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Abstract. Service robots are expected to operate in real-world environments, 
which are inherently open-ended and show a huge number of potential situa-
tions and contingencies. This variability can be addressed applying reinforce-
ment learning, which enables a robot to autonomously discover an optimal be-
havior through trial-and-error interactions with the environment. The process is 
carried out by measuring the improvements the robot achieves after executing 
each action. In this regard, RoQME, an Integrated Technical Project of the EU 
H2020 RobMoSys Project, aims at providing global robot Quality-of-Service 
(QoS) metrics in terms of non-functional properties, such as safety, reliability, 
efficiency or usability. This paper presents a preliminary work in which the es-
timation of these metrics at runtime (based on the contextual information avail-
able) can be used to enrich the reinforcement learning process. 

Keywords: Reinforcement Learning, Quality of Service, RoQME. 

1 Introduction 

With the advance of robotics and its increasingly growing use in all kinds of real-
world applications, service robots are expected to operate (at least safely and with a 
reasonable performance) in different environments and situations. In this sense, a 
primary goal is to produce autonomous robots, capable of interacting with their envi-
ronments and learning behaviors that allow them to improve their overall performance 
over time, e.g., through trial and error. This is the idea behind Reinforcement Learn-
ing (RL) [1], which offers a framework and a set of tools for the design of sophisticat-
ed and hard-to-engineer behaviors. 

In RL, an agent observes its environment and interacts with it by performing an ac-
tion. After that, the environment transitions to a new state providing a reward. The 
goal is to find a policy that optimizes the long-term sum of rewards. One of the fun-
damental problems of RL is the so-called cursing of the objective specification [1]. 
Rewards are an essential part of any RL problem, as they implicitly determine the 
desired behavior. However, the specification of a good reward function can be highly 
complex. This is, at least in part, because it requires to accurately quantify the re-
wards, which does not fit well with the natural way people express objectives. 
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The RoQME Integrated Technical Project (ITP), funded by EU H2020 RobMoSys 
Project [2], aims at contributing a model-driven tool-chain for dealing with system-
level non-functional properties, enabling the specification of global Robot Quality of 
Service (QoS) metrics. RoQME also aims at generating RobMoSys-compliant com-
ponents, ready to provide other components with QoS metrics. The estimation of 
these metrics at runtime, in terms of the contextual information available, can then be 
used for different purposes, e.g., as part of a reward function in RL. 

Integrating QoS metrics in the rewards can enrich the learning process by extend-
ing the quality criteria considered, for example, with non-functional properties, such 
as user satisfaction, safety, power consumption or reliability. Moreover, RoQME 
provides a simple modeling language to specify QoS metrics, in which qualitative 
descriptions predominate over quantitative ones. As a result, RoQME limits the use of 
numbers, promoting a more natural way of expressing problems without introducing 
ambiguity in its execution semantics.  

This paper presents a work in progress towards the use of QoS metrics in RL. San-
ta Bot, a “toy” example in which a robot delivers gifts to children, will help us illus-
trate the problem in simple terms.  

The rest of the paper is organized as follows. Section 2 describes the Santa Bot ex-
ample. Section 3 introduces the RoQME modeling language. Section 4 shows some 
simulation results for the Santa Bot example. Section 5 reviews related work and, 
finally, Section 6 draws some conclusions and outlines future work. 

2 Santa Bot: an illustrative example 

This section introduces the example that will be used throughout the paper to illustrate 
the proposed approach. The goal is to present the reinforcement learning problem in 
simple terms to explain the role that the RoQME QoS metrics can play. The example 
takes place in a shopping mall where a robot, called Santa Bot, distributes gifts to 
children. In the area set up for this purpose, a number of children waits in line to re-
ceive a gift from Santa Bot. Each child has a (finite) list of wishes, containing his/her 
most desired toys in order of preference. Unfortunately, these lists were made in se-
cret and are unknown to Santa Bot. Santa Bot will try to guess the best gift for each 
child to meet their expectations and thus maximize their joy. 

2.1 Formalizing the example scenario 

Let us consider a queue of M children waiting to receive a gift, i.e., 𝑐ℎ𝑖𝑙𝑑&,
𝑐ℎ𝑖𝑙𝑑( …𝑐ℎ𝑖𝑙𝑑*. As the order prevails, 𝑐ℎ𝑖𝑙𝑑+ will receive a gift after 𝑐ℎ𝑖𝑙𝑑+,& and be-
fore 𝑐ℎ𝑖𝑙𝑑+-&. Moreover, we identify all the different types of toys with natural num-
bers, i.e., Toys = {1, 2, 3…, K}. At time t, the Santa Bot bag contains a number of 
instances of each toy k, denoted by 𝑁/0 ∈ {0,1,… ,𝑁/5}, being 𝑁/5 the initial amount. As 
gifts are delivered, the number of instances of a toy decreases, remaining at 0 when 
the toy is no longer available, therefore, 𝑁/0 ≥ 𝑁/0-&. In this scenario, the action of 
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Santa Bot is limited to deciding what gift is given to each child. Listing 1 specifies the 
effect of this action.  

 
Being 𝑐ℎ𝑖𝑙𝑑+ the child to receive a gift at time t 

deliver gift k to childi 
      [pre-condition]     𝑁/0 > 0 
      [post-condition]   𝑁/0-& = 𝑁/0 − 1 

Listing 1. Specification of the delivery action in the example scenario. 

Although Santa Bot can adopt different strategies for delivering the gifts in its bag, 
the best approach will be the one that maximizes children satisfaction. In this case, 
satisfaction is associated with the ability to fulfill the children’s wishes, expressed in 
their wish lists. Thus, we consider that each child has a wish list represented by a n-
tuple (𝑎&,𝑎(, … , 𝑎=), where entries are toy identifiers (𝑎+ ∈ 𝑇𝑜𝑦𝑠), and show uniqueness 
(∀𝑖, 𝑗 ∈ {1,2,… , 𝑛},𝑎+ = 𝑎G ⟺ 𝑖 = 𝑗) and order (𝑎+ is preferred over 𝑎G if and only if 𝑖 <
𝑗). Moreover, the function 𝑊𝐿(𝑐ℎ𝑖𝑙𝑑+) = (𝑎&, 𝑎(,… ,𝑎=) links children to wish lists, 
such that 𝑊𝐿(𝑐ℎ𝑖𝑙𝑑&) = (2,6, 1) indicates that the first child in the queue wants toys 2, 
6, and 1, in order of preference. 

Equation 1 shows a possible definition of satisfaction for 𝑐ℎ𝑖𝑙𝑑+ receiving a toy j. 
This function provides a score that determines the goodness of a decision, so the 
higher its value the better. 

 𝑆(𝑐ℎ𝑖𝑙𝑑+, 𝑗) = ∑ 𝐶(𝑘) ∙ 𝛿(𝑗 − 𝑎/)∀ST∈UV(WX+YZ[)  (1) 

Being 𝐶	a decreasing positive function and 𝛿 the Kronecker delta function, i.e., 𝛿(𝑥) =
1 when x=0, otherwise it is 0. It is worth noting that Equation 1 produces 0 if the deci-
sion does not match any option in the wish list, otherwise it increases as the selected 
gift has a higher position in this list. Finally, the result of the problem is the entire 
sequence of decisions made for all the children, i.e., 𝑑 = (𝑑&,𝑑(,… , 𝑑*), where 𝑑+ indi-
cates the toy delivered to 𝑐ℎ𝑖𝑙𝑑+. Equation 2 shows the overall satisfaction considering 
the complete sequence of decisions d. 

 𝑆Z = ∑ 𝑆(𝑐ℎ𝑖𝑙𝑑+, 𝑑+)∀+  (2) 

2.2 The reinforcement learning problem 

Santa Bot poses an optimization problem whose optimal solution would be feasible 
using integer linear programming if all wish lists were known. However, since this is 
not the case, the robot is expected to autonomously discover the optimal solution 
through trial-and-error interactions with its environment. In Reinforcement Learning 
(RL) [1], an agent observes its environment and interacts with it by performing an 
action. After that, the environment transitions to a new state providing a reward. The 
goal of the algorithm is to find a policy that optimizes the long-term sum of rewards.  
The main elements of a RL problem (states, transitions, actions and rewards) are usu-
ally modeled as a Markov Decision Process (MDP) [3]. Fig. 1 shows the basic MDP 
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specification for the Santa Bot example. It is worth noting that, for the sake of sim-
plicity, we will not delve into the details of RL and MDP. 

The Santa Bot environment considers two sets of states: In-front and Leaving. The 
former indicates that a child is in front of Santa Bot waiting for a gift. In this situation, 
the state is defined in terms of the gifts available (i.e., 𝑁/0) and some observable fea-
tures of the child. In the example, we have supposed that the robot can perceive the 
apparent age, the gender and the predominant color of the child’s clothes. Ideally, 
these features will include sufficient information to trace preferences and common 
tastes among children with similar aspects. Actually, a successful learning process 
should be able to detect these tendencies and exploit them by making good decisions.  

Once the robot performs the delivery action, the environment transitions from In-
front to Leaving. Note that it returns to In-front when a new child arrives. Leaving 
integrates the satisfaction of the child with the gift, which is represented by a QoS 
metric. This metric provides a real value in the range [0,1] indicating how much the 
child liked the gift (being 1 the highest degree of satisfaction). The reward function 
will depend on this value, e.g., see Equation 3, where the reward changes in a linear 
way from 0 to 𝛼 according to the satisfaction. 

 𝑟𝑒𝑤𝑎𝑟𝑑 = 𝛼 ∙ 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛, 𝛼 ∈ ℝ- (3) 

The reward function is an essential part of any RL problem, as it implicitly deter-
mines the desired behavior we want to achieve in our system. However, it is very 
difficult to establish a good reward mechanism in practice. Note that Equation 3 
seems simple because we have moved the complexity to the specification of the QoS 
metric, i.e., to how the robot measures satisfaction. The following section illustrates 
how RoQME can alleviate the complexity of specifying rewards by supporting the 
definition of QoS metrics.    

 
Fig. 1. Simple Markov Decision Process for the Santa Bot example. 

3 Modeling robot QoS metrics 

RoQME aims at providing robotics engineers with a model-driven tool-chain allow-
ing them to: (1) specify system-level non-functional properties; and (2) generate 
RobMoSys-compliant components, ready to provide other components with QoS 
metrics defined on the previous non-functional properties. In the following, we use 
the Santa Bot example to present the main modeling concepts of RoQME and how 
they are translated into QoS metrics at runtime. More information about the RoQME 
meta-model and its integration into RobMoSys can be found in [4]. 
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The previous section left open the specification of the QoS metric for measuring the 
satisfaction of a child after receiving a gift (hereinafter, simply denoted as satisfac-
tion). It is worth noting that QoS metric is not a modeling concept in RoQME, but 
rather, a runtime artifact implicitly bound to a non-functional property. Non-
functional properties, which can be thought of as particular quality aspects of a sys-
tem, are included in the modeling language, thus, in our example, satisfaction is mod-
eled as a non-functional property using the keyword property (see line 4 
in Listing 2). Regarding the execution semantics, a RoQME model abstracts a Belief 
Network [3], in which properties are represented by unobserved Boolean variables. In 
this sense, the variable associated with satisfaction would indicate whether or not 
Santa Bot is optimal in terms of this property. The runtime quantification of this belief 
results in the corresponding QoS metric value. For example, a resulting value of 0.67 
can be understood as the probability of the gift being satisfactory for the child. 

The belief of a property (i.e., the QoS metric) fluctuates over time according to the 
evidences observed by the robot in its environment (contextual information). RoQME 
allows specifying observations (observation) as conditions in terms of context vari-
ables (context), so that the detection of an observation will reinforce (or undermine) 
the belief. In the belief network, observations are evidence variables that exhibit a 
direct probabilistic dependence with the property. 

Lines 5-8 in Listing 2 show four observations for the Santa Bot example. These 
observations use the following context variables: (1) face, which indicates the facial 
expression of the child after receiving a gift; and (2) age, the apparent age of the child 
perceived by the robot. Note that the robot will continuously feed RoQME with this 
contextual information. Each observation will reinforce or undermine the child satis-
faction according to the emotion expressed by the child. We have assumed that sur-
prise and anger are stronger emotions than joy and sadness, and thus the first ones 
should have a higher influence on satisfaction than the second ones. Moreover, obser-
vations 1 and 4 are conditioned by age, which means that strong reactions tend to be 
more or less frequent depending on the age. Note that toddlers may tend to react more 
vividly than school-aged children. Therefore, it is used to normalize the effect of the 
observation among children of different ages. 

1   context face : eventType {JOY, SURPRISE, NEUTRAL, SADNESS, ANGER} 
2   context age : enum {TODDLER, PRESCHOOLER, SCHOOL_AGED , ADOLESCENT} 
3   context prevSatisfaction : number 
4   property satisfaction : number prior prevSatisfaction 
5   observation obs1 : SURPRISE reinforces satisfaction highly conditionedBy age  
6   observation obs2 : JOY reinforces satisfaction 
7   observation obs3 : SADNESS undermines satisfaction 
8   observation obs4 : ANGER undermines satisfaction highly conditionedBy age 

Listing 2. A simple RoQME model for modeling children satisfaction. 

Finally, the context variable prevSatisfaction provides the satisfaction of the child 
who received the gift just before the current one. We want to use this information to 
model possible influences between two consecutive children, e.g., a child expressing 
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anger could have an effect on the behavior of the following child. This is implement-
ed by defining a bias in the prior probability of satisfaction (see line 4).  

As we have already mentioned, a RoQME model translates all its semantics into a 
belief network. Fig. 2 shows the qualitative specification of the network resulting 
from the model in Listing 2. Note that, for the sake of clarity, we have omitted proba-
bilities. This belief network will be the “brain” of a generated RobMoSys-compliant 
component aimed at measuring satisfaction. In general, the generated component will 
estimate the value of each non-functional property, specified in the RoQME model, 
by successively processing the available contextual information, either from internal 
(e.g., robot sensors) or external (e.g., web services, other robots, etc.) sources. The 
contextual information received by the component will be sequentially processed by: 
(1) a context monitor that receives raw contextual data and produces context events; 
(2) an event processor that searches for the event patterns specified in the RoQME 
model and, when found, produces observations; and, finally (3) a probabilistic rea-
soner that computes a numeric estimation for each metric. This information could 
then be used by other components, e.g. the robot task sequencer could integrate the 
RL process to adapt the robot behavior according to the provided QoS metrics. 

 
Fig. 2. Belief network resulting from the RoQME model developed in Listing 2. 

4 QoS metrics in action 

This section presents the simulation results obtained on the Santa Bot example. Be-
fore detailing the results, let us describe the simulation setting. 

Queues of children. We have generated random queues of length 50 with children 
showing different features (i.e., age, gender and clothes color). In particular, we have 
considered four age groups: (1) toddlers, (2) preschoolers, (3) school-aged children 
and (4) adolescents, with the following density function [0.4, 0.3, 0.2, 0.1], and uni-
formly distributed gender and clothes colors (5 colors). 

Wish lists. For each child, we have produced a 3-item list from 20 different toys. 
Preferences were distributed depending on the children features (age, gender and 
clothes color). These dependencies create tendencies that are expected to be detected 
and exploited by the learning process. The correlation is clearly exposed in Fig. 3, 
where the heat map represents favorite toys in relation to children features. 

Children reactions. As we described in Section 3, RoQME estimates satisfaction 
considering as contextual information the age and the face expression of the children. 

Satisfaction

Age

Previous
satisfaction

Obs 1 Obs 2 Obs 3 Obs 4
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While the former has already been defined, the children reactions need to be estab-
lished. For that, we have assigned face expressions to each child receiving a particular 
gift according to his/her features and wish list. The idea is to introduce inclinations 
similar to those described in Section 3. It is obvious that the algorithm will not be able 
to learn if the RoQME model for satisfaction does not reflect reality. 

Simulations. We have executed the simulation on 1000 episodes, where each episode 
consists of a new queue of 50 children. In addition, we have considered that Santa Bot 
has an infinite number of gifts available for each type of toy. The left side of Fig. 4 
shows the learning process in an initial state (episode 25), in which the exploration of 
the states (i.e., choosing a random action) is preferred to acquire new information and 
discover the best actions. This can be seen in the upper heat map, where Santa Bot 
delivers gifts following a uniform approach. As for the cumulative rewards represent-
ed in the lower heat map, it begins to show the correlations we have introduced in the 
data (see Fig. 3). On the other hand, the right side of Fig. 4 shows the learning process 
in an advanced state (episode 1000), in which the exploitation (i.e., choosing the best 
action according to the information already learned at that moment) is preferred over 
exploration. The upper heat map shows how the process seems to prioritize the gifts 
that have provided greater reward. As for the lower map, it is similar to Fig. 3, which 
means the learning process was successful. 

 
Fig. 3. Heat map of gift probabilities by child type.  

  
Fig. 4. Up, the number of visits to the Q-matrix cell; down the Q-matrix. (Left) Episode 25 

of the learning algorithm. (Right) Episode 1000 of the learning algorithm. 
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Fig. 5. (Left) Score evolution over 1000 episodes. (Right) Q-matrix after 1000 episodes, in 

which the RoQME model estimates satisfaction wrongly.  

The left side of Fig. 5 shows the evolution of the learning process, in which the score 
seems to stabilize after 400 episodes. Finally, the system has achieved an average 
score of 72.03% and a maximum score of 84.67% with respect to the optimal solution 
(the one with known wish lists). Finally, we have modified the RoQME model to 
observe the effect of modeling wrongly. The right side of Fig. 5 shows that, in this 
case, the process fails to learn. 

5 Related work 

Reinforcement learning emerged as a combination of optimal control (using dynamic 
programming) and trial-and-error learning (inspired by the animal world) [5]. In the 
last years, thanks to more powerful computing systems and new deep learning tech-
niques, RL has received an impulse in domains such as video games and simula-
tions [6]. In the field of robotics, optimization problems have a temporal structure, 
where RL techniques seem to be suitable. However, there may be cases showing high 
dimensionality continuous states and actions, with states not fully observable and 
noise-free. Those cases generally result in modeling failures that can be accumulated 
over time, so training with physical agents is needed [1].  

In the literature, we can find numerous RL techniques applied to diverse robotic 
tasks. For example, robot manipulators aimed at learning how to reach a certain posi-
tion or open a door [7-9]; or mobile robots that learn how to move in crowded spac-
es [10].  Recently, RL has been used to teach a car how to drive in a short period of 
time with just a camera and feedback of speed and steering angle [11]. 

Despite the large number of applications, one of the fundamental problems of RL 
is the so-called cursing of the objective specification [1]. Rewards are a crucial part of 
any RL problem, as they implicitly determine the desired behavior we want to 
achieve. However, the specification of a good reward function can be highly complex. 
In this sense, domain experts may be required to define the proper reward function. 

To alleviate this problem, different techniques have been used to define reward 
functions. A perfect scenario would be a human supervising the agent and providing 
feedback about the reward that the system should give according to its actions, but 
this is expensive and error prone. In [12], authors use EEG-signals of a human user as 
reward function, so that the user unconsciously teaches the agent to act as he wants. 
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Another way is, firstly, to train a learner to discover which people actions are better 
than others, and then use it in RL to give reward to the agent simulating a person. 
Regarding the perspective applied in [13], it creates a Bayesian model based on feed-
back from experts. On the contrary, in [14], non-expert people are considered to train 
the learner with reinforcement learning techniques.  

Some rules defined at design time in a lax way can be introduced in the learning 
process as a bias to enhance the behavior as in [10], where the robot has to respect 
some social rules of circulation.  

Regarding QoS, in [15] the system tries to autonomously improve the quality of the 
services of the robot by adapting its component-based architecture and applying RL to 
meet the user preferences. The system learns how to estimate the non-functional 
properties in the process as it has not prior knowledge about them. 

6 Conclusions and future work 

This paper presents a preliminary work about the integration of RoQME QoS metrics 
into the reward strategy of RL problems. Moreover, we have introduced and formal-
ized Santa Bot, an optimization “toy” example inspired by Santa Claus, used to illus-
trate the explanations in simple terms. In the following, we highlight some remarks: 

• The execution semantics of a QoS metric relies on a belief network, which is a 
well-known mathematical abstraction that has been successfully applied to many 
domains, such as medical diagnosis and natural language processing. Consequent-
ly, we can benefit from existing tools and techniques that are used for the analysis 
and simulation of probabilistic networks. 

• The RoQME modeling language allows users to transparently specify the qualita-
tive part of the underlying belief network (i.e. nodes and arcs of the directed acy-
clic graph). The RoQME framework is in charge of automatically completing the 
quantitative part of the network (i.e., the conditional probability tables). As quanti-
fication is often referred to as a major obstacle in building probabilistic net-
works [2], RoQME eases the modeling process by abstracting probabilities. In this 
sense, although there are many probabilistic programming languages [16] that can 
be used to specify belief networks, unlike RoQME, they usually need a detailed 
specification of probabilities. 

• Although the specification of RoQME QoS metrics does not need to be addressed 
by domain experts, a RoQME model that does not sufficiently represent reality will 
have a great impact on the learning process. 

• We have simulated the Santa Bot example considering an unlimited number of 
gifts. Although this relaxation of the problem has not affected the explanations, it 
is pending to take more advantage of the example and to apply our approach to 
more realistic robotics scenarios. 

For the future, we plan to continue exploring the potential of RoQME QoS metrics 
applied to RL. We also intend to study ways of improving the QoS modeling process.  
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