. ProVer: overview of the approach

http://smtcomp.sourceforge.net/2014/
http://smtcomp.sourceforge.net/2015/

Figure 4. Architecture of the ProVer tool

 Actually, solvers, like z3 (form Microsoft), Yices (from

SRI International), show their ability to solve very

complicated problems (from both academic and industrial

worlds) in a reasonable time.

To give an idea on the effectiveness of our SMT-based

approach, we use an example representing a selling process

(see Figure. 3). The process includes 7 activities and 4

decision nodes (one from each type). Table 2 shows some

results comparing our SAT-based approach (implemented in

Alloy4SPV [Laurent 14b]) with respect to the SMT-based

one. The first column of Table 2 represents the checked

properties, while the second highlights the execution time (in

seconds) with Alloy4SPV. The third column mentions the

execution time of our ProVer tool (SMT-based) and the last

column exhibits the result of the verification. We can clearly

notice here the efficiency of our SMT-based approach just by

looking the speed up we obtain for each property.

The results obtained so far are very interesting i.e. 64x

faster in the example shown above and up to 92x faster for

some properties verification on another example, the OpenUP

process, not presented here. The next section gives more

details about ProVer architecture.

Tooling support: architecture and

validation.

The architecture of our tool is highlighted in Fig. 4. It is based

on the two classical layers: the front-end and the back-end.

The former allows the interaction with the final user in a

friendly graphical way. It inputs the UML AD representing

the business process as well as the properties to be analysed.

It outputs the result of the verification. The Obeo UML Tool

component is dedicated to the input of the studied process

model and the output of the verification result, while the

FUML AD Verification plugin component deals with the input

of the properties to be verified. It is worth noting that no

mathematical background is needed to operate these inputs

and interpret the results. All the properties can be selected

through an integrated and ready to use library of properties.

Property Alloy4SPV ProVer Speed Up Result

Check Completion 24 0.8 30 Verified

Run Completion 33 1.5 22 Model Found

Check Total Time 6 154 2 64 Verified

Run Total Time 6 63 2 23 Model Found

Check Existence Reserve

Stock = 0
20 2 10

Counter Example

Found

Run Existence Reserve

Stock = 0
22 1 22 Model Found

Table 2. Alloy approach (Alloy4SPV, with Alloy Analyzer) Vs. SMT-based approach (ProVer with z3 solver),

performance for properties expressed on the process on figure 3.

 <<component>
> SMT-

Solver

VerificationResult : SMTSolution

 <<component>
> FOL2SMT Translator

VerificationQuery:SMTProble
m

ProcessModel:SMTProblem

 <<component>
> fUML AD Verification

plugin

VerificationQuery:ProcessPrope
rty

 <<component>
> Obeo UML

Tool

ProcessModel:UMLA

ProcessModel
er

F
r
o

n
t-e

n
d

B

a
c
k

-e
n

d

http://yices.csl.sri.com/

Due to space limit we can’t present in details the GUI of the

tool but a user guide can be found here [Bendraou 16]. A

java-like annotation language has also been developed to ease

the specification of customized properties [Khelladi 15].

The two other components are FOL2SMT Translator and the

SMT-solver components form the back-end. The former is the

heart of the tool. It implements the verification request of the

user as a FOL formula that is written in the SMT-LIB

language. The produced SMT problem is then submitted to

the SMT-solver component that resolves it. The result of that

resolution is a feedback that is directly highlighted in the

process model editor tool in a user friendly way. If the

property is violated then an example (a path) of such a

violation is highlighted.

Since the most complicated part in our tool is the one

dedicated to the translation of a FOL formula to the SMT-LIB

language, let us give some hints about its implementation by

mean of a very simple example.

Consider the

AD element of

figure 5. It is a

decision node

(called Dec), that

inputs the XtoDec

arc and outputs two

arcs: DecToY and

DecToZ. According

to the semantics

defined in [Laurent 14], the execution of such a node

considers two situations: (i) the node is ready to start; (ii) the

node is ready to finish. The former case is identified by the

presence of a token on the input arc and the absence of any on

the decision node. In this case, the resulting action consists in

moving the token from the input arc to the node. The later

case is formalized by the presence of token on the decision

node. Here, the resulting action is to move the token from the

node to one of the outputs (chosen arbitrarily).

If we note by enableStart(Dec, t) the predicate that

represents the case (i) at time stamp t and enableFinish(Dec,t)

the predicate that represents the case (ii) at time stamp t, then

using the SMT-LIB language we can write:

- enableStart(Dec,t)=(and (>(select XToDec t)

 0) (=(select Dec t)0)

- enableFinish(Dec,t) = (>(select Dec t)0)

Actually, Dec, XtoDec, DecToY and DecToZ are

represented as arrays of integers indexed by integers. Each

entry of these arrays defines the “marking” (number of

tokens) of the element at the given time stamp. For example,

(select Dec t) returns the marking of Dec at time t.

Similarly, if we consider fireStart(Dec,t) as the predicate

that starts the execution of the decision node at time stamp t,

while fireFinish(Dec,t) the one that terminates its execution,

we obtain the following encoding:

- fireStart(Dec,t) = (and (= (select XToDec (+ t 1))

(- (select XToDec t) 1))

 ; Remove a token from XToDec
(= (select Dec (+ t 1)) (+ (select Dec t) 1))

 ; Add a token to Dec

(= (select DecToY (+ t 1)) (= (select DecToY t) 1))

; Between t and t+1 instants the marking

 of DecToY must remain the same

(= (select DecToZ (+ t 1)) (= (select DecToZ t) 1))

 ; Between t and t+1 instants the marking

 of DecToZ must remain the same)

- fireFinish(Dec,t) = (and (= (select Dec (+ t 1))

(- (select Dec t) 1))

 ; Remove a token from XToDec
(= (select XtoDec (+ t 1)) (select XToDec t))

 ; Between t and t+1 instants the marking

 of XToDec must remain the same
(or (and (= (select DecToY (+ t 1))

 (+ (select DecToY t) 1))

 (= (select DecToZ (+ t 1))

 (select DecToZ t)))

 ; Move the token to DecToY (choice 1)

 (and (= (select DecToY (+ t 1))

 (select DecToY t))

 (= (select DecToZ (+ t 1))

 (+ (select DecToZ t) 1)))

 ; Move the token to DecToZ (choice 2)

))

Actually, we operate such a transformation for all

elements of AD that are necessary for the modeling of

business processes. The implementation of this transformation

needed nearly 2000 lines of code in java.

Conclusion

The most important contributions of this work are (i) the

identification of a reusable and configurable library of

properties addressing all the process aspects (control, data

flow, time and resources), (ii) the formalization of this

library as well as the UML AD semantics in first order
logic. This makes these definitions reusable for any other

purposes such as the mapping to other model-checker

formalism. In our case we opted for SMT theories.

The second undeniable contribution is the integration

and the verification of all process perspectives in a unified

and integrated way thanks to our formalization and of our
use of SMT theories, within a user-friendly tool for process

verification and execution. This framework has been adopted

by our MeRGE industrial partners (European project)

[MeRGE 12] and integrated to the MeRGE platform, an EMF

eclipse framework for the development of safety critical

systems.

Regarding our feedback using SMT for process

verification it can be summarized in the following points: (1)

handling complex constraints in a compact way, hence saving

memory; (2) treating specific constraints with dedicated

algorithms, hence saving time.

We are currently working on the validation of our

approach on bigger process models from the Healthcare

domain (more than 200 activities). We are also investigating

the difference in performance according the property checked

and the solver used. Indeed, in our experiments, the

verification time for some properties was different from one

solver into another.

Figure 5. A decision node in an AD

References

[Awad 07] Awad. Bpmn-q : A language to query business processes.
In EMISA, volume 119, pages 115–128, 2007

[Awad 09] A. Awad et al. “Specification, verification and explanation of
violation for data aware compliance rules”. In Service-Oriented
Computing, pp 500–515. Springer, 2009

[Barret 09] C. Barrett et al. Satisfiability Modulo Theories. In A. Biere,
Marij J. H. Heule, H. van Maaren, and T. Walsh, editors, Handbook of
Satisfiability, Vo. 185, chapter 26, pp 825–885. IOS Press, Feb. 2009.

[Barret 15] C. Barrett et al. The SMT-LIB Standard: Version 2.5. In
Tec. report of Dep. of Comp. Science, The University of Iowa. 2015.

[Bendraou 05] R. Bendraou et al. "UML4SPM : A UML2.0-Based
metamodel for Software Process Modeling", in Proceedings of the
ACM/IEEE 8th International Conference on Model Driven Engineering
Languages and Systems (MoDELS’05), Montego Bay, Jamaica, Oct.
2005, LNCS, Vol. 3713, PP 17-38

[Bendraou 10] R. Bendraou et al. “A comparison of six uml-based
languages for software process modeling”.Trans. Software Eng. 2010

[Bendraou 16] ProVer Guide:
https://pagesperso.lip6.fr/Reda.Bendraou/sites/Reda.Bendraou/IMG/p
df/prover_user_guide.pdf

[Christov 14] S.C. Christov, G. S. Avrunin , L.A. Clarke, American
Medical Informatics Association Annual Symposium (AMIA 2014),
November 15-17, 2014, Wash., DC, pp. 395-404. (UM-CS-2014-022)

[Clarke01] E. Clarke et al. Model Checking Using Satisfiability Solving.
In journal of FMSD. Kluwer Academic Publishers. July 2001.

[Dijkman 08] R.M. Dijkman et al. “Semantics and analysis of business
process models in bpmn”. Information and Software Technology,
50(12) :1281–1294, 2008

[Eshuis 02] Eshuis H. “Semantics and verification of uml activity
diagrams for workflow modelling”. 2002

[Emerson 90] E.A. Emerson. Temporal and modal logic. “Handbook of
Theoretical Computer Science” Volume B. Formal Models and
Semantics (B), 995 :1072, 1990

[Eshuis 06] H. Eshuis. “Symbolic model checking of uml activity
diagrams”. TOSEM 15(1), (2006) 1-38

[Fahland 09] D. Fahland et al. “Instantaneous soundness checking of
industrial business process models”. BPM. 2009. 278-293

[Hafer 87] Hafer and Wolfgang Thomas. “Computation tree logic ctl*
and path quantifiers in the monadic theory of the binary tree”. In
Automata, Lang. and Prog., pp 269–279. Springer 1987

[Hofstede 02] T.Hofstede, A.: Workflow patterns: On the expressive
power of petri-net-based workflow languages. In: of DAIMI, University
of Aarhus, Citeseer (2002)

[Guelfi 05]Guelfi, N., Mammar, A.: A formal semantics of timed activity
diagrams and its promela translation. In: Software Engineering
Conference, 2005. APSEC'05. 12

th
 Asia-Pacific, IEEE (2005)

[Gruhn 06] V. Gruhn and R.Laue. “Complexity metrics for business
process models”. In 9th international conference on business
information systems (BIS 2006), volume 85, pages 1–12, 2006.

[Gruhn 07] V.Gruhn and R. Laue.” What business process modelers
can learn from programmers”. S. of Comp. Prog., 65(1) :4–13, 2007.

[Khelladi 15]D. Khelladi et al. A framework to formally verify
conformance of a software process to a software method. SAC 2015 :
1518-1525

[Knuplesch 10] D. Knuplesch et al. On enabling data-aware
compliance checking of business process models. Con. Modeling–ER
2010, pages 332–346, 2010

[Kleppe 03] A. Kleppe et al. The model driven architecture:
 practice and promise, 2003

[Jensen 87] K. Jensen. Coloured petri nets. Springer, 1987

[Jung 10] Jung, H.T., Joo, S.H.: Transformation of an activity model
into a colored petri net model. In: TISC, IEEE (2010) 32-37

[Mendling 06] J an Mendling et al.. Faulty epcs in the sap reference
model. In Buss. Proc. Manag., pp 451–457. Springer, 2006.

[Laurent 14] Y. Laurent et al. “Formalization of fUML: An Application to
Process Verification”, CAiSE 2014, Springer, pp . 347-363

[Laurent 14b] Y. Laurent et al. Alloy4SPV : a Formal Framework for
Software Process Verification, 10

th
 ECMFA, LNCS, pp.83-100, 2014

[Laurent 18] Y. Laurent’s PhD Thesis document, LIP6, March 2018,
https://drive.google.com/open?id=14p9i4ulLacjdUIgFhZKUVI0wfQa4x6hP

[Liu 07]Liu, Y., et. al.: A static compliance-checking framework for
business process models. IBM Systems Journal 46(2) (2007) 335-361

[Mendling 07] Jan Mendling, Gustaf Neumann, and Wil Van Der Aalst.
Understanding the occurrence of errors in process models based on
metrics. In On the Move to Meaningful Internet Systems 2007 :
CoopIS, DOA, ODBASE, GADA, and IS, pp 113–130. Springer, 2007.

[Mendling 09] Jan Mendling. Empirical studies in process model
verification. In TPNOMC II, pp 208–224. Springer, 2009.

[MeRGE 12] Merge, ITEA project, safety & security. http://www.merge-
project.eu/. last vist Oct 2015.

[Morimoto 08] S.Morimoto. A survey of formal verification for business
process modeling. In Computational Science–ICCS 2008, pages 514–
522. Springer, 2008

[OMG 11] Object Management Group (OMG). Business process
model and notation (bpmn) version 2.0, jan 2011

[OMG 11b] OMG. Semantics of a foundational subset for executable
uml models (fuml) version 1.0. http: //www.omg.org/spec/FUML/, 2011

[Peterson 81] Peterson J.L. Petri net theory and the modeling of
systems. 1981. 5, 29

[Pnueli 77] A. Pnueli. The temporal logic of programs. In FCS, pp 46–
57. 1977.

[Simidchieva 10] B I. Simidchieva, et al., Proceedings of the 2010
Electronic Voting Technology Workshop/Workshop on Trustworthy
Elections (EVT/WOTE '10), August 9-10, 2010, Washington, DC.

[Smith 02] R.L Smith et al. An approach supporting property
elucidation. In Proceedings of the 24th ICSE., pp 11–21. ACM, 2002

[Trcka 09] N. Trcka et al. Data-flow anti-patterns: Discovering data-
flow errors in workflows. In CAISE, Springer (2009). 425-439.

[Van der Aalst 98] van der Aalst, W.M.: The application of petri nets to
workflow management. JCSC 8(01) (1998) 21-66.

[Van der Aalst 99] van der Aalst, W.M. Formalization and verification
of event-driven process chains. IST, 41(10): 639–650, 1999

[Van Der Aalst 03] van Der Aalst, W.M., Ter Hofstede, A.H.,
Kiepuszewski, B., Barros, A.P.: Workflow patterns. Distributed and
parallel databases 14(1) (2003) 5, 51

[Van der Aalst 11] van der Aalst,et al. “Soundness of workflow nets:
classification, decidability, and analysis”. Formal Aspects of
Computing 23(3) (2011) 333-363

[Vanhatalo 07] J.Vanhatalo et al.. Faster and more focused control-
flow analysis for business process models through sese
decomposition. In ICSOC 2007, pp 43–55. Springer, 2007. 3, 33, 143

[Watahiki 11]K. Watahiki et al. Formal verification of business
processes with temporal and resource constraints. In Systems, Man,
and Cybernetifcs (SMC), pp1173–1180., 2011

[Wohed 05] Wohed et al. Pattern-based analysis of the control-ow
perspective of uml activity diagrams. In: Conceptual Modeling ER
2005. Springer (2005) 63-78

[Wong 07] Wong, P., Gibbons, J.: A process-algebraic approach to
workflow specification and refinement. In: Software Composition,
Springer (2007) 51-65

http://laser.cs.umass.edu/casestudies/medicalsafety.shtml?author=Stefan%20C.%20Christov&category=MED
http://laser.cs.umass.edu/casestudies/medicalsafety.shtml?author=George%20S.%20Avrunin&category=MED
http://laser.cs.umass.edu/casestudies/medicalsafety.shtml?author=Lori%20A.%20Clarke&category=MED
http://www.merge-project.eu/
http://www.merge-project.eu/
http://laser.cs.umass.edu/casestudies/elections.shtml?author=Borislava%20I.%20Simidchieva&category=ELEC

