
The bicycle challenge in DMLA, where

validation means correct modeling

Gergely Mezei1, Zoltán Theisz2, Dániel Urbán3, Sándor Bácsi4

1,3,4 Budapest University of Technology and Economics, Budapest, Hungary
2 evopro systems engineering Ltd., Hauszmann Alajos str. 2, Budapest, Hungary

1gmezei@aut.bme.hu, 2zoltan.theisz@evopro-group.com,
3urb.daniel7@gmail.com, 4bacsi.sandor93@gmail.com

Abstract. Driven by growing popularity of multi-level meta-modeling, newer

and newer approaches have been recently created. Since there is no de facto

standard approach yet how to handle multi-level modeling relations, many con-

tending technical solutions and corresponding methodologies exist nowadays.

Therefore, the bicycle challenge was put together to encourage the multi-level

research community to apply those techniques on a realistic looking lab example

set-up and thus be able to compare the advantages and disadvantages thereof in

a controlled manner. Hence, this paper describes our particular way of solving

the challenge, that is, we are focusing on our multi-level approach, the Dynamic

Multi-Layer Algebra (DMLA). Our solution modeled all mandatory and several

of the optional requirements; moreover, all of them have been automatically val-

idated for correctness as well. We explain the solution with the help of patterns

we relied on during modeling. Correspondence between the patterns and the re-

quirements is clearly indicated and propped up by examples taken from require-

ments and illustrated by their modeled manifestation in text.

Keywords: meta-modeling, multi-level, dynamic

1 Introduction

Multi-level meta-modeling approaches have been matured a lot recently. There are

many approaches [2][4][5] available, some in tools [6] as well. However, concept

standardization within the community is still an ongoing process that can be effectively

fostered by standard challenges and workshop discussions. Therefore, the bicycle chal-

lenge is and will be a strong catalyst of any advancement of multi-level modeling.

In this paper, we describe the essential parts of our model solution in Dynamic Multi-

Layer Algebra (DMLA) [11] in accordance to the suggested format description of the

bicycle challenge. Although we wanted to comply as much as possible with the pre-

scribed structure of the challenge paper, we had to combine the original Model Design

and Discussion sections in order to provide a logical flow of model explanation. Hence,

the paper is structured in the following manner: In Section 2, we describe the main

principles of DMLA in a nutshell, then, in Section 3 we are putting them into the context

of the bicycle challenge. Here, we first conceptualize and then discuss in detail those

mailto:gmezei@aut.bme.hu
mailto:urb.daniel7@gmail.com

DMLA modeling patterns which we benefitted from in our candidate model solution to

the bicycle challenge. We link the patterns to some of their most representative require-

ments in order to indicate how our model is structured. Finally, in Section 4, we con-

clude the paper and shortly mention future research directions.

2 The Dynamic Multi-Layer Algebra

Dynamic Multi-Layer Algebra (DMLA) [7][8][9][10] is our multi-level modeling

framework that consists of two parts: (i) the Core containing the formal definition of

modeling structures and its management functions; (ii) the Bootstrap having a set of

essential reusable entities of any modeled domains in DMLA. In DMLA, the model is

represented as a Labeled Directed Graph, where all model elements have four labels: a

unique ID of the element, a reference to its meta, a list of concrete values, and a list of

contained attributes. Besides the 4-tuples representing the model entities, there are

functions, which manipulate the model graph, for example, they can create new model

entities. These definitions [8] form the Core of DMLA, which is defined over an Ab-

stract State Machine (ASM) [3]. The states of the state machine represent the snapshots

of dynamically evolving models, while transitions (e.g. deleting a node) stand for mod-

ifications between those states. The Bootstrap is an initial set of modeling constructs

and built-in model elements (e.g. built-in primitive types), which are needed to adapt

DMLA’s abstract modeling structure to practical applications. The Bootstrap itself is

swappable, so even the semantics of a valid instantiation can be re-defined. DMLA is

also fluid in its way of multi-level modeling: it does not require to instantiate all entities

of a model at once. Hence, instantiation steps are independent by design; therefore each

entity can refer to any other entity along the meta-hierarchy unless cross-level referenc-

ing is found to be contradictory during model validation.

Validation in DMLA is intuitive: whenever a model entity claims another entity to

be its meta, the framework automatically validates if there is indeed a valid instantiation

between the two entities. All validation formulae can be modularized by being intro-

ducing directly into the Bootstrap. Since these formulae directly influence the proper

semantics of instantiation, DMLA’s instantiation is self-defined by design via the

model per se. The technical facility enabling this self-described meta-modeling is based

on operation reification. Operation definitions are modeled by their AST representation

as tuples, which are later translated into executable code by the framework.

During some practical modeling projects with DMLA, we had realized that large

number of entities and their complex relations are more than challenging to be defined

merely by directly producing and manipulating 4-tuples. For example, the Bootstrap

and our model solution to the bicycle challenge consist of 13091 entities all together.

In order to simplify creating models, we introduced a scripting language, DMLAScript,

with its an Xtext-based workbench into the DMLA framework. DMLAScript is a do-

main-independent external DSL language to help automate 4-tuple production. Thus,

the modeler must only deal with creating scripts for models in DMLAScript.

3 The bicycle challenge

Bicycle challenge is a comprehensive modeling exercise aiming to let the competing

multi-level approaches demonstrate their capabilities on a made up modeling challenge.

The competition started at the MULTI workshop in 2017 with one contribution [12],

which was based on a multi-level extension of EMF. The 2018 version of the challenge

[1] added more requirements and also fine-tuned the existing ones. Applying DMLA

to the challenge was a work of approximately two man-days. The validation mechanism

of DMLA helped us a lot from the beginning, so finding contradicting or faulty con-

structs were straightforward. Indeed, we were automatically warned that two require-

ments of the challenge contradict each other: “A professional racing bike has a profes-

sional race frame which…has a minimum weight of 5200 gr.” and “Rocket-A1-XL

which is a professional race frame. The Rocket-A1-XL has a weight of 920.0 gr.” In

order to fix it and get a valid model, we had to change minimum to maximum weight.

3.1 Model design and discussion

In DMLA, every entity has a meta-entity that describes its features. The instantiation

relationship between a meta-entity and its instances is strictly validated, that is, no fea-

ture can be added that does not have a corresponding meta-feature; and no feature can

be removed, unless the meta allows this behavior by optionality. Validation is based on

three types of formulae: alpha, beta and gamma. Alpha type formulae have been de-

signed to validate an entity against its instances, by simply checking if the instantiation

relation can be verified between the two entities (meta and instance). During validation,

the framework iterates over all entities of the model and invokes alpha type validation

on every entity and its meta-entity. In contrast, beta type formulae are in-context

checks: they are used when an entity has to be validated against multiple related entities:

typically those are the attributes of an entity. For example, cardinality-like constraints

are evaluated by beta formulae due to their underlying one-to-many relation. Gamma

formulae are used when validation cannot be applied locally, but it requires checking

global conditions, e.g. the uniqueness of an identifier.

Entities have slots similarly to attribute fields or properties in OOP languages. The

slots of an entity set up its structure, for example a Bicycle has a Seat slot containing a

reference to the entity Seat. A slot may have constraints added for fine-tuning its be-

havior. There are several kinds of constraints: 1) type constraint restricts the type of the

values to be put in the slot (e.g. at filling the slot Wheel in a bicycle entity, one can only

use instances of Wheel entity there), 2) cardinality constraint prescribes the allowed

number of instances within a given slot (e.g. a tricycle may have three wheels), 3) op-

eration signature constraint specifies the signature of the operation defined in the slot it

is assigned to. It must be reemphasized that in DMLA operation definitions are built

based on AST representation, but one can apply a specific function (“call”) on them to

execute them at validation. Knowing that built-in constraints are also self-modeled in

the Bootstrap, when the Bootstrap is changed, the validation rules of the Bootstrap will

be re-applied to itself. Eventually a fixed point must be found for any valid model in

DMLA. Of course, any Bootstrap must be self-validated by design. The current DMLA

2.1 Bootstrap contains an extendable constraint mechanism with some pre-defined

practical constraint elements. One of these constraints is the MustFillOnce, which is

explained in detail later in the patterns section.

Last but not least, we want to put DMLAScript into the right perspective before we

introduce the most relevant modeling patterns in DMLA that has been applied for the

challenge as well. DMLAScript is a pure syntactic sugar above DMLA’s 4-tuple rep-

resentation; therefore it is independent of any practical domain models, however its

language elements are AST modeled in the Bootstrap. Thus, theoretically, Bootstrap’s

modeling semantics firmly anchors DMLAScript. Practically, all DMLA models (even

the Bootstrap) are built in DMLAScript and then turned into 4-tuples. Thus, we show

only DMLScript code fragments in the paper when we explain details of the bicycle

challenge. The full DMLA model of the bicycle challenge can be downloaded from

[11] both in DMLAScript and in XML serialized 4-tuple representation.

3.2 Entity structure

Pattern 0: Prohibition of features or their relation can be simply left out since validation

will fail if disallowed entities occur in the model.

DMLA is a validation based prescriptive modeling approach, that is, those require-

ments, which state disallowed features are automatically satisfied at all meta-levels by

simply not being put into the model. The pattern is used in requirements “A racing fork

does not have a suspension. It does not have a mud mount either.” and „A mountain

bike may have a rear suspension. That is not the case for city bikes.”.

Pattern 1: Gradual type constraining is supported by restricting constraints on slots.

DMLA’s basic tenet is to build multi-level meta-models along controlled reduction of

design abstraction. Modeling entities, which have an internal structure, describe their

setup by slots. A slot represents a feature of the entity. At the topmost abstraction level,

one may not have much information about a slot, so it is used merely as a placeholder.

Later, by instantiating an entity, one can override the constraints applied on the slot by

restricting the structure and/or the behavior. This pattern is heavily used in all domain

modeling scenarios and thus also during solving the challenge. For example, a classic

bike has a frame component modeled by slots. When instantiating Bicycle and creating

the RaceBike entity, we narrow the type constraints applied on slot Frame so that it

could contain only instances of the RaceFrameComponent entity (Fig. 1). Obviously, a

RacingFrameComponent is an instance of FrameComponent, thus the constraint does

not contradict the meta definition. Type constrains automatically satisfy that the con-

cretization is always consistent whenever the validation succeeds. This feature gives

practical value to DMLA when industry sized models are being built.

The pattern is used e.g. in requirement “A racing bike has a racing fork and racing

frame.”; “A professional racing bike has a professional race frame”.

Fig. 1. Overriding the type constraint in RaceBike in the slot Frame

Pattern 2: Create new slots by dividing general purpose slots, when new features are

needed. Keep the original slot if adding new features may be required later or omit it

otherwise.

A usual entry point of domain definition is the ComplexEntity in the Bootstrap. Com-

plexEntity has a slot called Children. Its cardinality allows any number of instances

(0..*) of any practically available type (any entities derived from the Base entity that is

at the root of meta hierarchy). This setup perfectly suits the highest abstraction levels,

where one still does not know what kind of slots are needed for the concrete entities.

All along the instantiation chain, one can restrict, divide and even omit the Children

slot. Dividing a slot into several instances may need an explanation. While getting more

and more concrete along the instantiation chain, the slots gain more and more concrete

information. For example, one may have to introduce a new feature in entity Configu-

ration so that it could have components. In this case, one may create specific slots while

keeping the general Children entity intact for later features or omit it to deny the intro-

duction of other features in the instances of Configuration. Specific slots deriving from

Children may have additional constraints, e.g. the slot Component accepts only in-

stances of Components and BasicParts, but not Base as firstly defined.

The pattern is not specific to the Children slot: it is usual to have a slot with less

restrictions and one wants to divide it into several more specific slots when introducing

new features. For example, a Bicycle as an instance of Configuration needs to specify

that it can have only frame, fork, seat and wheel components. This means that the slot

Configuration.Components is turned into a Frame, Fork, Seat and Wheel slot in Bicy-

cle. It is also worth mentioning that constraints of the more general slots are often re-

stricted again while dividing the slot into multiple parts. For example the slot Wheel

accepts only the instances of the WheelComponent, not Component/BasicPart.

The pattern is used many times in the challenge, e.g. “A configuration…is composed

of components.”; „A bicycle is built of components like a frame, a fork, two wheels,

and so forth, each of which being a component.”; „Every category of bicycle except for

racing bikes may be equipped with an electric motor. Electric bikes need enforced

brakes and a battery.”; „A mountain bike or a city bike may have a suspension.”;”A

mountain bike may have a rear suspension.

Pattern 3: Mandatory slots are modeled by cardinality 1..1. They must be kept all along

the whole instantiation chain. Optional slots are modeled by cardinality 0..1. They can

be omitted on any level. Optional-mandatory slots are modeled by cardinality 0..1 and

the MustFillOnce constraints at the same time. They can be omitted at any level as far

as their value has already been set earlier along the instantiation hierarchy.

There are features that must be available at all modeling levels, e.g. if a Component has

a Weight attribute, then all component instances, even concrete (physical) components

must have the Weight attribute. On the other hand, there are optional slots that may be

kept, or omitted during instantiation. For example, a Mountain bike may have Suspen-

sion, but it is not mandatory. However, there is also a third option: a slot is optional so

it can be omitted later, but its value must be set at least once before being eliminated.

For example, the regular price of a bicycle is handled this way. Here, one can set the

price at the category level, at the bicycle model level, or at any other levels; however,

once one has set it, it is no longer needed. Nevertheless, one cannot have a bike without

regular price. So, when the regular price of a certain, physical bike is needed it can be

fetched from its meta hierarchy and there is no need to multiply this information at all

levels above. This third option cannot be set by simply setting the cardinality of the

slot, since it should be 0..1. Instead, a special constraint referred to as MustFillOnce

(MFO) is applied here. The MFO constraint validates the slot and does not allow it to

disappear before having a concrete value.

The pattern is used e.g. in requirements: ”A mountain bike may have a rear suspen-

sion.”; „A racing frame is specified by top tube length, down tube length, and seat tube

length.”; „A racing bike can be certified by the Union Cycliste Internationale (UCI).”;

“Each bicycle model has a regular sales price.”.

Pattern 4: Inheritance between the entities is imitated by instantiation.

Instantiation and inheritance relations look similar on the surface, for example both are

having a grouping and substitution goals. But, the main difference between the two is

that instantiation is vertical, while inheritance a horizontal in nature. The fluid meta-

modeling behavior conceals the difference within the semantics of DLMA’s formalism

of instantiation: one can instantiate an entity and still use both the entity and its in-

stance(s) interchangeable. Although we use instantiation, we can stay at the same level

of abstraction. That is why we have not introduced inheritance per se into DMLA, but

used also instantiation in its stead. For example, the requirement “a mountain bike is a

bicycle” provides a MountainBike entity instantiated from Bicycle.

The feature is used e.g. in requirement: “There are different categories of bicycles,

such as mountain bike, city bike, or racing bike”; „A professional racing bike is a racing

bike”; „A customer is a natural person or an organization.”.

Pattern 5: Enum and bitfield like requirements are modeled as an enum type with its

slot-less instances.

In DMLA, the modeling of enums seems a bit strange at first: enum types do not have

slots, the concrete enum values are the instances of the enum type. This mechanism

suits our validation approach, since slots have a type constraint stating that the type is

the enum type and thus the slot can have only concrete enum values later on.

The pattern is used e.g. in requirements:” There are different categories of bicycles,

such as mountain bike, city bike, or racing bike, for different purposes such as moun-

tain, city, or race. A racing bike is not suited for tough terrain.”; “A racing frame is

made of steel, aluminum, or carbon.”

3.3 Operations and customized validation

Pattern 6: Slots can represent signature driven operation definitions at all concretiza-

tion levels.

Operations are specified by their AST that are constructed from modeling entities en-

coding operational logic which acts upon the data part of the model. Operation defini-

tions are stored in slots similar to usual modeling features, but they have two specialties:

their type constraint is set to OperationDefinition and they have an OperationSignature

constraint. The signature constraint delivers semantics that is similar to its usual pro-

gramming language peers. For example one can define an operation signature that has

context information (e.g. “this”) and a numeric return value and then state that the av-

erage regular price operation will use this signature. From this point on, one can replace

the inner part of the operation (i.e. its implementation), but not its signature (interface)

is kept. For example, the entity Bicycle may have a method which checks if the given

bike is suitable for a certain condition, however the instances of Bicycle may overwrite

this by changing the original constraint.

The pattern is used e.g. in requirements: “A configuration is a physical artefact” (in

checking the conditions of being physical as explained later)”; “The average actual

sales price for a bike model.”; „The average actual sales price for a bike category.

Pattern 7: Alpha formula completes entity’s type semantics beyond meta-hierarchy.

When validating an instantiation relation, it is usually enough to check if all compo-

nents have their meta counterparts and the cardinalities of the slots are satisfied. How-

ever, there are cases, where custom validation logic is needed, for example, if we re-

quire that the size of the front and rear wheel must be equal. This logic can be described

by an alpha formula in DMLA. In this particular case, a validation formula is added to

the Bicycle entity to trigger condition checks on both wheels (by using their slots). The

validation mechanism of the Bootstrap makes it sure that the alpha formulae of all the

metas in the hierarchy are “called” within the context of the current entity [9,10]. That

mechanism enforces that more concrete instances must obey to all type requirements

along their meta hierarchy.

The pattern is used in requirements: “Front wheel and rear wheel must have the same

size“; “A racing frame is made of steel, aluminum, or carbon.”; ”A carbon frame allows

for carbon wheels or aluminum wheels only”; “A professional racing bike has a

professional race frame which is made of aluminum or carbon and has a minimum

weight of 5200 gr.” (Fig. 2)

Fig. 2. The alpha validation of the ProRaceFrame entity

Pattern 8: Global validation requirements are satisfied by gamma formulae.

Alpha and beta formulae are used in validating the instantiation relationship, but they

are only local and pivot around themselves. However, there are cases, when this is not

enough though. For example, all Components must have a unique serial number.

Uniqueness is not a local feature, so it must be checked within the entire model. Gamma

formulae are essential whenever all the instances of an entity must be enumerated in

the model in order to check some global characteristics thereof.

The pattern is used in requirement: “A component has properties, for example

weight, size, colour, unique serial number.”.

Pattern 9: Soft validation, i.e. filtering features are supported by operations attached

to the entities.

DMLA has a highly customizable, flexible validation mechanism, however it is strict

and thus failing the validation criteria automatically produces invalid models. For busi-

ness analytics like functionalities or domain specific validation of entity concepts, one

may need a “softer” method that is rather a filtering mechanism than a validation. Here,

the modeled entities may be filtered against query criteria. For example, each bicycle

(concrete instances, models and even categories) can be tested against a certain feature,

e.g. whether it is suitable for tough terrain. To model this, we have added an operation

to the Bicycle entity. Of course, the instances can freely override the default logic,

which is: the bike is suitable for everything. The feature does not follow the logic of

validation (e.g. alpha formulae), thus overridden operation implementations may even

contradict their meta definition at will, the validation will not stop.

The pattern is used in requirements: “There are different categories of bicycles, such

as mountain bike, city bike, or racing bike, for different purposes such as mountain,

city, or race. A racing bike is not suited for tough terrain. A racing bike is suited for

races.“; ”Challenger A2-XL is a professional racing bike model for tall cyclists”.

Pattern 10: Custom validation can be driven by flags. If a flag is presented, validation

is turned off, if a flag is omitted, validation is switched on.

A core part of the bicycle challenge is to check whether a model element is physical. In

the DMLA group, we had discussed this requirement in detail in order to find the best

solution for it. At first sight, being a physical artefact seemed to be a structural condi-

tion: an entity is a physical thing if all of its components are physical. However, later

we had realized that this was not enough. An unassembled bicycle is not a bicycle (tak-

ing its function into account) even if it contains physical components only. Therefore,

we have invented a twofold mechanism for this purpose: every BicycleEntity has an

optional slot AbstractEntity, and an operation CheckPhysical. If the slot is left out dur-

ing instantiation, the user states that the given entity is not abstract any longer. In this

case, we validate this statement by calling the CheckPhysical operation that is intended

to validate if the entity is physical according to its structural parts (all primitive values

are set, all non-primitive components are physical). The mechanism is supported by an

alpha validation formula of BicycleEntity that checks if the AbstractEntity slot has been

left out and it calls the CheckPhysical operation in that case. This validation is not a

soft validation, so not only the last (most specific) implementation of CheckPhysical is

called, but all of its meta versions as well. It is worth mentioning that it is quite com-

fortable since, for example, Configuration checks if its Components are physical and

thus, we do not need to validate if Seat, Fork, etc. are physical in Bicycles (since the

slots originate from slot Components).

The pattern is used in requirement: “A configuration is a physical artefact”.

Pattern 11: Derived properties are added to entities as operations. In case of summary,

the instantiation chain can be used in a layer-transparent fashion.

The challenge has five optional requirements all focusing on price-based calculations

by derived properties. We only solved the first four of them due to their similarity. The

solutions follow the same pattern. The requirements are covered by operations. Each

operation is applied on an instance of Bicycle and returns a number as described by

their operation signature (Pattern 6). Users can call the operation at any abstraction

level and the operation will calculate the result based on the entities below that level.

This means that we do not have a separate operation for bike category and bike model,

the calculation is independent from the level, the only difference is that the user calls

the same method on a category (e.g. race bike), or a model (Challenger A2-XL). Inside

the operations, all model entities are fetched and selling transactions (SellingActs)

which are physical artefacts are selected, thus the calculation is run only on physical

bikes that are already sold, and not on abstract bikes, on generic (non-physical) selling

act templates, or on bikes stored in the shop. From SellingAct, a sold bike is obtained

and it is checked if it is an instance of the current entity processed (e.g. whether it is an

instance of the given bike model). If that is the case, the number of bikes and also their

accumulated price (actual selling price, or regular price obtained from the meta hierar-

chy of the bike depending on the actual requirement) get incremented. The operations

clearly demonstrate how easily one can add calculations or similar algorithms to the

existing modeling entities. The pattern is used in optional requirements of the challenge.

4 Conclusions

Current implementation of DMLA 2.1 seems to be able to easily cope with light indus-

trial application similar to the bicycle challenge. As an illustration for this, we have

extended the original challenge in our solution, and modeled tricycles, tandem bikes

and unicycles as well in order to showcase the capabilities of our approach even further

[11]. Obviously, DMLA also does have limitations. The most important thereof is the

speed of the validation in the current implementation [10], which does not allow

DMLA, in its current implementation, to function as a models@run-time framework

yet. Hence, we are working on its parallel and incremental validation now.

Regarding the challenge, our main issue was how to present our solution in an easily

understandable way since ours is an “executable model” with many lines of “model

code” where every detail does count. We decided to upload the commented version of

the whole solution onto the DMLA website [11]. It is worth reading it through line by

line to appreciate each of the patterns mentioned. Currently, we are working on a lighter

DMLAScript syntax for purposes of domain modeling without Bootstrap relevance.

We also benefited a lot from the challenge because we realized that DMLA is not ma-

ture yet when it comes to handle complex inheritance trees similar to state-of-the-art

UML models. Although it may be the Achilles heel of any pure multi-level modeling,

we will definitely have to address it properly in DMLA if we really want to believe in

its modeling capacity for real industrial set-ups in the future.

Acknowledgement

This work was performed in the frame of FIEK 16-1-2016-0007 project, implemented

with the support provided by evopro Systems Engineering and the National Research,

Development and Innovation Fund of Hungary, financed under the FIEK 16 funding

scheme. The research has been also supported by the European Union, co-financed by

the European Social Fund. (EFOP-3.6.2-16-2017-00013).

References

1. MULTI 2018 Homepage, https://www.wi-inf.uni-duisburg-essen.de/MULTI2018/

2. Atkinson, C., Kuehne, T.: Model-driven development: A metamodeling foundation. IEEE

Software, 20(5):36–41, (2003).

3. Borger, E., Stark, R.: Abstract State Machines: A Method for High-Level System Design

and Analysis. Springer-Verlag New York, Inc. (2003).

4. de Lara, J., Guerra, E.: Deep Meta-modelling with MetaDepth. Objects, Models, Compo-

nents, Patterns. 6141, pp. 1-20. (2010).

5. Atkinson, C.,, Gerbig, R.: Melanie: Multi-level modeling and ontology engineering envi-

ronment, In MW '12 Proceedings of the 2nd International Master Class on Model-Driven

Engineering: Modeling Wizards, Article No. 7 (2012).

6. Multilevel Wiki, http://homepages.ecs.vuw.ac.nz/Groups/MultiLevelModeling/MultiTools

7. Theisz, Z., Mezei, G. An Algebraic Instantiation Technique Illustrated by Multilevel Design

Patterns., MULTI@MoDELS, Ottawa, Canada (2015).

8. Urban, D., Theisz, Z., Mezei, G.: Formalism for Static Aspects of Dynamic Metamodeling,

Periodica Polytechnica, vol. 61, no. 1, pp. 34-47, (2017).

9. Mezei., G., Urban, D., Theisz, Z.: Validated Multi-Layer Meta-modeling via Intrinsically

Modeled Operations, MULTI@MoDELS, Austin, Texas, USA (2017).

10. Urban, D., Theisz, Z., Mezei, G.: Self-describing Operations for Multi-level Meta-modeling,

MODELSWARD 2018, Madeira, Portugal (2018).

11. DMLA Homepage, https://www.aut.bme.hu/Pages/Research/VMTS/DMLA

12. Macias, F., Rutle, A., Stolz, V.: Multilevel Modeling with MultEcore: A Contribution to the

MULTI 2017 Challenge, MULTI@MoDELS, Austin, Texas, USA (2017).

http://homepages.ecs.vuw.ac.nz/Groups/MultiLevelModeling/MultiTools
https://www.aut.bme.hu/Pages/Research/VMTS/DMLA

