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ABSTRACT

Modeling parametric dependencies in architectural performance
models increases performance prediction accuracy. However, man-
ually modeling parametric dependencies is time-intensive and re-
quires expert knowledge. Existing automated extraction approaches
require dedicated performance tests, which is often infeasible. In
this paper, we propose to characterize parametric dependencies
based on monitoring data. We create a representative dataset and
show that different machine learning approaches perform best, de-
pending on the characteristics of the dependency. Based on these
results, we introduce a meta-selector that chooses the most suitable
machine learning approach based on the dependency character-
istics. In our evaluation, the meta-selector reduces the prediction
error compared to the best individual machine learning approach,
SVR, by 30%. As a proof of concept, we show that our approach
is capable of automatically characterizing a manually modeled de-
pendency from a previous case-study, resulting in a response time
prediction accuracy of 92.8%.

CCS CONCEPTS

« Computing methodologies — Supervised learning; « Com-
puter systems organization — Self-organizing autonomic com-
puting; « Software and its engineering — Software system
models; Software performance;

KEYWORDS

Performance modeling, Model learning, Meta-learning, Parametric
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1 INTRODUCTION

Architectural performance models are a common approach to pre-
dict the performance properties of a software system during system
design [26] and the impact of reconfigurations at runtime [19]. A
major factor in the prediction accuracy of a performance model is
its parameterization, i.e. the values for model parameters such as
loop frequencies, branching probabilities or resource demands [29].
However, these model parameters often depend on the input param-
eters of a component, e.g., the size of a list impacts the time required
to sort it. Therefore, many architectural performance models allow
to explicitly model input parameters and their influence on model
parameters as so-called parametric dependencies [3, 9, 16, 20, 28].
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Manually modeling parametric dependencies requires expert
knowledge, is quite error prone and causes significant manual over-
head. For example, in a case stude by Krogman et al. [21] more than
24 hours were required to manually model the parametric depen-
dencies in a small system, which shows that manually modeling
parametric dependencies for large systems is infeasible.

Courtois et al. [7] propose to use regression splines combined
with automated performance testing to derive functions that de-
scribe resource demands based on input parameters. Krogmann
et al. [21] use genetic search to find dependencies between a com-
ponents input parameters and the number of executed bytecode
instructions. However, both approaches require dedicated perfor-
mance tests in order to extract the parametric dependencies.

We propose to derive parametric dependencies solely from mon-
itoring data available at runtime. Identifying between which pa-
rameters dependencies exist is a classical feature selection task [6].
Therefore, this paper focuses on the characterization of previously
identified dependencies. We create a representative dataset con-
taining parametric dependencies and evaluate how well a range of
machine learning approaches can characterize the contained para-
metric dependencies. We find that no machine learning approach
performs well for all parametric dependencies. This is in accordance
with the no free lunch theorem [34], which states that machine
learning algorithms cannot be universally good. Based on these
results we propose a meta-selector, which selects an appropriate
machine learning technique for every dependency, based on the
characteristics of the available data.

In our evaluation, the meta-selector performs better than any
individual machine learning technique. It reduces the parameter
prediction error by 30% compared to support vector machines, the
best performing individual machine learning technique. As a proof
of concept, we show that our approach is capable of automatically
characterizing a manually modeled dependency from a previous
case-study, resulting in a response time prediction accuracy of
92.8%.

Our approach takes potential dependencies (either labeled by
a human or extracted by a different algorithm) as input and au-
tomatically characterizes them, i.e., automatically learns how to
derive the value of a parameter such as loop frequencies, branch-
ing probabilities or resource demands from input parameters. This
significantly reduces the required effort compared to manually mod-
eling parametric dependencies and therefore makes the modeling
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of dependencies for large systems feasible. Furthermore, the ap-
proach works online, requires only run-time monitoring data of
the managed application and otherwise treats the application as
a black-box. It enables autonomic and online improvement and
refinement of already existing performance models. The presented
work represents a significant step towards our vision for self-aware
performance models [11].

The remainder of this paper is structured as follows: Section 2
describes our approach, including the dataset creation, the dataset
characteristics, the evaluation of a multitude of machine learning
techniques and finally the construction of our meta-selector. This
meta-selector is evaluated in Section 3.1, followed by a proof of
concept for the integration of our approach in architectural perfor-
mance models in Section 3.2. Related work and the limitations of
our approach are discussed in Section 4 and Section 5, respectively.
Finally, Section 6 concludes the paper and discusses potential future
work.

2 APPROACH

We describe how we obtained our datasets in Section 2.1, which
machine learning techniques we applied in Section 2.3, followed by
why and how we created the meta-selector in Section 2.4.

2.1 Dataset creation

We first create multiple datasets that each contain the measured run-
time (a.k.a the response time) of a certain algorithm in dependence
of various observable input parameter values. As servers can run
various applications and services, all kinds of applications might
be relevant for our black-box learning approach. In consequence,
we select popular algorithms from different domains (e.g., sorting,
image processing, cryptography), and with different characteristics
(e.g., number of input parameters, noise intensity or expressiveness
of dependency) in order to meet the diversity of real-world applica-
tion scenarios. Additionally, some datasets were added, where there
is no correlation between the input parameters and the runtime
(e.g., getRandomlInt).

Non-numeric input parameters are transformed into meaningful
numeric values (e.g., boolean values to 0 or 1, and enumerations
to factors). To obtain the runtime dataset, we run the respective
algorithm for 100.000 different input parameter combinations.

For the selection of these measurement points, we propose the
following strategy: First, a realistic value range for each input pa-
rameter is configured. Next, the actual measurement points are
created by dividing the parameter space into equidistant measure-
ment points. The distance between these points depends on the
chosen size of the dataset, the number of parameters and the range
of each parameter. Next, the chosen tuples are shuffled in a ran-
dom fashion in order to prevent our datasets from being biased
by underlying optimization processes (e.g. Garbage Collection or
JIT compiling). Since all tests are done in a single-threaded and se-
quential fashion, we can safely assume that the measured response
times equal the resource demand of the respective resource. In the
following, we use the term runtime, which can be interchanged with
response time, resource demand or service demand in this context.

Table 1 lists the datasets we used in our study. It lists the name
of the function or the solved problem and its input parameters.
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Table 1: Measured algorithms and input parameters.

Name Input parameter name | Range
AckermannFunction n 0-3
m 0-3
Fibonacci FibonacciNumber 1-40
Mode (iter./recOp./rec.) 0-2
FilterArray ArraySize 0-100000
FilterKey 0-100000
GaussianFilter ImageWidth(px) 100-6500
ImageHeight(px) 100-4010
Sigma 1.0-10.0
GetRandomInt MinInt 1-100000
MaxInt 1-200000
HistogramEqualization | ImageWidth(px) 100-6500
ImageHeight(px) 100-4010
LoadFile FileSize(KB) 1-1024
RGBFilter ImageWidth(px) 100-6500
ImageHeight(px) 100-4010
RSAEncryption StringLength 0-30
KeySizeExponent(2¥) 9-11
RSADecryption StringLength 0-30
KeySizeExponent(2¥) 9-11
ScaleImage ImageWidth(px) 100-6500
ImageHeight(px) 100-4010
ScaleFactor 0.1-3.0
SearchArray ArraySize 0-100000
Key 0-100000
SHAHashing StringLength 0-10000
SHA-Mode (-1/-256/-512) |  0-2
SortArray ArraySize 1-10000
SubsetSum ArraySize 1-10000
Sum 1-100000

AckermannFunction calculates the AckermannFunction for
the given parameters n and m. As the AckermannFunction
is known to drastically increase its runtime for increasing
values of n and m, we have to rely on a rather small set of
parameter values.

Fibonacci returns the n-th Fibonacci number. The parameter
FibonacciNumber defines n, i.e., the index of the requested
number. Mode defines if an iterative, an optimized recur-
sive or an unoptimized recursive implementation should be
chosen.

FilterArray filters a given array for the given key. Hence, it
returns a filtered array only containing elements with a
specified key. ArraySize defines the number of elements in
the array, FilterKey is the integer representation of the key.

GaussianFilter applies a Gaussian filter function to a given
image. ImageWidth (px) and ImageHeight (px) define the
width and the height of the processed image, Sigma is the
sigma-parameter for the gaussian filter.

GetRandomlInt returns a random integer in the range be-
tween the given parameters MinInt and MaxInt. Note that
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this function should NOT contain any dependencies from
the input-parameters to the runtime of the function.

HistogramEqualization enhances the contrast of a given im-
age by agjusting the image intensities. As the procedure is
calibrated by the histogram on the image itself, we only have
the two parameters ImageWidth (px) and ImageHeight (px),
specifying the size of the image.

LoadFile loads a file from disk to the RAM. The only param-
eter specifying this process is the size of the file in KB as
FileSize(KB).

RGBFilter is another image operation, converting the given
image to the RGB color channels. The two parameters Im-
ageWidth (px) and ImageHeight (px) specify the size of the
image.

RSAEncryption encrypts a message according to the RSA al-
gorithm. The parameter StringLength defines the length of
the input message and KeySizeExponent (2¥) defines the
length of the key. The range of the KeySizeExponent is be-
tween 9-11, which leads to the three possible key sizes 512,
1024 and 2048.

RSADecryption decrypts an encrypted message according to
the RSA algorithm. The parameter StringLength defines the
length of the resulting non-encrypted message and KeySize-
Exponent (2¥) defines the length of the key. The range of the
KeySizeExponent is between 9-11, which leads to the three
possible key sizes 512, 1024 and 2048.

ScaleImage resizes an image and scales its content to be either
smaller or bigger than the orignial input. The parameters
ImageWidth (px) and ImageHeight (px) define the original
image size, the parameter ScaleFactor defines the desired
output size. A factor smaller than 1 leads to a reduction of
the image size, a factor greater 1 leads to an increase.

SearchArray performs a linear search through the given array
and looks for the given key value. The length of the array is
defined by ArraySize and the desired item key by Key.

SHAHashing computes the hash of a given string using the
SHA algorithm. The length of the string to hash is defined by
StringLength. There are 3 modes to operate: SHA-1, SHA-256
and SHA-512. This is configured by the parameter SHA-Mode
(-1/-256/-512).

SortArray reorders all (numeric) elements of the given array.
The parameter ArraySize defines the number of elements to
sort.

SubsetSum calculates if any subset of the given list of (nu-
meric) elements can be found, such that the sum of all ele-
ments of the subset equals the given predefined value. The pa-
rameter ArraySize defines the number of elements to choose
from and the parameter Sum defines the required target sum.

The given parameters are either direct input parameters (e.g.,
FilterKey) or derivated from the input parameters (e.g. ArraySize).
Note that not all parameters do have a (direct) impact on the mea-
sured runtime. This is on purpose, as the regressors should be
capable of filtering the important parameters.

The framework for executing the runtime tests, the resulting
measurements and all other code used in this work is available on
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Table 2: Comparison of runtime distribution in each dataset.

Dataset Mean (ns) SD (ns) | Min (ns) Max (ns)
AckermannF. 611 27226 44 6501140
Fibonacci 9642615 59828774 42 975401791
FilterArray 534018 357394 196 15557496
GaussianFilter 644159655 | 610063923 2696907 | 3758818764
GetRandomlInt 87 1353 45 270782
HistogramEq. 682101542 | 648840997 706579 | 6548593716
LoadFile 398055 394602 11913 12204192
RGBFilter 212744088 | 185667599 320687 | 1630478145
RSADecryption 2586784 2755623 308882 26086653
RSAEncryption 143296 97100 41386 6486117
SHAHashing 61019 164588 882 26716009
Scalelmage 326531535 | 478575701 25683 | 4081014148
SearchArray 747 1717 44 182087
SortArray 351231 336717 76 65894078
SubsetSum 461134 574735 54 10894929

GitHub'. The results presented in this paper were obtained on a
MacBook Air with a Core i5 1.8 GHz and 8 GB RAM, running OS X
10.12 (Sierra).

2.2 Dataset characteristics

We want to ensure that our datasets are diverse and cover various
types of parametric dependencies. Hence, we analyze the runtime
distributions. As we can see in Table 2, the runtime distribution
varies significantly between the different sets, with regards to run-
time mean, range and dispersion of the different measurements.
Furthermore, the sets differ in algorithm domain, number of input
parameters and type of input parameters (numeric vs. nominal).
To further illustrate the diversity of our obtained data sets, we
contrast the runtime distributions of three data sets in Figure 1:

SortArray: Figure 1(a) shows all runtime measurements for
SortArray in dependence of ArraySize. We observe that there
is a strong linear relationship between the two variables,
and that noise increases as the values of ArraySize becomes
larger.

Fibonacci: Figure 1(b) depicts our runtime measurements in
dependence of the Fibonacci number to be calculated. The
colour of the measurement points denotes the second input
parameter, Mode. We can see that the runtime strongly de-
pends on the computation mode - while it rises exponentially
with the value of FibonacciNumber when using the recursive
mode (blue), it is more or less constant for the iterative (red)
and optimized-recursive mode (green).

SubsetSum: Figure 1(c) shows the measured runtime for Sub-
setSum with increasing ArraySize. Points are coloured based
on the value of the input parameter Sum for this measure-
ment. It seems like the runtime of SubsetSum depends on
neither of the two parameters, but that the measurement
points are randomly distributed.

Uhttps://github.com/Olifee/automatic_dependency_characterization
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This shows that multiple types of parametric dependencies are
covered by the datasets, which was our primary goal. Hence, we
conclude from Table 2 and the exemplary Figures 1(a), 1(b) and 1(c)
that our obtained data sets cover different relevant types of depen-
dencies are adequately diverse.

2.3 Applying Machine Learning Techniques

In order to characterize these dependencies, we use common re-
gression techniques from the area of machine learning. For this, we
define the dependent variable as the resource demand or the run-
time of the execution and the independent variables as the given
parameter values as we expect them to influence this resource
demand.

The regressors are chosen from various machine learning ap-
proaches, such as decision tree learning, instance-based learning
and ensemble learning. We use a single manual configuration for
the predictors, as parameter optimization is beyond the scope of
this work. In the following, we give an overview of all evaluated pre-
dictors and their respective configuration parameter values. We use
the implementations from Weka 3.8 [33], a state-of-the-art machine
learning library licensed under the GNU General public license 3.0

ZeroR [27]: ZeroR is our baseline algorithm to compare against.
It always returns the mean value of the training samples.
k-Nearest Neighbors (kNN) [1]: Here, we dynamically se-
lect the number of nearest neighbours between 1 and 5 using
hold-one-out evaluation on the training data. Furthermore,

we weight neighbours by the inverse of their distance.

Linear regression (LinReg) [8]: The coefficients are updated
with batch gradient descent, and squared error loss is used
as loss functions.

Stochastic Gradient Descent (SGD) [2]: We use Huber loss
as loss function, which is less sensitive to outliers in data
than squared error loss. We set the slope § to 0.001.

Support Vector Regression (SVR) [14]: The threshold param-
eter € is set to 0.001. We use a polynomial kernel with expo-
nent 1.0.

Artificial Neural Net (ANN) [15]: We use a feedforward ANN
with the following architecture: The input layer consists of
one node per input parameter. It is followed by a single
hidden layer with (#InputParameter + 1)/2 sigmoid nodes.
After this comes the output layer with unthresholded linear
units as output nodes. All layers are fully connected. The
learning rate is 0.1, the momentum is 0.2 and we use 2000
epochs for training.

Classification and Regression Trees (CART) [5]: The min-
imum number of instances per leaf is set to 2. The regression
tree is pruned in 3 folds using reduced-error pruning with
backfitting.

M5 trees (M5) [25]: The minimum number of instances per
leaf is set to 5. The leaf nodes use squared error loss for
fitting a linear regression model.

Bootstrap aggregating (Bagging) [4]: We use CART as base
predictor for our bagging models. The size of the bags equals
the size of the training set, and we use a total of 25 bags.

Random forest (RandomF) [18]: The random forest config-
uration is similar to that of bagging. We use CART as base
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predictor and the bag size is the training set size. Other than
in bagging, the minimum number of instances per leaf is set
to 1, we use 250 bags. The random variable subset for each
decision nodes contains log, (#InputParameter + 1) input
parameters.

We systematically measure the prediction performance of differ-
ent regression techniques on our runtime datasets and thus evaluate
their suitability to learn parametric dependencies for performance
models. We define the following: A regressor is said to "perform
best” if it has the smallest mean absolute error (MAE) among all
evaluated regressors for a given training and test set. The mean
absolute error (MAE) is defined as follows:

MAE:Z?; |gi—yi|’ )
m

where m is the size of the validation set, §j; is the predicted value
and y; the correct measured value of one specific measurement
point.

With respect to our online scenario, we use different training
set sizes to determine how the prediction performance of each
technique scales with the size of the training set. The evaluation
process for each runtime dataset is as follows: We randomly shuffle
the dataset and take the first 1000 instances as the validation set.
Then, we train each predictor on training sets of increasing size
and evaluate it on the validation set. The training set sizes, i.e.,
evaluation steps, are: 10, 100, 500, 1000, 3000, 6000, 9000. Thus,
each evaluation run contains 105 single evaluations (15 datasets *
7 training set sizes). We repeat the experiment 10 times for each
dataset with different seed values for the shuffling process, resulting
in a total of 1050 evaluations per regressor.

Figure 2 shows the distribution of the best regressor on the
different evaluation sets. We observe that SVR performs best in
most cases, being the best regressor in 40.8% of all cases. However,
kNN (18.5%), ANN(15.3%), M5(9.1%) and Random Forest(9.7%) also
perform best in some situations. In fact, all applied approaches
perform best on at least one evaluation set. Surprisingly, even ZeroR
performs best in some cases. This is in accordance with the no free
lunch theorem [34], that states that no machine learning algorithm
can be the best under all circumstances.

2.4 Meta-Selector Construction

After reviewing the results of Section 2.3, we decided to create a
meta-selector. This meta-selector analyzes the characteristics of the
dataset in question and then recommends or automatically selects
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Table 3: Dataset for meta-selector evaluation.

Name Input parameter name | Range
ArrayListSerialization | ArrayListSize 1-1000
BinarySearchArray ArraySize 1-10000
Key 0-100000
isSorted 0-1
MatrixMultiplication | numRowsA 1-50
numColumnsA 1-50
numColumnsB 1-50
SolveTowersOfHanoi | NumDisks 1-20
TrainMLP numlInstances 1-2000
numEpochs 1-2000

the best suitable approach, based on the results in Section 2.3. We
define the following characteristics as features for the training of
the meta-selector. These have proven to be (1) easily collectible for
any dataset and (2) to have an influence based on our experience
with the dataset results:

Number of training instances (Size)

Number of parameters (NumParam)

Range of runtime values (RuntimeRange)

Coefficient of variance of runtime (RuntimeCV)

Highest linear correlation between any input parameter and

the runtime (HighestCorrelation)

e Lowest linear correlation between any input parameter and
the runtime (LowestCorrelation)

e Coefficient of determination (R?) (R2LinReg).

These features are extracted for all traces collected in Section 2.1.
The labels of each trace is the regressor that performed best for
the given trace. Therefore, we can train a classifier, to classify and
therefore recommend one of the regressor based on the features of
any dataset. Using the data sets described in Section 2.1, we get a
set of 1050 training samples, each containing the 7 listed features.

As the task of selecting the best approach based on the feature
values is a classic supervised machine learning problem, we use
a standard classification algorithm to create a decision tree for
recommendation. The advantage of using decision trees is that its
decisions are traceable and human-readable. In doing so, we hope to
gain additional insights on the relations between the dataset char-
acteristics and the algorithm performances. We use the extracted
characteristics as features and the best performing regressor as the
labeled class. For the construction of the tree, we use Classification
and Regression Trees (CART) [5] algorithm, implemented by the
WEKA library [33]. We use the same settings as described in Sec-
tion 2.3, with the difference that we limit the maximum tree depth
to four. This should reduce the complexity of the tree and hence
improve readability and interpretability.

Figure 3 shows the resulting decision tree. We observe that a low
difference between the minimum and the maximum of the mea-
sured runtime values (RuntimeRange) together with a low variance
(RuntimeCV) leads to the use of SVR or ANN. Other important
parameters are the number of parameters (NumParam), the number
of training instances (Size) and the lowest correlation between any
parameter and the measured runtime (LowestCorrelation).
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Figure 3: Meta-selector decision tree.

3 EVALUATION

In order to evaluate the proposed approach, we first evaluate the
applicability of the meta-selector in Section 3.1 and then present a
proof-of-concept using a small end-to-end case study in Section 3.2.

3.1 Meta-selector evaluation

Using the dependent t-test for paired samples, we test if using the
meta-selector’s recommended technique A significantly reduces
the average prediction error y (i.e., the MAE) compared to using a
fixed machine learning approach B that generally performs well (in
our case: SVR). The paired t-test is appropriate, as the samples are
randomly selected, the data is paired and approximately normal
distributed. Thus, we choose the null hypothesis Hy = p4 > pp
and alternative hypothesis H; = pig < up.

The paired samples are obtained on five new runtime datasets,
listed in Table 3.

ArrayListSerialization serializes and stores a numerical ar-
ray to the disk. The parameter ArrayListSize describes the
number of elements contained in the array.

BinarySearchArray performs a binary search in a given in-
teger array for a given integer key. ArraySize describes the
number of numerical elements contained in the array, Key
is the element to search for and isSorted is a boolean value.
The value is true, if the given array is sorted and false, if it
is not deliberately ordered.

MatrixMultiplication executes a multiplication of two ma-
trices. Their size is specified with numColumnsA (number
of columns of matrix A), numRowsA (number of rows of A)
and numcolumnsB (number of columns of Matrix B). Note
that the number of Rows of B is implicitly defined by the
size of A.

SolveTowersOfHanoi is an algorithmic solver of the Towers
of Hanoi problem. The parameter numDisks describes the

number of disks, that need to be moved, i.e., the problem
size.

TrainMLP trains a multi-layer perceptron. The two param-
eters numlInstances and numEpochs describe the number
of instances used for training and the number of training
epochs, respectively.

These datasets were obtained using the same methodology as
presented in Section 2.1. Per set, we use 10 different training set sizes
(n = 20,50, 200,400, 700, 2000, 4000, 6000, 8000, 10000), resulting
in a total of 50 paired samples. For each sample i, we calculate
the difference d; between the MAE of A and B on the dataset’s
respective test set:

d; = MAE;(A) — MAE;(B).

Next, we calculate the mean d and the standard deviation og of
the differences d. With this, we can calculate the t-value of our
dependent samples:

d
t=+vVn—.
od

The mean MAE difference d over all samples is 20884576 ns and
the standard deviation o, of the differences is 6166633, resulting in
the following t-value:

20884576
t=V50 - ———
6166633

The critical t-value for 49 degrees of freedom and a probability level
of 1% is £(0.99;49) = 2.404892. As t > £(0.99;49), we can reject the
null hypothesis, that there is no significant difference between the
results using our meta-selector and SVR.

Compared to always choosing SVR for all test sets, the selector
improves the overall MAE by 30%. Additionally, it is interesting
to note that the best suited approach changes with the number
of available measurement points. For two of the data sets, even
four different approaches performed best depending on the size of

= 23.9476.
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Figure 4: Video transcription case study, adapted from [9].

the training set. This underlines the importance of using a meta-
selector.

Our evaluation shows that for the given samples, the average
prediction error is significantly lower when using the meta-selector
instead of the always applying SVR, the best individual machine
learning approach. We infer that our meta-selector is an appropriate
approach for prediction technique selection. Overall, the experi-
ment shows that it is feasible and beneficial to adapt prediction
techniques to observable dataset characteristics, without applying
domain knowledge or manual effort.

3.2 Proof of concept

In a previous paper, Eismann et al. [9] performed case studies for
parametric dependencies in the context of a video store application.
One of the case studies depicts the automated transcription of
subtitles, i.e. the automatic generation of subtitles from the audio
track of a video, as shown in Figure 4. The transcription service
component receives an audio file and generates subtitles from it.
Next, the translation service component translates the resulting
subtitles into a variety of languages. In this scenario, the resource
demand of the video transcription component depends on the size
of the videos that are transcribed. Eismann et al. modeled this
parametric dependency manually in this case study.

As a proof of concept, we use the approach presented in this
paper to automatically characterize this dependency and compare
the performance prediction accuracy of the automatically charac-
terized dependency with the manually modeled dependency. In the
previous case study, the distribution of the file sizes was considered
to be known. However, our approach is built to work on a stream
of monitoring data instead of a distribution. Therefore, we create
100.000 samples from the file size distribution and use them as input
for our approach. Aside from this, we are able to reuse the model
and solver from the previous case study.

Simulating the manual model predicts a response time of 44565
ms + 1519 ms (N = 20), while the model with the automatically
characterized predicts a response time of 47377 ms + 1353 ms (N
= 20). Compared to the measured response time of 44207 ms, this
results in a prediction accuracy of 97.3% and 92.8% respectively. The
automatically characterized dependency is slightly worse compared
to the manually modeled dependency. Still, the accuracy of the
automatically characterized dependency is well within the range
considered acceptable for capacity planning [23], without requiring

Conference’17, July 2017, Washington, DC, USA

manual effort or expert knowledge. The models used in this case
study are available online?.

4 RELATED WORK

The related work for this approach can be categorized into two re-
search areas: The extraction of dependencies between performance
model parameters and software performance curves.

4.1 Extraction of dependencies between
performance model parameters

Some approaches have been proposed to automatically extract
parametric dependencies, as manual modeling of parametric depen-
dencies is time-intensive and error-prone.

Krogmann et al. [21] run dedicated performance tests in a testbed
with bytecode instrumentation and monitoring of input data at
interface-level. Next, genetic search is used to learn dependencies
between the input values of components and the executed bytecode
instructions. Later on, the number of executed bytecode instructions
is mapped to resource demands using bytecode benchmarking. The
authors state that bytecode instrumentation creates performance
overheads of up to 250%, which means the bytecode counting can
not be performed continuously in a production environment.

Courtois et al. [7] propose to use regression splines combined
with automated performance testing to derive functions that de-
scribe resource demands based on input parameters. Compared to
linear or polynomial regression, regression splines allow to model
non-linear, discontinuous dependencies. The authors introduce so-
called pseudo confidence bands as an accuracy measurement for
resource functions. Based on these accuracy measurements, their
algorithm intelligently selects the number and location of measure-
ment points. This reduces the number of dedicated performance
measurements required to construct the regression spline model.

To the best of our knowledge, there is no existing approach
to automatically learn parametric dependencies in performance
models, that does not require preliminary experiments or access to
application source code.

4.2 Software performance curves

Software performance curves aim to model the performance of a
system (usually response time) as a function over the configuration
and input parameters of the system.

Kwon et al. [22] derive the response time of Android applications
from parameters calculated early on in the application execution.
During an offline stage, an instrumented version of the application
is benchmarked to determine the influence of parameters such as
branch counts, loop counts or variable values on the application
response time. Using a technique called program slicing, the appli-
cation is separated into independent code segments. This approach
allows to accurately predict the response time of android appli-
cations after executing less than two percent of the application
code.

Thereska et al. [30] predict the performance of several Microsoft
applications based on configuration and input parameters from
data collected from several hundred thousand real users. Several

Zhttps://github.com/SimonEismann/CharacterizationCasestudyModels
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Microsoft applications are instrumented to extract hardware config-
uration, software configuration and workload characteristics from
users "in the wild". The authors apply a classification and regression
tree to filter relevant attributes, followed by a similarity search to
derive performance predictions.

Westerman et al. [32] analyze the suitability of multivariate adap-
tive regression splines, classification and regression trees, genetic
programming and kringing for the construction of software per-
formance curves. Additionally, three different measurement point
selection algorithms are evaluated, which reduce the required num-
ber of dedicated performance measurements.

Noorshams et al. [24] investigate the prediction accuracy of lin-
ear regression, multivariate adaptive regression splines, classifica-
tion and regression trees, and cubist (an extension of M5 regression
model trees) for virtualized storage systems. The authors propose
a general heuristic search algorithm to optimize the parameters
of these regression techniques. This algorithm results in a greatly
reduced prediction error in their case study.

Faber and Happe [10] derive software performance curves with
the use of genetic programming and conduct a thorough parame-
ter optimization. The optimized genetic programming algorithm
outperformed MARS in their case study.

Software performance curves are a powerful tool to predict the
response time of a system for different workloads. However, unlike
architectural performance models, they can not be used to ana-
lyze the impact of changes to the system itself, such as scaling,
redeployment or system evolution. We use the existing work on
software performance curves as guidelines to select the regression
approaches we compare in this work.

5 LIMITATIONS AND THREATS TO VALIDITY

In order to explore the limitations of our work, this section reviews
the fundamental assumptions of our approach.

One assumption of the proposed approach is that the dependen-
cies to characterize are already given. The identification itself is
therefore out of scope for this work. However, there exist other
approaches for this problem, based on static code analysis [21] or
feature selection [6]. We plan to integrate our work with existing
approaches from this area.

Since our approach requires monitoring data, the modeled sys-
tem needs to be monitored during operation. However, this can be
done at low overhead using, for example, the Kieker framework [31].
To further minimize the measuring overhead, resource demands
should be estimated instead of directly monitored. There exist a
wide variety of approaches in this area [12, 13, 29].

If applied in an online scenario, the accuracy will likely be sub-
optimal until a certain amount of monitoring data has been gathered.
This is due to the fact that the accuracy of machine learning algo-
rithms increases, as the size of the training data increases. However,
one intent of the proposed meta-selector is to cope with this ex-
act issue by choosing the most robust approach for the respective
scenario.

Although we put in our best efforts to select and create a variety
of representative datasets (see Section 2.1), the number of datasets
is still limited. However, the number of datasets is sufficient to show
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that the best performing machine learning approach varies depend-
ing the dependency and on how much training data is available.
Part of future work will be to create and include more datasets in
our study.

Lastly, we acknowledge that our approach only covers dependen-
cies between model parameters on the same call-path. Therefore,
the impact of parameters describing the internal state of a com-
ponent on its resource demand can currently not be explored. An
example for this would be a system where the size of a database
influences the resource demand of some components. Happe et
al. [17] propose an approach to model such dependencies. In order
to apply our approach to such dependencies, monitoring data for
the parameters describing the system/component state would need
to be available.

6 CONCLUSION

We investigate different techniques for black-box learning of para-
metric dependencies for performance models from monitoring data.
The results show that no single approach performs well for all de-
pendencies. Therefore, we construct a meta-selector that classifies
a monitoring stream in order to select the best suitable approach for
it. Our results show that it is both feasible and beneficial to use the
meta-selector, as it reduces the prediction error by 30% compared
to using the best individual approach. Furthermore, as a proof of
concept, we apply our approach to a previous case study, where
our approach enables a prediction accuracy of 92.8% for the service
response time without using any expert knowledge. Therefore, our
approach is a step towards facilitating automatic model learning
and enabling self-aware performance management.

For future work, we propose to repeat the predictor evaluation
on a large collection of diverse monitoring datasets from real-world
applications to improve the accuracy of the meta-selector. Further-
more, we propose to optimize the configuration parameters of the
applied prediction technique, e.g., evaluate different kernel types
for SVR or the parameter settings for ANN. Noorshams et al. [24]
show that parameter optimization can reduce the prediction error
of models by up to 74%.

We assume that the framework’s prediction accuracy will sig-
nificantly improve with parameter optimization. One might also
want to investigate if it is beneficial to select model parameters
depending on data set characteristics, similar to the meta-classifier.
In order to further automatize the process of modelling parametric
dependencies, we suggest to investigate the best way to trans-
form non-numeric parameters (e.g., strings, arrays, enums) into
numeric values. Possible solutions might be to map objects to their
length/size/id, or to use the byte count of an object as numeric
values. The resulting approach could be used by the framework
to automatically transform non-numeric values, thus enlarge the
selection of valid input parameter type.

As of now, the meta-selector solely focuses on prediction accu-
racy. Future work could additionally consider the time-to-result, as
this becomes important in time critical scenarios.
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