
CommonLang: a DSL for defining robot tasks

Adrian Rutle1, Jonas Backer1, Kolbein Foldøy1, and Robin T. Bye2

1 Western Norway University of Applied Sciences, Bergen, Norway
{aru,149906,149909}@hvl.no

2 Cyber-Physical Systems Laboratory,
NTNU—Norwegian University of Science and Technology, Ålesund, Norway

robin.t.bye@ntnu.no

Abstract. Robots are becoming more and more complex and heteroge-
neous; their abilities and domains of usage are increasing exponentially.
Programming these robots requires special skills and usually does not
follow standard software engineering methodologies. Adhering to model-
driven software engineering principles, definition of robot behaviour is
abstracted and represented in models while robot-specific code is gener-
ated from these models using code generation. With a robot modelling
framework, we can work on a higher abstraction level making the task
of programming complex heterogeneous robots more efficient. In this pa-
per, we present such a modelling framework and evaluate its flexibility
by extending it with wireless communication functionalities.

Keywords: Robot programming · Robot modelling framework · Model-
driven software engineering · Robot communication protocol.

1 Introduction

Robots come in a variety of sizes and shapes and with different purposes and
abilities. In today’s society robots have revolutionized the efficiency and produc-
tivity in many fields. The use of robots in the field of manufacturing cars has
increased the capacity and quality of the cars, in addition to protecting work-
ers from performing extremely dangerous tasks. In agriculture, drones are being
used to analyze soil and plant seeds and choosing the best moment to harvest.
Whether robots are used for bomb disposal or vacuum cleaning, their operation
depends on both their hardware and the software they are running [10].

Current robot programming frameworks require both a steep learning curve
and specific hardware and software environments. A large number of robotic
software exist but interoperation across robots is difficult, with dependencies on
specific hardware or software platforms that are hard-wired into the robot code
[6,7]. Addressing recent challenges in robotics [21] has led to various conference
and workshop series focusing on robotics software and design [19]. Specifically,
using model-driven software engineering (MDSE) methodologies and technolo-
gies to raise the abstraction level of robotic software development, enable simu-
lation and verification, and tackle complexity challenges, are common research
goals at events such as MORSE, SIMPAR, ICRA, ROSE, etc.

2 A. Rutle et al.

In this paper, we present a prototype framework CommonLang (CoL) which
uses MDSE-techniques [2,3] to abstract away from underlying technologies and
create executable code for various different robot platforms using code generation
[9]. The framework comes with a text-based domain-specific language (DSL) that
enables users to write scripts through abstracted metamethods; i.e., function
abstractions providing a higher-level language.

Given a number of heterogeneous robots, each with its own programming
language, the main feature of CoL is its ability to parse a common set of robot
instructions into multiple tailor-made scripts to yield identical behaviour for the
robots. The layout of the output scripts is dependent on XML configuration files
that contain the implementation of the metamethods and specify what language
they should be parsed to (e.g., C, Python, Java, etc.). In this paper, we demon-
strate behavioural programming of two robots that use C/C++ and Python, re-
spectively, as well as providing an evaluation of CoL’s ability to avoid increased
complexity—keeping usability and ease of access at an acceptable level—when
adding WiFi communication functionality by utilizing metamethods.

2 CommonLang

CommonLang (CoL)—which was first described in [9]—is a DSL created specif-
ically for writing code for a set of various robots using different programming
languages. It is an imperative and structured language, and in many ways sim-
ilar to Java, which is one of the languages CoL can be parsed to. CoL includes
various control flow constructs found in most other programming languages, e.g.,
for, if, and while statements.

The aim of CoL is to enable reusable behavior for different robots with similar
abilities. To accomplish this goal, a textual DSL was defined using Xtext in
Eclipse [20]. The solution builds on the concept of metamethods that declare
the common abilities of target systems for a behavioral script. Fig. 1 illustrates
how the functionality of three different robot platforms can be used to create a

Fig. 1. Example of common abilities in different robot platforms.

CommonLang: a DSL for defining robot tasks 3

common set of abilities, consisting of the metamethods that can be used in scripts
targeted to these platforms. These commonalities are not enforced, meaning that
robots which do not naturally exhibit common functionalities will not be sharing
behavior. However, in the CoL script it is possible to use metamethods that are
not present in all target platforms. The invocation of these will be ignored on
unsupported platforms. In this way, a script can define tasks for a heterogeneous
environment of interacting robots.

2.1 Defining behavior with CoL scripts

Defining behavior in CoL consists of two steps: writing a CoL script and listing
the collection of metamethods. The script is declared by the script keyword, the
script name, then the target keyword, and finally the platforms to be targeted
(see Fig. 2). The script is written in a file with the extension name .commonlang
and consists of two main blocks. The first part contains the script definition,
name of the script (MyScript), and a set of what robots the script will be gen-
erated for (LegoMindstormsEV3 and ArduinoShieldBot), in the form of con-
figuration file names for each robot. Target platforms must include a specific
configuration for each platform as many robot platforms allow the hardware to
be configured differently as needed. Scripts may consist of variables, metamethod
invocations, and some common control statements such as if, else, and while.
The program code will be written inside a method called loop contained in
the script block, and consists of user methods and metamethods. The output
code, here parsed to Arduino (C/C++) and Python, will continuously iterate this
method, hence it does not allow for storing states, like integers and booleans.

The second block is called metamethodcollection, which is a set of prede-
fined methods that every robot with a different programming language is able to
run and has its own implementation of. Each metamethod declaration consists
of the reserved keyword meta, followed by a return type, name and its corre-
sponding parameters. For example, the metamethod MoveForward may for some
robots make two of the wheels spin forward, whereas for other robots may make
four wheels spin at different speeds. Some robots may even be flying, meaning
they will have rotors spinning in different directions to be able to fly forward.

For CoL to generate code for a robot’s native language, we need to declare
two XML files (see Fig. 3). The first XML file is generic for all robots of its
kind and contains various types of data, such as the file format for the language
files (e.g., .py or .c indicating Python or C files, respectively), global variables,
declarations and method calls for the setup method of the final script. It also
contains which metamethods the robot can execute. In this XML file, the meta-
methods have a simple code segment, either calling its corresponding method
from the other XML file where it is implemented, or returning a value from
global variables or forwarding the return value from the method it is calling [9].

The other XML file is specific for the robot configuration and contains the
implementation of the methods in the robots’ own language, for instance, setting
a motor to run for the duration specified in the parameters or reading the value
of a digital pin and returning it. These methods with their implementations are

4 A. Rutle et al.

Fig. 2. Sample CommonLang program with code-generation to Python and C

then automatically added without changes to the final output script which is
already in the target language. Additionally, this XML file contains a tag called
assignments for setting up robot sensors to the right pin values, since this
configuration is robot-dependent.

2.2 Code generation from CoL scripts

As mentioned, the CoL grammar is defined in Xtext [20]. The details of Xtext
and how it works is out of the scope of this paper, but in short, Xtext facilitates
the definition of DSLs using a powerful grammar language and as a result we can
get a full DSL-infrastructure, including parser, linker, typechecker, compiler as
well as a language editor with syntax-highlighting in Eclipse. CoL relies on code-
generation functionalities provided by Xtext. These functionalities are defined
as templates in the language Xtend—a flexible and expressive dialect of Java

CommonLang: a DSL for defining robot tasks 5

Fig. 3. XML configuration files

which compiles into readable Java 8 compatible source code. To understand how
this code-generation step works, we include an excerpt of the CoL grammar
in Listing 1.1. Xtend creates a Java class for each language construct in the
grammar, e.g. Script.java, MetaMethods.java, Block.java, etc. In addition
to these classes, we have implemented a class BotMethods.java which parses
the two XML files for each robot in the targets block. Following the Xtext
methodology, we have also implemented a customized code-generator class for
each target language; in this case one for Python and one for C.

Once a valid CoL script (according to the grammar) is saved, all these classes
gets instantiated automatically by the Xtext language-infrastructure. In addi-
tion, a code generator (which is a simple Java program as shown in Fig. 3) will
be generated automatically for each CoL script. Running this Java program will
create the final robot scripts for the target platforms.

Listing 1.1. Grammar of CommonLang
1 grammar org.xtext.Commonlang with org.eclipse.xtext.common.Terminals
2
3 generate commonlang "http ://www.xtext.org/Commonlang"
4
5 CLfile:
6 scripts +=(Script)*
7 mets=MetaMethods;
8 Script:
9 ’script ’ name=CAPITALFIRST ’targets ’ ’(’ robottypes +=(LOWERFIRST |

CAPITALFIRST) ’,’ robotconfigs +=(LOWERFIRST |

6 A. Rutle et al.

10 CAPITALFIRST) ’)’ (’,’ ’(’ robottypes +=(LOWERFIRST | CAPITALFIRST) ’,’
robotconfigs +=(LOWERFIRST | CAPITALFIRST)

11 ’)’)* ’{’(methods += UserMethod *) ’}’;
12 MetaMethods:
13 {MetaMethods} ’metamethodscollection ’ ’{’(methods += MetaMethod)*’}’;
14 Block:
15 {Block} ’{’ ((exs+= SimpleExpression ’;’ | exs+= StructureExpression))*

’}’;
16 SimpleExpression:
17 Crement | Call | Assignment | Return;
18 StructureExpression:
19 Block | If | For | While;
20 Expression:
21 SimpleExpression | StructureExpression;
22 //...
23 Method:
24 (UserMethod | MetaMethod);
25 MetaMethod:
26 ’meta ’ type=Methodtype name=CAPITALFIRST ’(’ parameters += Declaration?

(’,’+ parameters += Declaration)* ’)’ ’;’;
27 UserMethod:
28 type=Methodtype name=LOWERFIRST ’(’ parameters += Declaration? (’,’+

parameters += Declaration)* ’)’ bl=Block;
29 //...

Using the standard Xtext methodology, code-generation is divided into two
steps. Firstly, an object model will be created for the parsed CoL script, then,
target scripts in the native languages of the robots will be created using the cus-
tomized code-generators. The complexity of these code generation steps depends
on the complexity of the CoL script and the number of robot kinds which are
defined in the targets block. These steps are hidden from the CoL script and
metamethod developers.

Extending CoL with support for generating code to new target platforms
require some knowledge of Java and Xtext. This consists of implementing a
Java class for each new target language (however, C and Python covered all
the robots which we have had in hand, e.g. Arduino robot, Lego Mindstorm,
CrazyFlie mini-drones and Land-rovers with Raspberry PI 3). In the envisioned
scenario, this activity is hidden from CoL script developers and delegated to
DSL-infrastructure experts.

Configuring and developing metamethods are done in the XML files. Our
optimal goal is to ship the DSL with a number of most-used metamethods for
various commonly available robots. However, we see this activity as a commu-
nity effort and envisage that the future of the DSL will be depending on the
availability of this infrastructure. We have currently not defined any scheme or
convention for the definition of these metamethods due to their simplicity, how-
ever, in future work we plan to define a guideline and a metamodel in form of
an XML Schema Definition (XSD) for the configuration XML files.

3 Extension with Wireless Communication

In order to evaluate the DSL, we have extended its functionality by adding
features for WiFi communication using Message Queuing Telemetry Transport
(MQTT) [11] as a sample communication protocol. This functionality is not
hard-coded and can be replaced by other protocols if needed.

CommonLang: a DSL for defining robot tasks 7

MQTT is a lightweight messaging protocol that allows the robots to sub-
scribe to topics. They can also publish messages to the topics, so that clients
subscribed to a particular topic will receive the messages. A broker is required
for this setup to work. It keeps track of available topics and clients connected
to the server, forwarding incoming messages to all the clients subscribing the
respective topics. For a client to subscribe to a topic it needs only to know the
IP address of the broker. We have used the Eclipse Mosquitto [16] implementa-
tion of MQTT, which grants the ability to set up a broker and enter commands
such as subscribing and publishing messages to desired topics into the command
prompt window.

An important decision had to be made regarding whether the communication
should be integrated as part of the CoL grammar or as additional metamethods
through the XML files. Editing the grammar of the language results in fewer un-
necessary lines of code in the XML files. However, modifying the CoL grammar
is more complex than making metamethods for it: the DSL is designed for han-
dling metamethods specified in the robots’ XML files. It creates an environment
for general purpose robot programming which could be compromised by adding
grammar specifically for MQTT communication since with further development
of the language other communication protocols may be desirable. By refraining
from doing grammatical adjustments, it becomes quite manageable to add or
edit already existing metamethods for communication.

A crucial part of integrating communication through metamethods is making
the code intuitive and user-friendly, and at the same time not limiting what the
end user is able to do. Various approaches to how the syntax and methods
should look like have been considered. One of the approaches was to let the
end user create a method surrounding a selection of metamethods. This user
method would then be connected to a message string through a metamethod
called OnMessage. This is how it would look like:

Listing 1.2. OnMessage metamethod
1 OnMessage("go", forwardAndLightsOn);
2
3 void forwardAndLightsOn () {
4 MoveForward ();
5 LightsOn ();
6 }

This approach would result in more code to write. It would also require a
change in the language’s grammar, allowing it to take a method as a parameter.
After considering variations of similar syntax, we settled on utilizing the simplic-
ity of metamethods combined with if statements, which are already part of the
Commonlang grammar. The metamethod is called ReceiveMessage and takes a
single string parameter, returning a boolean value. Here is an example:

Listing 1.3. ReceiveMessage metamethod
1 if (ReceivedMessage("go")) {
2 MoveForward ();
3 LightsOn ();
4 }

8 A. Rutle et al.

The method is checking whether the robot has received a specific mes-
sage. When the robots receive messages, the method triggers a callback called
on_message that will put the messages in a list. This is because the callback
method is hardcoded in the XML files and cannot be dynamically changed. In-
stead, this ReceivedMessage method was created to scan through the message
list to check for the string from its parameter. If it finds it, a single instance of
the message will be removed from the list and it will return true; otherwise false.

4 Related Work

Robots can be programmed in different ways: from writing robot-specific code
directly to using frameworks with varying functionality. Some of these frame-
works, such as Papyrus-RT [17] and RobotML [6], utilize MDSE techniques [2,3]
to deal with software complexity. Others, such as the Robot Operating System
(ROS) [18] and RoboDK [13], use programming frameworks which are tailored
for specific kinds of robots. Below we shortly introduce these frameworks, keep-
ing in mind that the main distinctive characteristic of CoL is its support for
writing behavior for a heterogeneous environment of various kinds of robots.

ROS is an open source project consisting of a collection of tools, libraries and
conventions that aims to simplify programming robust and complex behaviour
of robots of all shapes and sizes across a wide variety of platforms, whereas
Papyrus-RT is another framework for real-time programming of robots which
generates C++ code from models defined in the UML-RT modeling language.
RobotML is a DSL that aims at solving several central problems with robot
programming today [6] such as costs and difficulty of development and reusability
issues because of low level details being hard-wired into the code at early stages
in the development. Interaction modelling [5], Deep modeling [1], and Multi-
robot systems [12] also use DSLs for modeling robotic software but they do not
have the same maturity as RobotML and Papyrus-RT. The robot instructions
written in these languages can be simulated and visualized in 3D as well as
exported to the native languages of each of the robots. Unfortunately, RoboDK
currently only supports industrial robots.

5 Conclusion and Future Work

We have presented CoL, a DSL for robot task specification which enables com-
pilation of tasks to heterogeneous robot platforms. With CoL, one can do the
time-consuming work of writing functions and setup once, then use these func-
tions to define tasks for robot teams. The functions are developed as meta-
methods which extend what the users can express with CoL scripts. Since one
could make any kind of metamethods, the functionality can vary greatly from a
simpler move-forward function to highly abstract functions such as “water field”
or “defuse bomb.” The defined functionality is contained within XML configu-
ration files that are included in CoL scripts. This means one could make these
robot-specific files beforehand and make documentation for them so that the CoL

CommonLang: a DSL for defining robot tasks 9

scripts can be written by less technical domain-experts to define heterogeneous
robot behavior in various domains. These domains could be anything as long as
the tasks in the CoL script can be achieved by robots for which the appropri-
ate metamethods are implemented. The usability and extendability of CoL was
demonstrated by adding support for wireless communication. The work done to
add communications functionality to CoL was implemented through configura-
tion files and metamethods; i.e., the DSL itself is not modified. This proved the
potentials to add functionality to CoL with a library-like approach.

Future work would includes (i) expanding the available library of metamethods
to offer greater flexibility in how the user would like to use the DSL, possibly
dividing the metamethods into different collections with solid documentation.
This includes also guidelines and conventions for developing and documenting
metamethods. Testing and calibrating the robots was time consuming, connect-
ing via USB or SSH; transferring the script and then running the script when
the robot was in a semi-suitable location was not ideal. (ii) Implementing a
simulator could cut down on testing time, as well as being a solid tool for eval-
uation. Moreover, (iii) implementing a modeling and reasoning functionality on
top of CoL to describe intended behavior of a team of robots—in the direction
of [15], which uses hierarchies of finite state machines to structure the behavior
of the team—would make CoL scripts more robust and allow for formal reason-
ing about the collective behavior of the robot team. Features for dynamically
assigning roles to robots (based on their capabilities) and robots to roles (based
on the situation) would be included in such an extension which should also con-
sider planning and verification of achievement of the desired goals of a mission.
Finally, retrieving a concrete execution plan from a general and abstract goal
or mission description and verifying that the robots would act accordingly to
reach the goal would be a valuable addition to CoL. As also described in [7], (iv)
implementing self-adaptation and dynamic recalculation of plans for missions
which are defined as CoL scripts would increase its usefulness and robustness to
unforeseen situations at runtime. To make CoL more accessible for laypersons,
(v) a graphical syntax will be defined for the language using guidelines from [4]
and Sirius [14]. This step should be possible due to the compatibility between
Xtext and Eclipse Modeling Framework (EMF) [8].

References

1. Atkinson, C., Gerbig, R., Markert, K., Zrianina, M., Egurnov, A., Kajzar, F.:
Towards a deep, domain specific modeling framework for robot applications. In:
Assmann, U., Wagner, G. (eds.) MORSE. pp. 1–12. No. 1319 in CEUR Workshop
Proc. (2014), http://ceur-ws.org/Vol-1319/#morse14_paper_01

2. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in
Practice, Second Edition. SLSE, Morgan & Claypool Publishers (2017)

3. Brugali, D.: Model-driven software engineering in robotics. IEEE Robotics & Au-
tomation Magazine 22(3), 155–166 (2015)

4. Cho, H., Gray, J., Syriani, E.: Syntax map: A modeling language for capturing re-
quirements of graphical dsml. In: 2012 19th Asia-Pacific Software Engineering Con-
ference. vol. 1, pp. 705–708 (Dec 2012). https://doi.org/10.1109/APSEC.2012.20

http://ceur-ws.org/Vol-1319/#morse14_paper_01
https://doi.org/10.1109/APSEC.2012.20

10 A. Rutle et al.

5. Cornelius, G., Hochgeschwender, N., Voos, H.: Model-driven interaction design for
social robots. In: Seidl, M., Zschaler, S. (eds.) Software Technologies: Applications
and Foundations - STAF. LNCS, vol. 10748, pp. 219–224. Springer (2017)

6. Dhouib, S., Kchir, S., Stinckwich, S., Ziadi, T., Ziane, M.: Robotml, a domain-
specific language to design, simulate and deploy robotic applications. In: Noda, I.,
Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR. pp. 149–160. Springer Berlin
Heidelberg (2012)

7. Dragule, S., Meyers, B., Pelliccione, P.: A generated property specification lan-
guage for resilient multirobot missions. In: Romanovsky, A., Troubitsyna, E.A.
(eds.) Software Engineering for Resilient Systems. pp. 45–61. Springer Interna-
tional Publishing, Cham (2017)

8. Eclipse Modeling Framework (EMF): Web site. http://www.eclipse.org/modeling/
emf (2018), accessed on 2018-08-20

9. Gya, M., Solhaug, T.: Common programming interface for multiple types of robots
(2017), bachelor thesis, Western Norway University of Applied Sciences (available
at http://ict.hvl.no/commonlang-a-dsml-for-robot-task-definition/)

10. Mazur, M., Wiśniewski, A., McMillan, J.: Clarity from above: PwC global report
on the commercial applications of drone technology (May 2016)

11. MQTT.org: Machine queuing telemetry transport protocol. http://mqtt.org
(2018), accessed on 2018-08-20

12. Ruscio, D.D., Malavolta, I., Pelliccione, P.: A family of domain-specific languages
for specifying civilian missions of multi-robot systems. In: Assmann, U., Wagner,
G. (eds.) MORSE. pp. 13–26. No. 1319 in CEUR Workshop Proc. (2014), http:
//ceur-ws.org/Vol-1319/#morse14_paper_02

13. Simulation and OLP for Robots: RoboDK. https://robodk.com/ (2018), accessed
on 2018-07-13

14. Sirius: Web site. http://www.eclipse.org/sirius/ (2018), accessed on 2018-08-20
15. Skubch, H.: Modelling and controlling of behaviour for autonomous mobile robots.

Ph.D. thesis, University of Kassel (2013), http://d-nb.info/1026180120
16. The Eclipse Foundation: Eclipse mosquitto. https://projects.eclipse.org/projects/

technology.mosquitto (2018), accessed on 2018-08-20
17. The Eclipse Foundation: PapyrusRT. https://www.eclipse.org/papyrus-rt/ (2018),

accessed on 2018-07-13
18. The Robot Operating System (ROS): Web site. http://www.ros.org (2018), ac-

cessed on 2018-08-20
19. The Robotics Summit & Expo: Design and development track. https://www.

roboticssummit.com/tracks/#design (2018), accessed on 2018-07-13
20. Xtext: Web site. https://www.eclipse.org/Xtext/ (2018), accessed on 2018-08-20
21. Yang, G.Z., Bellingham, J., E. Dupont, P., Fischer, P., Floridi, L., Full, R., Ja-

cobstein, N., Kumar, V., McNutt, M., Merrifield, R., Nelson, B., Scassellati, B.,
Taddeo, M., Taylor, R., Veloso, M., Lin Wang, Z., Wood, R.: The grand challenges
of science robotics. Science Robotics 3, eaar7650 (2018)

http://www.eclipse.org/modeling/emf
http://www.eclipse.org/modeling/emf
http://ict.hvl.no/commonlang-a-dsml-for-robot-task-definition/
http://mqtt.org
http://ceur-ws.org/Vol-1319/#morse14_paper_02
http://ceur-ws.org/Vol-1319/#morse14_paper_02
https://robodk.com/
http://d-nb.info/1026180120
https://projects.eclipse.org/projects/technology.mosquitto
https://projects.eclipse.org/projects/technology.mosquitto
https://www.eclipse.org/papyrus-rt/
http://www.ros.org
https://www.roboticssummit.com/tracks/#design
https://www.roboticssummit.com/tracks/#design
https://www.eclipse.org/Xtext/

	CommonLang: a DSL for defining robot tasks

