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Abstract. Multilevel Modeling (MLM) conceptualizes software mod-
els as layered architectures of sub-models that are inter-related by the
instance-of relation. Multilevel rearchitecting has received considerable
attention, but little attention has been given to the context of the trans-
formed structures. In this paper we focus on possible contexts in MLM
rearchitecture. We analyze factors of accidental complexity in MLM, sug-
gest quantitative measures for these factors, and show how they can be
used for evaluating alternative MLM transformations of two-level mod-
els. The context-aware factors are now being implemented in an FOML
MLM tool.
Keywords: Multi-level modeling, context-aware multilevel architecture,
accidental complexity factors, evaluation criteria.

1 Introduction

Multilevel modeling (MLM) is a software modeling approach in which a problem
is represented using a sequence (or sequences) of modeling levels (also termed
layers). Each level (but the lowest) is used for modeling its lower levels, or
alternatively, elements in each level (but the highest) function as instances of
elements in higher levels. Overall, the models in a multilevel representation are
inter-related by the instance-of relation among objects and classes, and maybe
further restricted by inter-level and intra-level constraints. The exact relationship
between adjacent levels vary among approaches.

MLM started out of philosophical arguments relying on multilevel ontological
classifications, where natural domains have multiple levels of classification. Along
with the modeling arguments, there came pragmatic engineering arguments that
point to reduced accidental complexity [1] when two level models of type-instance
relationships are rearchitected using multilevel models [2–4]. Current studies of
multilevel modeling concentrate on the rearchitecture of the types and instances
under consideration, while mostly ignoring their context, i.e., the surrounding
classes, associations and class hierarchy structures. An exception is [3].

In this paper we suggest general factors for evaluating the quality of mul-
tilevel models. We study a variety of context-aware factors like redundancy,
compositionality, coupling, cohesion and stability, and suggest quantitative mea-
sures like amount of duplication and of inter-level associations. The factors are
inter-related, sometimes overlapping and sometimes contradicting. The set of



measures can be used by a modeler to build his or her own subjective quanti-
tative scale for measuring accidental complexity1. We apply the suggested scale
for measuring accidental complexity of several options for context-aware mul-
tilevel rearchitecture. This scale is currently under implementation within the
multilevel component of our FOML modeling application [7].

The contributions of this paper are: (1) a suggestion for a subjective quantifi-
able scale for measuring accidental complexity in MLM; (2) proposed patterns for
context-aware multilevel rearchitecture of two-level models, with least acciden-
tal complexity. Section 2 presents the suggested quantitative scale for measuring
accidental complexity in MLM, Section 3 discusses multilevel transformations,
Section 4 summarizes related works, and Section 5 concludes the paper.

2 Factors and Quantitative Measures for Evaluating
Accidental Complexity in MLM

The term accidental complexity was first used by Brooks in [1] as a way to capture
non-essential complexity, caused by a language or a tool for implementation, and
is not an essential characteristic of the solved problem. This concept has been
used in the study of MLM for arguing that MLM reduces accidental complexity of
modeling Type-Instance relationships [2,3]. However, when surrounding context
in a model is considered, MLM rearchitecting might not be straightforward, and
there are multiple alternatives, each with its own pros and cons.

We introduce factors, which are general features of models, and for each
factor, we point to possible quantitative measures that can assign a numerical
value to a given model. Factors and measures are motivated and demonstrated on
an extended version of the Type-Instance pattern from [2]. The extended model,
in Figure 1, adds a context of associated classes, and hierarchy of classes.2
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Fig. 1: The Type-Instance structure from [2] extended with context: Client, server
and hierarchy classes

Redundancy

Redundancy can be measured by duplication of elements. This is the main acci-
dental complexity argument in the Type-Instance pattern in [2]. The multilevel

1 The analysis refers to the potency-based approach of [5, 6].
2 Part of this context appears in [2]



model is considerably smaller since instances of a type-class are combined with
its instance-classes, into clabjects3.

Duplication can arise in the multilevel rearchitecture of the context, as well.
Figure 2 shows a possible three level model, for the type class ProductType
and its context classes OrderItem, Bundle, from Figure 1. The multilevel model
consists of two class models, at levels 2 and 1 (marked on the left corner as
“@n”), and an instance model at level 0. The potency-mechanism controls the
instantiation of classes and associations and of attribute inheritance between
levels. A potency value n (visually marked by “@n” sign), restricts the number
of successive instantiations to at most n. The default potency of an element is
its level, and is not marked.

In Figure 2, class OrderItem is positioned on level 2, with potency value 2
(unlike in [3]4), since OrderItem objects are needed in states on level 0. But if
OrderItem is not sub-classified on level 1, then it is a singleton, which is du-
plicated on level 1, probably with four associations that instantiate association
orders on level 2 (and must be constrained by XOR), as shown in Figure 2. Basi-
cally, every singleton with potency value > 1 causes duplication of the singleton
class and its associations with the other classes, on the immediate lower level.
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Fig. 2: Duplication and refinement: Singleton clients on level 2

Refinement

Refinement is a dual aspect to duplication, depending on context. An unnec-
essary duplication in one case, can be a desirable refinement in another. For
example, if Bundle, like OrderItem, is positioned on level 2 with potency 2 and
there are no domain specific bundle types on level 1, then it is a singleton, as in
Figure 2. In that case, the contains association on level 2 is instantiated by four
specific associations on level 1, with product specific multiplicity constraints.

3 [3] presents a model in the Cloud domain, with a considerably less classes and
objects in the multilevel rearchitecture of Type-Instance relationships.

4 Figure 23 in [3].



That is, duplication turns into a desirable refinement rather than causing redun-
dancy. Altogether, duplication, can measure accidental complexity factor in one
case or a quality improvement factor, in another case.

Upward level-coupling: A level coupled with multiple higher levels

The pattern of de Lara et al. [3] suggests putting client classes of Product on
level 2, with a leap potency value 2.5 Following this pattern, Bundle and contains
are instantiated directly on level 0, and Bundle objects on level 0 are linked to
concrete monitors or computers. Since every bundle has an order, which has its
order items, if class Order is placed on level 2 with potency 1 (like OrderItem),
its instances reside on level 1, and bundles on level 0 are linked to orders on level
1, implying that a state on level 0 instantiates multiple classes in levels 1 and 2.
A change in either of these levels might affect level 0. If Order on level 2 is given
a leap potency 2 (following Bundle), then the order of a bundle resides on level
0, but its order items reside on level 1, implying again, dependency of level 0 in
levels 1 and 2. These situations are shown in Figure 3 below.
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Fig. 3: Rearchitecture with an upward level coupling factor of accidental com-
plexity

Altogether, upward level-coupling characterizes cases where a level might be
affected by changes in multiple higher levels.6 This factor can be caused by using
leap potency for a class that is associated (directly or not) with a class with a
smaller potency value. So, an association sequence between a class with leap
potency value n and a class with potency < n is a quantitative measure for this
factor. Inter-level associations might also point to upward level-coupling.

Downward level-coupling: A level coupled with multiple lower levels

This factor is a dual of the previous one (reminiscent of the dual bad smell to
Divergent Change7). In the situation described in Figure 3, elements in level 2 are
instantiated on levels 1 and 0. Therefore, a change in level 2 might affect multiple

5 Leap potency, marked with additional parentheses as in “@(n)“, restricts the element
to be instantiated only n levels below.

6 Reminds the Divergent Change software bad smell.
7 Shotgun Surgery is the bad smell characterizing software where a change in one place

requires changes in multiple places in the code.



levels. A quantitative measure for this factor is the appearance of classes and
associations with different potency values, including in particular, leap potency
for classes. Inter-level associations might also point to a downward level-coupling.

Note that the upward and the downward level-coupling factors are not nec-
essarily symmetric. If the problem is caused by a one direction inter-level asso-
ciation, it is possible that there is a coupling problem only in one direction.

Level instability

A major motivation for using MLM is to enable dynamic creation of new types,
as shown in the multilevel rearchitecture of the static class hierarchy in [2].
This means that intermediate levels in a multilevel model can undergo changes,
which usually are perceived as model transformation. Standard approaches in
modeling distinguish between types and data, where types are stable – up to
model transformation, while data is constantly changing. Consider Figures 3a
and 3b. Since class OrderItem on level 2 has potency value 1, it is instantiated
on level 1, which is a level of types, by objects that are not clabjects, and
are dynamically changing, momentary states (snapshots). This implies constant
instability to a level of types, which affects its lower instance levels: For every
creation or deletion of a bundle on level 0 and its order, level 1 is modified.

Level instability is an accidental complexity factor that characterizes cases
where a level of types is changed following state changes in a data level. This
situation occurs when a class with potency value less than its level, is associated
with a class C through an association a, where the potency (or the leap potency)
value of C and a is their level.

Conceptualization

Conceptualization is a comparative factor, used to understand conceptual gains
and loses in a rearchitecture transformation. For example, the concept of Type-
Instance relationship is built into the multilevel model as a first class citizen,
while not being supported in a two level model.

The potency-based approach has been shown to enable flexible control over
attribute inheritance, at a level that is not supported by standard OO inheritance
mechanisms. This feature extends also to association inheritances, as shown
in [3]. In OO modeling, association inheritance can be constrained using the
redefinition constraint. But in that case, the redefined association still uselessly
exists for the subclass, causing duplication of associations. In MLM, the potency
mechanism enables more flexible association inheritance.

In contrast to the above conceptual gains in MLM, splitting a class hierar-
chy between different levels of a multilevel model might cause lose of visibility
for client classes, and might require additional operations. When breaking a
class hierarchy structure, top classes in the lower levels lose their parent classes.
Therefore, client classes need to duplicate their requests for all top classes, and
might be affected by dynamic changes in lower levels of a class hierarchy.

Altogether, the multilevel rearchitecture might increase conceptualization in
one direction, while reducing abstraction in another. For broken class hierar-
chy structures, the advantage of dynamic type creation and flexible inheritance
should be balanced with the lose of abstraction in visibility.



Compositionality of a multilevel model

A multilevel model is composed of plain class models. Its semantics is composed
from the semantics of its levels [8]. A correct multilevel model requires that
every level is a class model, which is a partial instance of its immediate upper
level, via a mediator that lists instantiation relationships. A legal instance of a
multilevel model consists of instances of the level class models, that are required
to extend the syntactic partial instance relationships. Therefore, a multilevel
model without inter-level constraints is compositional. Compositionality is a
desirable modeling feature since the semantics, management and understanding
of a composite model can emerge from those of its components. It is closely
related to the upward and downward coupling factors.

Compositionality is restricted by all kinds of cross layer constraints, including
inter-level associations or links, leap-potency characterization, and explicit inter-
level constraints [8]. A reasonable quantitative measure for compositionality is
number of inter-level constraints.

Direct mapping to the denoted problem domain

This is a subjective factor, that might be related (or combined) with the con-
ceptualization factor. Direct mapping refers to the ability to build a model that
directly reflects and explicitly embeds the main intended abstractions. The mul-
tilevel architecture directly captures the basic distinction between types and
their instances, which characterizes most modeling approaches. The level or-
ganization that is based on instantiation, enables level evolution that reflects
dynamic creation of types in reality.

Level incohesion, caused by mixture of types and objects in the same level,
breaks the type-instance distinction in a problem domain. For example, in the
two versions of Figure 3, specific state-related OrderItem objects are linked to
their product types, creating confusion that results from putting OrderItem on
level 2, without having semantics of types of types. The potency 1 of OrderItem,
creates class instances with potency 0 at level 1, which following [5], are objects
and links. But since these objects are not stable static objects they create level
instability, and cause other problems of coupling and compositionality. Level
incohesion also reduce understandability, as discussed below.

Quantitative measures for direct mapping are subject to modeling ideals. If
built-in separation of types and instances and multilevelling of typing are impor-
tant abstractions, then clabject potency-values that violate the level ordering, is
a measure for level incohesion (not including abstract classes). Using the leap-
potency mechanism for clabjects also breaks the type multilevel hierarchy.

Understandability

Our cooperation with the developers of the Ink language [9] shows that working
with MLM requires special training. A multilevel model is probably more diffi-
cult to understand than a standard two level model, that is structured by class
hierarchies, associations and interfaces.

The clarity and understandability of a multilevel model are affected by syn-
tactical features like the number of levels and number of constraints. An explicit



built-in visual constraint, e.g., a multiplicity constraint, is clearer than an im-
plicit formulation written in an associated language, e.g., using the size OCL
operation. Likewise, implicit inter-level constraints like inter-level associations
or using leap-potency reduce understandability. Additional constraints, like the
added XOR constraint in Figure 2, also reduce clarity. Quantitative measures
for understandability might involve the number of levels, number of non-builtin
constraints, number of inter-level constraints, counting additional constraints,
and mixture of potency values in a level, which causes level incohesion.

3 Accidental Complexity of Context-Aware Multilevel
Rearchitecture

In this section we present two alternative MLM transformations for the two
level Type-Instance based model in Figure 1, and analyze and quantify their
accidental complexity, using the measures from previous section.

De Lara et al. pattern [3]: The paper presents a pattern for MLM rearchitecting
of client classes in a Type-Instance structure (Figure 23), which raises a number
of concerns. Its application to Figure 1, is shown in Figure 4.
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Fig. 4: Rearchitecting of Figure 1 following [3]

Figure 4 reveals several accidental complexity factors. The variety of potency
values on level 2 points to a downward coupling problem; the multiple levels of
instantiated classes of objects on level 0 points to an upward coupling problem;
the leap potency and inter-level links point to a compositionality problem; the
state-dependency status of OrderItem and Order objects points to level insta-
bility of level 1; the mixture of occasional inter-level links with stable types on
level 1 points to level incohesion, which means lack of direct mapping to the
denoted domain problem; the inter-level links and the leap-potency reduce un-
derstandability; the broken class-hierarchy of products, between levels 2 and 1
creates a visibility (conceptualization) problem. Altogether, we have counted 7
factors of accidental complexity, that result from context-aware considerations.



Level-aware multilevel rearchitecture of context classes: Context classes of a
Type-Instance structure might be inter-related in complex and challenging ways,
creating association cycles and tangled class-hierarchy structures. Therefore, it
is likely that every multilevel rearchitecture of context classes reveals some ac-
cidental complexity factors, while avoiding others. In other words, there is no
silver bullet transformation, that minimizes all accidental complexity factors. An
advice for such transformations can declare ideals, and show reduced accidental
complexity in the goal factors. The rearchitecture advice below emphasizes the
direct mapping to the problem domain and understandability factors. The latter
is essential in software modeling, and direct mapping increases understandability.

We suggest a context-aware architecture that determines the status of classes
by comparative intended semantics, rather than by their context associations.
According to this approach, the level of a class is determined by the question:
“What is its semantically intended level?”.
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Fig. 5: Context-aware multilevel rearchitecting of Figure 1

Classes OrderItem, Order, Bundle, in Figure 5, are positioned on level 1,
since they have an intended semantics of types. This leads to an inter-level orders
association between OrderItem and ProductType, which reduces compositionality
and understandability, but increases visibility, as an Order object on level 0 can
ask its order-items for their product types, without listing specific types.

The multilevel positioning of the Catalog and the Warranty classes is also
determined by the intended type semantics: A Warranty object is associated with
every bundle object, meaning that there should be warranties on level 0. These
warranties are of a variety of types, and therefore, Warranty is positioned on
level 2 with potency 2. Catalog, on the other hand, is only associated with types
of products, and not related to concrete products. Therefore, it is positioned on



level 2, with potency 1, and its instance objects on level 1 are linked to product
types. This decision creates mixture of object and types, but as catalogs are not
linked to objects on level 0, there is no level instability and level incohesion. Due
to space limitations we avoid discussion of rearchitecting class-hierarchy context
structures (e.g., classes Virtual, nonVirtual in Figure 1).

Altogether, the suggested context-aware multilevel rearchitecture causes re-
duced compositionality and understandability, but increases visibility. Compared
with the 7 factors in the rearchitecture in Figure 4 this is, a meaningful improve-
ment.

Towards automating context-aware multilevel rearchitecture: The analysis of ac-
cidental complexity factors and the above examples show that there is no single
best transformation. Automation depends on one’s values and ideals. Follow-
ing our advice for rearchitecting the complex context in Figure 1, we suggest
transformation rules, organized by priorities.8

1. Direct or indirect associated classes of the Product class, in a Type-
Instance structure: Such classes join the Product class, in the same level,
preserving the association structure, like class OrderItem, Order and Bundle
in Figure 5. If there is an association cycle between the Product and the
ProductType classes, this advice creates an inter-level association.

2. Direct or indirect associated classes of the ProductType class, in
a Type-Instance structure: Such classes, like Warranty and Catalog in
Figure 5, join the ProductType class, in the same level, provided that they
are not positioned in a different level, following the advice of previous entry.

3. Hierarchy related classes of transformed classes – sibling classes:
Sibling classes should better reside on the same level in the multilevel archi-
tecture. Together with the previous advice, it means that sibling classes of
say, Order or Bundle are advised to be classified together, on the same level.

4. Hierarchy related classes of transformed classes – ancestor or de-
scendant classes: In principle, ancestor and descendant classes should go
together. In cases of deep class hierarchy structures, or if hierarchy structures
include classes that are already classified on different levels, more heuristic
advice is needed, to balance accidental complexity with modeling ideals.

4 Related Work

Quality of models has been evaluated by a variety of metrics, such as number
of associations, aggregations, generalizations and dependencies [10, 11]. Model
metrics are used for identifying modeling problems and predicting maintainabil-
ity, understandability and reusability. Stability of models is evaluated by metrics
that rely on the amount of changes, relatively to the initial version [12].

The notion of Accidental complexity was introduced in [1] in order to dis-
tinguish between essential complexity, which characterizes a problem domain,

8 This is not refactoring since replacing subtyping or association by type membership
changes the semantics.



to accidental one, that results from using weak implementation languages, weak
abstractions, or bad design. This notion is frequently used in companion with
a variety of software metrics, and also with respect to efficiency of concrete
applications [13]. In MLM, transformations from two level modeling reduce re-
dundancy and improve conceptuaization, but impact on context classes was not
investigated.

5 Conclusion and Future Work

In this paper we have analyzed factors of accidental complexity in MLM, and
show that they might arise in MLM when context elements are considered, We
provided quantitative measures for these factors, and used them to compare
alternative multilevel transformations. Finally, we provide advice for (semi)-
automatic, context aware multilevel transformation. The factors suggested in
the paper are now being implemented in our FOML-based MLM tool [7, 14]. In
the future we plan on developing a semi-automated MLM transformation tool.
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