
Towards software architecture runtime models for
continuous adaptive monitoring

Thomas Brand
Hasso Plattner Institute, University of Potsdam

Potsdam, Germany
thomas.brand@hpi.uni-potsdam.de

Holger Giese
Hasso Plattner Institute, University of Potsdam

Potsdam, Germany
holger.giese@hpi.uni-potsdam.de

ABSTRACT
A software architecture runtime model provides an abstraction
that allows to reason about a running system. For example, a self-
adaptive system can employ the model to detect phenomena which
make an adaptation beneficial. Over t ime o ther phenomena can
become interesting and thus make the monitoring of different sys-
tem properties necessary. Typically properties are declared in a
meta-model as part of application specific model element classifiers.
In this case adding new properties requires the creation of a new
runtime model instance based on the updated meta-model version.
In contrast, a more flexible approach allows altering the set of prop-
erties in the runtime model without creating a new model instance
and thus without interrupting the phenomena detection process. In
this paper we elaborate requirements for a runtime model modeling
language which shall enable continuous adaptive monitoring.
Reference Format:
Thomas Brand and Holger Giese. 2018. Towards software architecture run-
time models for continuous adaptive monitoring. In Proceedings of 13th
International Workshop on Models@run.time (MRT 2018). 6 pages.

1 INTRODUCTION
A runtime model which abstracts a running system to its architec-
ture is a common practice for reasoning about the system [14]. The
runtime model is maintained through monitoring to reflect relevant
system changes in the model. A key question is, what information
to obtain and represent in the model [5], especially as advances in
information technology allow capturing more and more pieces of
data. The answer to this question needs to consider the purpose for
which the model is maintained as well as cost-effectiveness [12].
However, over time the information demand, which the runtime
model needs to satisfy, can change regarding the level of abstraction,
that is the set of monitorable properties, and for which of those
up-to-date monitoring results are currently beneficial.

Triggers for such changes might for example be the temporary
exploration of new features through machine learning, altered poli-
cies or monitoring results that lead to obtaining and incorporating
additional information [6]. Adaptive monitoring allows focusing the
attention according to the information demand by altering the set

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MRT 2018, October 2018, Copenhagen, Denmark
© 2018 Copyright held by the owner/author(s).

of monitorable properties and dynamically allocating monitoring
effort to produce only currently relevant monitoring results.

Besides changing information demands also the represented
running system can evolve over time, for example, due to the de-
ployment of a new software component release. This can require
the adaptive monitoring to maintain new kinds of information
in the runtime model, too. Consequently, the runtime model also
needs to evolve accordingly with the running system [3].

A software system can be built for continuous operation without
downtime even when it evolves. Its runtime model needs to support
this evolution without interruption to enable continuous adaptive
monitoring and hence continuous phenomena detection and rea-
soning about the system. This is especially relevant if evolution
occurs frequently for example caused by the currently fostered
very short software release cycles and experimentation in software
product development [7].

An idea to enable continuous adaptive monitoring is to utilize a
runtime model modeling language which supports the co-evolution
of the system and the model as well as changing information de-
mands without the need to re-instantiate the runtime model and
thereby avoiding an interruption. Such a modeling language with
a reusable implementation to create and maintain runtime models
would also reduce the effort to employ them and likely foster their
use. Thus, we want to find out more about the related requirements.

Our contribution with this paper is a set of elaborated require-
ments for a modeling language to create and maintain evolvable
runtime models that support continuous adaptive monitoring of
a running system. For an prospective approach we describe dif-
ferent illustrative scenarios from which we derive and generalize
the requirements. Additionally, we investigate two state-of-the-art
approaches regarding their support for the scenarios and require-
ments to identify beneficial and missing features.

To the knowledge of the authors no reusable modeling language
has been described and evaluated for runtime models that support
continuous adaptive monitoring. Nor have requirements for such a
language been elaborated before. Thus, this paper can be seen as a
step towards software architecture runtime models for continuous
adaptive monitoring.

In Section 2 the terminology used in this paper is introduced. In
Section 3 we describe the scenarios and in Section 4 the derived
requirements. Then we investigate two state-of-the-art approaches
in Section 5 regarding their support for scenarios and requirements
and outline a prospective runtime model modeling language to
support continuous adaptive monitoring. Finally, we conclude and
provide an outlook regarding future work in Section 6.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

MRT 2018, October 2018, Copenhagen, Denmark T. Brand et al.

2 BACKGROUND
In this section we introduce the terminology used in this paper. A
runtime model is defined as "an abstraction of a running system
that is being manipulated at runtime for a specific purpose" [2].
There are different types of runtime models. This paper considers
software architecture runtime models [14]. Those runtime models
are graph-based data structures. They allow storing, querying and
accessing configurational as well as operational information about
the running system. Configurational information comprises the
system parameters and the structure of the system with its parts
and relationships. Operational information is a specific behavioral
runtime aspect. It is caused or produced by the running system.
An example is a component invocation count for a certain time
window. Overall runtime models help "to handle the complexity of
adapting or generally managing running software systems" [15].

Amodeling language is constituted by "the structure, terms, nota-
tions, syntax, semantics, and integrity rules that are used to express
a model" [10]. One way to describe a modeling language is by mod-
eling it. The model used to model the modeling language is called
meta-model. Typically, classifiers for model elements are defined in
the language meta-model. A set of classifiers which belong together
shall be called classifier system. An implementation of the modeling
language allows to programmatically create and maintain language
conform models. For example, the Eclipse Modeling Framework
(EMF) allows generating a modeling language implementation from
the language meta-model [13]. Typically language changes require
repeating the code generation and re-instantiating the model by
reloading or recreating it with the new implementation release.

As an ongoing abstraction of a running system a runtime model
changes frequently in comparison to design time models. A change
in a runtime model can, for example, be triggered when an auto-
mated control loop temporarily increases the value of a system
configuration parameter to support the current workload of the
system. Such mostly short-term and easily reversible adaptations
shall be considered as ordinary runtime model changes. In contrast,
evolutionary runtime model changes shall be those which involve
defining a new or altering an existing classifier for runtime model
elements. This usually requires a new release of the runtime model-
ing language and its implementation as well as a re-instantiation of
the model. In this paper we will discuss another approach to change
a runtime model classifier system and evolve the runtime model
without this kind of interruption. Possible triggers for the runtime
model evolution shall be changes in the information demand re-
garding the set of monitorable properties or the evolution of the
represented system, for example, when a new kind of component
is introduced in the system as a long-term enhancement. It shall
be noted that in general the co-evolution of a runtime model and
the represented running system is a relevant subject in the runtime
model research field [3].

Adaptive monitoring helps to control the monitoring effort and
focus on the information that is currently valuable. With regard to
runtime models we consider two dimensions of monitoring adapta-
tion. The first dimension is to change the level of abstraction for
the runtime model or individual parts of it by altering the set of
monitorable system properties. This comprises properties for con-
figurational and operational information. The second dimension

is to selectively enable and disable the production of monitoring
results for the monitorable properties within this set.

Continuous in the context of adaptive monitoring shall mean
that monitoring results can be provided to their consumers without
interruption. This also needs to be the case while a runtime model,
which is used to access the monitoring results, is evolving in order
to support monitoring tasks which were unforeseen at design time.
With this paper we are interested in supporting continuous adaptive
monitoring through a modeling language which allows runtime
model evolution with the same model instance and thus avoiding
evolution related interruptions.

3 SCENARIOS
In traditional engineering with design time models and also usually
when runtime models are employed, the abstraction respectively
reduction is determined at design time. However, in the future
systems must be able to learn and adapt to unanticipated changes
in the context and therefore also the abstraction respectively re-
duction present in the runtime models has to change at runtime.
For example, machine learning techniques often permit to identify
which features are helpful for predictions and therefore future sys-
tems require runtime models which (1) can be extended such that
new features could be explored and which (2) can be reduced to
those features that are in fact really exploited for the predictions.
Thus, deciding only at design time about the information that is
represented and maintained in the runtime model is not sufficient.

We argue that an evolvable runtime model instance could sup-
port continuous monitoring of a running system. The following
illustrating scenarios [1] describe exemplarily situations which can
occur with a system employing a runtime model. We use them to
derive requirements which are later generalized in Section 4 for a
modeling language enabling evolvable runtime model instances.

3.1 Running system changes
First we describe the scenarios related to changes of the running
system and derive the resulting requirements which need to be
supported in combination with continuous adaptive monitoring.
To make the scenarios more tangible we consider the ebay-like
mRUBiS SEAMS exemplar [16] as the running system.

S1 - System adaptation. The owner of the mRUBiS online auction-
ing platform wants to ensure that the running system provides
a high quality of service and thus utilizes autonomic computing.
In this scenario the employed system adaptation engine automati-
cally restarts the malfunctioning query service of the system and
increases the value of the corresponding instances pool size param-
eter. Those temporary changes to the system are also reflected as
ordinary changes in the runtime model. Changes in this adaptation
scenario do not alter the configuration possibilities of the running
system nor what information the runtime model can contain. Re-
sulting requirement: Update system representation structure while
the service restarts as well as the pool size parameter value (R1).

S2 - System evolution. The system owner wants to permanently
enhance the functionality of the system by providing the users
with an additional new payment option. The owner deploys the

Towards software architecture runtime models for continuous adaptive monitoring MRT 2018, October 2018, Copenhagen, Denmark

corresponding add-on component from a third party software man-
ufacturer to the system and wants the component to be represented
in the runtime model, too. However, that this particular kind of
component would be added to the system one day was not foreseen.
Thus, a runtime model classifier for the component needs to be
defined belatedly. Resulting requirement: Add a classifier for the
new component (R3).

S3 - Software evolution. The software manufacturer is currently
working on a new release of the inventory component and wants
to perform an experiment with the new version based on real data
and user traffic. Thus, some online shop tenants, so called early
adopters, get a new version of the inventory component deployed.
Now two versions of the inventory component with different sets
of properties need to be represented in the runtime model - the old
for the normal tenants and the new for the early adopters. Please
note that applying the result of software evolution to a system
instance, for example, by deploying a new software component
version, causes system evolution, too. Resulting requirement: Add
a new classifier with the same name but a different version number
for the new component release (R3).

S4 - Systems integration and division. In this scenario the system
owner is able to expand the business to another region by buying
a company there. Instead of operating two systems some parts
of the bought system shall be integrated and others be gradually
migrated. Both systems have their own runtime model classifier
system which shall coexist and stepwise be harmonized. In the
meantime the risk of classifier name clashes needs to be precluded.
Resulting requirements: Support the two different classifier systems
in the runtimemodel (R7), represent relationships between the parts
of the integrated systems (R5), withdraw obsolete classifiers after
the corresponding components have been migrated (R4).

3.2 Information demand changes
The scenarios about information demand changes including those
regarding the required abstraction level are:

S5 - Filtering. In this scenario the system owner wants to use ma-
chine learning to explore the runtime model and identify those
monitorable properties per tenant shop, which are good indicators
for when to preemptively increase the resources for the bid and buy
service to efficiently avoid long response times. For the selected
monitorable properties the production of monitoring results shall
be continued after the exploration phase. Not required monitoring
shall be deactivated afterwards for cost reasons. A generic adaptive
monitoring approach based on the actual information demand re-
garding currently relevant monitoring results has been described in
[4]. An approach using machine learning to identify indicators for
selecting a system self-healing option is presented in [9]. Resulting
requirement: Indicate the actual information demand (R2).

S6 - Aggregation. This scenario covers two different kinds of aggre-
gation which this time also happen at two different places. The first
aggregation is called entity aggregation by function [8]. In this case
the runtime model shall abstract from the individual query compo-
nent instances, which perform the same functionality in parallel, to
one runtime model representation, which allows reasoning about

the service which all the instances provide together. This aggrega-
tion is performed by the monitoring instruments maintaining the
runtime model. Hence, the details of the aggregation are hidden
from the runtime model.

The second aggregation is called entity aggregation by structure
where lower level entities for example integrated components are
represented by one higher level entity such as a subsystem [8].
Another difference to the first aggregation is that this time the
aggregation takes place in the runtime model and all involved
entities shall be present in the model. In this scenario actually an
exception counter is introduced which aggregates the counts of all
early adopter tenants to alert about its speed of increase.

Please be aware that in general an aggregation can occur on the
level of the monitoring instruments or on the level of the runtime
model where it is modeled as part of the runtime model. When
aggregating on monitoring instruments level then only the aggre-
gation result is represented in the runtime model and its compo-
sitional structure remains transparent to runtime model queries.
When aggregating on the runtime model level then the composi-
tional structure of the aggregation is modeled and can be queried
in the runtime model.

Resulting requirements: Use logical elements and relationships
to represent the aggregation results in the runtime model (R8),
introduce new classifiers for the aggregation results (R3), withdraw
obsolete classifiers for the component instances which are no longer
represented in the runtime model (R4), establish relationships to
indicate which components the subsystem comprises (R5).

S7 - Itemization. In this scenario the system owner wants to better
understand why the user management service sometimes becomes
very slow. Thus, the owner introduces additional monitoring ca-
pabilities which enable itemizing the service and monitoring its
individual subcomponents. The additional data is supposed to help
localizing and tackling the response time problem with the service
effectively. This scenario could also be combined with the filter
scenario (S5). Whenever the response time of the user management
service drops below a threshold then the expensive detailed moni-
toring of its subcomponents could only temporarily be activated.
Resulting requirements: Introduce the classifiers of the subcompo-
nents (R3), establish the relationship between the user management
component and its subcomponents (R5), optionally activate the
monitoring of the subcomponents only when the response time
dropped below the threshold (R2).

S8 - Generalization and specialization. As part of the running system
each of the online shops can have up to ten different item filters
that determine which products are displayed to a shopping user. To
indicate potential for configuration optimization the system owner
wants to regularly provide a report for each shop about the two
filters which filtered the fewest respectively the most items. Instead
of having to consider each of the ten filter types individually in
a complex runtime model query the system owner prefers a sim-
ple query. This query considers all currently deployed filters in a
general way not distinguishing between the particular filter types.
This is possible because the relevant properties are common to all
filter types. To be able to use the simple query the owner introduces
a mechanism which ensures that each filter gets assigned to the

MRT 2018, October 2018, Copenhagen, Denmark T. Brand et al.

generic filter classifier in addition to its specific classifier. As a re-
mark, in the case of specialization a more specific classifier would
have been assigned. Resulting requirements: Additionally assign
the general classifier to each filter (R6).

It needs to be stated that beyond the described scenarios in gen-
eral filtering, aggregation, itemization, generalization, and special-
ization shall be possible in the runtime model for structural or
value-based monitoring results alike.

4 REQUIREMENTS
In this section we generalize and describe the in Section 3 derived
requirements in more detail. For all requirements applies that the
corresponding solutions shall allow consumers to accessmonitoring
results through the runtime model continuously. Continuous adap-
tive monitoring shall be achieved without the need to re-instantiate
the runtime model.

R1 - Updating system representation structure and values. The run-
time model modeling language and its implementation shall allow
updating the structure and values of the system representation
programmatically. It shall be possible to add and remove repre-
sentations of system parts and relationships as well as change the
values of other monitorable properties. This requirement only cov-
ers changes to the model content representing the running system.

R2 - Indicating the actual information demand. The modeling lan-
guage and its implementation shall allow recognizing attempts to
access monitoring results in the runtime model and processing
the corresponding notifications programmatically. This allows the
monitoring to adapt the production of monitoring results to the
actual demand in a generic way as described in [4].

R3 - Introducing new classifiers including classifier versions. The
modeling language and its implementation shall allow defining and
afterwards using new classifiers in the runtime model programmat-
ically and without the need to re-instantiate the runtime model.
It shall also be possible to programmatically distinguish different
versions of a classifier without parsing the classifier name. Thus
explicit versioning support is required.

R4 - Withdrawing obsolete classifiers. The modeling language and
its implementation shall allow removing classifier definitions which
are no longer required. This shall be possible in a programmatic
manner and without the need to re-instantiate the runtime model.

R5 - Establishing new kinds of relationships. The modeling language
and its implementation shall allow creating relationships with a
new classification programmatically and without the need to re-
instantiate the runtime model. This means that the decision what
relationships of a system part can be represented in the runtime
model shall be changeable after the design time.

R6 - Assigning multiple classifiers. The modeling language and its
implementation shall allow that system parts and relationships
represented in the runtime model can have multiple classifiers.
Further it shall be possible to assign those classifiers at different
points in time. This shall be possible programmatically and without
the need to re-instantiate the runtime model.

R7 - Multiple integrable classifier systems. The modeling language
and its implementation shall allow that a runtime model has mul-
tiple classifier systems concurrently. Also it shall be possible to
link parts which have been classified with different classifier sys-
tems and to introduce the classifier systems at different points in
time programmatically and without the need to re-instantiate the
runtime model. In order to preclude naming conflicts an explicit
support for namespaces shall be offered.

R8 - Introducing logical elements and relationships. The modeling
language and its implementation shall support logical model ele-
ments and relationshipswhich do not physically exist in the running
system for example for business related grouping purposes or to
store derived information in the runtime model. It shall also be
possible to introduce corresponding classifiers programmatically
and without the need to re-instantiate the runtime model.

5 APPROACHES
Now we want to investigate to what extent two state-of-the-art
approaches support our scenarios for continuous adaptive moni-
toring and the derived requirements. For this we consider the clas-
sical model driven engineering approach and an existing runtime
model modeling language called CompArch [16]. For the classical
approach we assume that a runtime model modeling language is
defined which is specific to the running system and its domain.
This language shall be considered as not intended for reuse with
other systems and rather inflexible regarding unforeseeable runtime
model changes. In contrast the CompArch language is designed
and reused for different scientific experiments with runtime models
in the context of self-adaptive systems. Thus, it already provides
a certain degree of flexibility. However, as its design goal did not
explicitly comprise the support for continuous adaptive monitoring
it can also be used to illustrate the need for some additional fea-
tures. At the end of this section we outline a prospective approach
based on a modeling language which is supposed to support the
described requirements and scenarios. Table 1 and Table 2 provide
an overview by listing the scenarios respectively requirements and
indicating how they are supported by the discussed approaches.

Table 1: Supported illustrative scenarios per approach

Support per approach
Illustrative scenario Classical CompArch Prospective
S1 - System adaption X X X?

S2 - System evolution – (X) X?

S3 - Software evolution – (X) X?

S4 - Systems integration – – X?

and division
S5 - Filtering (X) (X) X?

S6 - Aggregation – – X?

S7 - Itemization – – X?

S8 - Generalization and – – X?

specialization
Xsupported, (X) partially supported, X? shall be supported, – not supported

Towards software architecture runtime models for continuous adaptive monitoring MRT 2018, October 2018, Copenhagen, Denmark

Table 2: Supported requirements per approach

Support per approach
Requirement Classical CompArch Prospective
R1 - Updating system representation structure and values X X X?

R2 - Indicating the actual information demand (X) (X) X?

R3 - Introducing new classifiers including classifier versions – (X) X?

R4 - Withdrawing obsolete classifiers – X X?

R5 - Establishing new kinds of relationships – – X?

R6 - Assigning multiple classifiers progressively – – X?

R7 - Integrating multiple classifier systems – – X?

R8 - Introducing new logical elements and relationships – (X) X?

Xsupported, (X) partially supported, X? shall be supported, – not supported

5.1 Classical approach
With the classical approach the decision what kind of information
the runtime model can contain, that is which classes of elements
and properties, is solely made during design time of the modeling
language. The supported classifiers and properties of the runtime
model modeling language are defined in the meta-model as shown
exemplarily in Figure 1. Using, for example, EMF allows defining the
modeling language and generating source code to programmatically
create and maintain models based on this language.

Changes to the language imply that the model becomes tem-
porarily unavailable due to the repeated source code generation
and the execution of other migration tasks. We want to enable
continuous adaptive monitoring through a very long lifetime of
runtime model instances. Thus, the classical approach only sup-
ports those requirements and consequently scenarios for which
it does not require a re-instantiation of the runtime model that
means it does not need to be reloaded or recreated due to source
code changes of the modeling language implementation. As Table 2
shows, requirement R1 is supported and requirement R2 only par-
tially as the required notification mechanism needs to be explicitly
added to the modeling language implementation as described in
[4]. The other requirements which demand more flexibility are not
supported by this approach. The supported requirements indicated
in Table 2 and the resulting requirements listed per scenario in Sec-
tion 3 allow deriving the illustrative scenarios that are supported
by the classical approach. They are also indicated in Table 1.

QueryService

:QueryService

<<instanceOf>>

poolSize : Integer
upTime : Long

poolSize = 5
upTime = 24865727L

Meta-model level

Runtime model level System representation content

Modeling language definition content

Figure 1: Classical model driven engineering approach -
Simple exemplary meta-model and runtime model

5.2 CompArch approach
The classifier system of the EMF-based CompArch approach is
split. Software engineering approach specific classifiers such as
component and connector are defined in the modeling language
meta-model. A small fragment of the CompArch meta-model is
depicted in Figure 2. Like with the classical approach all classifiers
defined in the meta-model cannot be changed easily. Thus, with
CompArch those classifiers are comparatively generic. However,
the CompArch meta-model also defines classifiers shown on the
left side of the meta-model in Figure 2 which allow the specification
of additional more domain-specific classifiers as part of the runtime
model classifier definition content, for example, as the query service
component classifier is defined in Figure 2. Also following the core
of the dynamic object model pattern [11] those specific classifiers
can be modeled with an additional model element for each of their
properties. A runtime model element of the system representation
content can be classified by referencing a classifier defined in the

ComponentType

ComponentType

<<instanceOf>>

:Component
 classifies 4

Component

<<instanceOf>>

1 *

ParameterType

ParameterType

Parameter

:Parameter

name : String

name = "QueryService"

name : String
type : String

name = "poolSize"
type = "Integer"

value = "5"

value : String

:MonitoredProperty

name = "upTime"
type = "Long"
value = "24865727"

MonitoredProperty

name : String
type : String
value : String

 classifies 4

Meta-model level

Runtime model level

1 *

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

*

1

*

1

*

1

System representation contentClassifier definition content

Modeling language definition content

Figure 2: CompArch approach - Simplified meta-model and
exemplary runtime model

MRT 2018, October 2018, Copenhagen, Denmark T. Brand et al.

classifier definition content. This reference needs to be created
together with the newmodel element by a factory, which also needs
to create the related parameter and monitored property elements if
applicable.

Despite it is not explicitly stated in [16] this allows introduc-
ing new classifiers without re-generating source code from the
CompArch meta-model and re-instantiating the runtime model.

As Table 2 shows, the requirement R1 is supported. To fully
support requirement R2 a minor change to the CompArch imple-
mentation is necessary as described in [4] so that the required
access notification get sent. Requirement R3 is marked as partially
because both, parameters and monitored properties of a compo-
nent type, should be classifiable by a classifier. Such a parameter or
monitored property classifier should also be usable with multiple
component types. Also versioning of classifiers is not yet explicitly
supported and the approach is specific to components with connec-
tors linking only modeled interfaces. Requirement R4 is supported
by deleting the obsolete classifiers form the classifier definition
content. The requirements R5 to R7 are not supported due to con-
straints defined in the CompArch meta-model. Requirement R8 is
only partially supported as defining domain-specific classifiers for
logical model elements is essentially limited to logical component
types. In order to distinguish logical from other elements one needs
to apply an according naming scheme. The requirements supported
by the CompArch approach as indicated in Table 2 and the resulting
requirements listed per scenario in Section 3 lead to the support of
the illustrative scenarios as indicated in Table 1.

5.3 Prospective approach
As shown in Table 1 and Table 2 the two investigated state-of-the-
art approaches do not cover all the scenarios and requirements
which the prospective approach is supposed to support. Like the
other two, the prospective approach shall be based on a modeling
language. The implementation of this reusable, future language
shall allow to programmatically create and maintain software archi-
tecture runtime models. Also it shall be flexible enough to enable
continuous adaptive monitoring. This means that without the need
for new language implementation releases it shall support (1) over
time changing information demands regarding the level of abstrac-
tion and the monitoring results which are beneficial to produce as
well as (2) changes to the modeled running system. This helps to
avoid disturbing re-instantiations of the runtime model and thus
is a way to enable continuous adaptive monitoring. In order to
support the necessary runtime model evolution, the prospective
modeling language needs to be generic to a certain degree. However,
despite the need for genericness, the language shall still provide
enough guidance for creating compatible, in the sense of integrable,
runtime models on a consistent and stable conceptual basis. This
comprises especially the support for runtime aspects with a likely
small set of predefined classifiers in the language meta-model.

6 CONCLUSION AND FUTUREWORK
In this paperwe elaborated and described requirements for a prospec-
tive modeling language which shall allow creating and maintaining
software architecture runtime models for continuous adaptive mon-
itoring. For this purpose we first described illustrative scenarios

which can occur with systems employing runtime models. With the
scenarios we consider, for example, experimentation in software
product development and realizing self-adaptive systems utilizing
machine learning. To better understand the resulting requirements
and also the implications of not fulfilling them, we investigated
to what extent the requirements and the scenarios are already
supported by two state-of-the-art modeling language approaches,
namely the classical model-driven engineering approach and an ex-
isting, reusable, and rather generic modeling language for runtime
models. We found that the flexibility which the CompArch model-
ing language provides by allowing the definition of classifiers in the
runtime model is actually particularly helpful to support the stated
scenarios. We will continue working towards the prospective run-
time model modeling language, for example, by evaluating different
implementation options including the use of the dynamic object
model pattern. Also we plan to investigate which generic language
extensions are beneficial especially regarding the self-adaptation
related functions analyze, plan and execute.

REFERENCES
[1] Ian F. Alexander and Ljerka Beus-Dukic. 2009. Discovering Requirements: How to

Specify Products and Services. Wiley.
[2] Nelly Bencomo, Gordon Blair, Sebastian Götz, Brice Morin, and Bernhard Rumpe.

2013. Report on the 7th International Workshop on Models@Run.Time. SIGSOFT
Software Engineering Notes (2013).

[3] Amel Bennaceur, Robert France, Giordano Tamburrelli, Thomas Vogel, Pieter J.
Mosterman, Walter Cazzola, Fabio M. Costa, Alfonso Pierantonio, Matthias Tichy,
Mehmet Akşit, Pär Emmanuelson, Huang Gang, Nikolaos Georgantas, and David
Redlich. 2014. Mechanisms for Leveraging Models at Runtime in Self-adaptive
Software. In Models@run.time: Foundations, Applications, and Roadmaps, Nelly
Bencomo, Robert France, Betty H. C. Cheng, and Uwe Aßmann (Eds.).

[4] Thomas Brand and Holger Giese. 2018. Towards Generic Adaptive Monitoring.
In 2018 IEEE 12th International Conference on Self-Adaptive and Self-Organizing
Systems (SASO). to appear.

[5] Yuriy Brun, Ron Desmarais, Kurt Geihs, Marin Litoiu, Antonia Lopes, Mary
Shaw, and Michael Smit. 2013. A Design Space for Self-Adaptive Systems. In
Software Engineering for Self-Adaptive Systems II: International Seminar, Dagstuhl
Castle, Germany, October 24-29, 2010 Revised Selected and Invited Papers, Rogério
de Lemos, Holger Giese, Hausi A. Müller, and Mary Shaw (Eds.).

[6] Frederica Darema. 2004. Dynamic Data Driven Applications Systems: A New
Paradigm for Application Simulations and Measurements. In Computational
Science - ICCS 2004.

[7] Aleksander Fabijan, Pavel Dmitriev, Helena Holmström Olsson, and Jan Bosch.
2017. The Evolution of Continuous Experimentation in Software Product Devel-
opment: From Data to a Data-Driven Organization at Scale. In 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE).

[8] Frederick K. Frantz. 1995. A Taxonomy of Model Abstraction Techniques. In
Proceedings of the 27th Conference on Winter Simulation.

[9] Sona Ghahremani, Christian M. Adriano, and Holger Giese. 2018. Training
PredictionModels for Rule-based Self-adaptive Systems. In 2018 IEEE International
Conference on Autonomic Computing (ICAC). To Appear.

[10] OMG. 2014. Object Management Group Model Driven Architecture (MDA) -
MDA Guide rev. 2.0.

[11] Dirk Riehle, Michel Tilman, and Ralph Johnson. 2005. Dynamic Object Model.
In Pattern Languages of Program Design 5, Dragos Manolescu, Markus Voelter,
and James Noble (Eds.).

[12] J. Rothenberg. 1989. The Nature of Modeling. In Artificial Intelligence, Simulation
& Modeling, Lawrence E. Widman, Kenneth A. Loparo, and Norman R. Nielsen
(Eds.).

[13] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. 2009. EMF:
Eclipse Modeling Framework. Addison-Wesley.

[14] Michael Szvetits and Uwe Zdun. 2016. Systematic literature review of the ob-
jectives, techniques, kinds, and architectures of models at runtime. Software &
Systems Modeling (2016).

[15] Thomas Vogel. 2018. Model-Driven Engineering of Self-Adaptive Software. Ph.D.
Dissertation. University of Potsdam, Germany.

[16] Thomas Vogel. 2018. mRUBiS: An Exemplar for Model-Based Architectural
Self-Healing and Self-Optimization. In International Symposium on Software
Engineering for Adaptive and Self-Managing Systems.

	Abstract
	1 Introduction
	2 Background
	3 Scenarios
	3.1 Running system changes
	3.2 Information demand changes

	4 Requirements
	5 Approaches
	5.1 Classical approach
	5.2 CompArch approach
	5.3 Prospective approach

	6 Conclusion and future work
	References

