
Multi-level modeling with XML

Jens Gulden

University of Duisburg-Essen
Universitätsstr. 9, 45141 Essen, Germany

jensgulden@acm.org

Abstract. Multi-level modeling offers substantial advantages when ex-
pressing complex domain concepts, and it comes with the promise to
allow a fine-grained reuse and extensibility of (domain-specific) mod-
eling languages on different levels of conceptual abstractions. A small
number of tooling environments have been proposed that support multi-
level modeling. However, in order to be able to unleash the potential of
multi-level models as widely accepted means to formally define complex
concepts, and to realize the promises of reusability and extensibility, a
representation format for multi-level models is required, which is easy to
understand for modeling experts, and is independent from any specific
tooling environment.
This paper proposes design principles of an XML format for representing
multi-level models as XML documents. The approach is realized as a
lightweight extension to the XML Schema Definition (XSD) standard,
using built-in XML language extension mechanisms. The implementation
of a multi-level schema validator is provided as a proof of concept.

Keywords: Multi-level modeling · XML · Document format · Exchange
format.

1 XML documents with multiple levels of type
abstractions

Multi-level modeling is an extension to the well-known object-oriented modeling
paradigm. In multi-level modeling, it is possible to define a hierarchy of con-
cepts in which instances of higher-level types can describe types, from which
again instances can be derived, and so forth. In other words, objects that are
instantiated out of classes can also serve as class-descriptions, and can further
be instantiated to objects, which themselves can serve as class-descriptions from
which objects can be instantiated. This supports type hierarchies across multi-
ple levels of type-instance relationships. For example, when speaking of Vehicle,
Car, Volvo, Volvo MX 7, and Peter’s new Volvo MX 7, in this list, Car, Volvo,
and Volvo MX 7 both act as instances of the concept directly mentioned before,
and as types of the concept directly mentioned afterwards.

Especially when it comes to reconstructing domains of discourse that reflect
socio-technical systems with concepts that are described in human understand-
able natural language, the multi-level modeling paradigm has been evaluated to

enable a potentially large gain in expressivity, and to allow the reuse of modeling
language concepts on multiple levels of conceptual abstraction [5].

Some tooling environments support modeling languages with multi-level ca-
pabilities, such as the Flexible Meta-Modeling and Execution Lan-
guage (FMMLx) [5] from the XModeler [3,7] environment, or the Level
agnostic Modeling Language (LML) used in the Melanee workbench [1].

However, one assumed reason why the multi-level modeling paradigm has
not yet found wider support in science and practice, is the lack of a standard-
ized representation of multi-level models, independent from particular modeling
tools, and based on a widespread implementation language. Such a represen-
tation could serve as a means of communication among modeling experts to
mutually exchange and evaluate multi-level models, and to offer collections of
multi-level models in central places. In addition, a standardized representation
could serve as an exchange format for multi-level models, and could foster the
integration of different multi-level modeling tools to become part of an interop-
erable tooling environment.

One of the most widespread meta-modeling languages is XML, which pro-
vides a standard syntax to represent content, a schema definition and validation
mechanism provided by the XML Schema Definition (XSD) language [11], and
the query and transformation languages XPath and XSLT [8]. Given this set of
existing mechanisms, XML appears suitable to define a language for representing
multi-level models in a minimal-invasive, backward compatible way based on an
existing standard.

This paper introduces fundamental principles for specifying multi-level mod-
els in XML that make use of existing XML technology in the described way. The
elaboration provides a backward compatible schema validation mechanism to
validate the formal semantics of multi-level models, i. e., to determine whether
all entities in a multi-level model are valid according to the multi-level type defi-
nitions provided by their ancestor entities. The introduced design principles can
serve as a basis for specifying an implementation-independent representation for-
mat for multi-level models that is readable by human experts, and an exchange
format between different tooling environments for multi-level modeling.

Two central research questions are examined in this paper, which are to be
answered as prerequisites for enhancing XML with multi-level modeling capa-
bilities. These research questions are:

Q1: How can XML be extended in a way that both instance characteristics and
type specification characteristics can be represented by XML entity elements?

Q2: How can the central mechanism of schema validation of XML documents
be adapted to multi-level XML?

The questions are addressed by extending the existing XML language spec-
ification and validation mechanisms to express a core set of multi-level charac-
teristics, which are supported by selected multi-level modeling approaches.

The key idea of the proposed approach lies in merging XML document in-
stances with XML schema definitions, and add a notion of delayed instantiation

semantics, also known as “intrinsic” features [5] or “potency” [1], to the schema
definition language. Both extensions together allow to express the static seman-
tics of multi-level models in XML, i. e., they allow to create XML models in
which any modeled entity can simultaneously act as an instance and a type
declaration, and entities of any higher abstraction level can influence the type
characteristics of lower-level instances. The paper proposes a lean set of syn-
tactical enhancements to XML for expressing multi-level models, and it comes
with the implementation of a schema validator which converts a multi-level XML
document to an XML Schema Definition (XSD), that is subsequently used to
validate the model document using a regular XSD validator.

The remainder of the paper is structured as follows: Sect. 2 elaborates mod-
ifications to the original XML declaration mechanisms that allow for the im-
plementation of multi-level model characteristics in XML, and it introduces the
prototype implementation of a multi-level schema validator. An example that
demonstrates the presented approach is shown in Sect. 3. The final Sect. 4 con-
cludes the work.

2 Extending XML with multi-level entities

2.1 Language design

To represent multi-level models in an XML document format, a number of es-
sential requirements guide the design of the representation language. The central
requirements and design decisions proposed for MXML, which is the prototypical
language developed here, are stated in the following.

Req. 1 Combine type definitions and instance entity definitions
This is the most important requirement to be fulfilled for realizing multi-
level modeling with XML. In XML, instances and types can be mixed
by allowing a <xsd:complexType> ... </xsd:complexType> element to
occur as an optional child element in any XML element of a multi-level
XML document. Like any cleanly defined XML dialect, XSD is defined in
its own namespace. Mixing it with content from other namespaces will thus
not influence the processing of any other document content, which is an
inherent extensibility feature of XML.

Req. 2 Provide multi-level features: abstraction levels, intrinsic features
Additional information that is required for specifying multi-level models is
provided through the use of attributes with the ml: namespace prefix. They
integrate with existing document content in the same orthogonal manner
as inserted XSD schema fragments. The attributes currently suggested as
multi-level extensions to any XML entity element are:
ml:level (optional) The absolute abstraction level of the entity. If a meta-
entity is specified using ml:of, this defaults to level-1 of the meta-class.
ml:of (optional) The meta-entity of the entity. If not specified, the entity is
considered to instantiate the default XML entity meta-type.

ml:abstract (optional) Flag to indicate whether the entity should be consid-
ered abstract. In this case, any attributes, children elements, or text-content
will be ignored by the schema validator and the entity serves as a class
declaration only.

The following attributes are suggested as extensions to the <xsd:element>
and <xsd:attribute> elements:
ml:intrinsic (optional) Absolute level on which the declaration should be
instantiated.
ml:potency (optional) Relative level, counting from the current, on which
the declaration should be instantiated.
The former two attributes are mutually exclusive. If none of these attributes
is provided, the type declaration element, like in conventional XSD, takes
effect immediately during the next instantiation, i. e., it becomes effective
for the element it is declared in.
The ml:intrinsic / ml:potency attributes are representatives for funda-
mental multi-level model characteristics that provide delayed instantation.
This set of attributes can be refined in later versions to also cover range
and leap potency, with a more fine-grained specification of min, max, and
depth values.

Req. 3 Design with minimal invasive changes to existing standards
In order to provide a lean integration into existing XML standards, which
allows an easy adaption and also keeps the implementation more efficient
through reusability, the design should opt for as few modifications to
the original XML language mechanisms as possible. This requirement is
fulfilled in the proposed solution by reusing parts of the XSD language for
specifying type characteristics of multi-level entities. When validating, XSD
fragments from a multi-level document will be transformed to a standard
XSD document, which is then used for validation.

Req. 4 Implement with recursion to existing schema validation
To implement a schema validator for MXML documents, the approach should
reuse a standard XSD schema validator. This is desirable both in order
to formally prove the backward compatibility of the approach, as well as
for an efficient development of the MXML schema validator. The suggested
approach realizes this by using a two-phase validation process, in which first
the MXML document is transformed to a temporary XSD schema document
and a plain XML representation, and then an existing XSD validator is
invoked which applies the schema to the plain XML.

A few additional conventions apply to this proposed language design. If mul-
tiple element instances of the same name contain schema definitions, the defi-
nition statements are syntactically merged together in the same way as if they
were all given in only one schema definition. No element instance has priority
over another in specifying schema definitions. It may, however, turn out to be
a good notation style to locate an element’s schema definition in only the first
element by convention, which can be expected to increase the readability and
maintainability of manually edited MXML documents.

On the top nesting level of the element hierarchy in MXML documents, any
regular XSD fragment may be placed. This allows to include auxiliary non-multi-
level schema declarations, e. g., an enumeration type for defining the value range
of an attribute used by a multi-level entity.

2.2 Syntax proposal

A syntax for interweaving XML instance content with XSD schema declarations
in MXML is proposed in the following. According to common grammar notation
conventions, parts enclosed in [...] are optional, parts in {...} can occur zero
to any times, and a vertical bar | indicates a choice between either the left- or
the right-hand side. The syntax of any XML element is redefined as follows:

<element { attrN="..." } [ml:level="level"] [ml:of="parent"]

[ml:abstract="[true]"] >

[<xsd:complexType>

... schema declarations ...

</xsd:complexType>]

{ <child {attrN="..."} > ... </child> }

[text content]

</element>

This means, any XML element can at first act as a regular element instance
with the ability to have attributes, nested children elements, and text content.
In addition, any XML element can also contain a schema definition fragment,
which defines the formal semantics of instances of the element. The proposed
syntax of XSD schema definition fragments to be included in any multi-level
XML element is shown in the following:

<xsd:complexType>

<xsd:sequence>

{ <xsd:element { attrN="..." }

[ml:intrinsic="level" | ml:potency="levels"] > ...

</xsd:element> }

</xsd:sequence>

{ <xsd:attribute { attrN="..." }

[ml:intrinsic="level" | ml:potency="levels"] > ...

</xsd:attribute> }

</xsd:complexType>

The structure-descriptor <xsd:sequence> ... </xsd:sequence> around
the children element type declarations is included for compatibility with XSD,
but does not carry meaning in the current version of MXML. Any structure-
descriptor will internally be treated equivalent to <xsd:choice minOccurs="0"

maxOccurs="unbounded"> ... </xsd:choice>, which means that children el-
ements may occur in any order and for an arbitrary number of times. This is
syntactically compatible to any available structure-descriptor in XSD, i. e., chil-
dren elements can be arranged in any structure, but the desired structure must
be enforced by convention and will not formally be validated.

2.3 Schema validation

As a proof of concept, a schema validator that takes into account the multi-level
nature of MXML documents has been developed.∗ According to Req. 4, the
implementation of the schema validator is kept as lean as possible and reuses
existing XSD schema validation functionality.

The multi-level approach allows documents to mix instance content and
schema definitions. Existing XML validation approaches, however, assume that
instance content (.xml) and schema definitions (.xsd) are stored in separate
documents. To trace back multi-level document validation to traditional schema
validation, it is thus required to separate the schema information in a multi-level
document from the instance content. This is done by using two XSLT transfor-
mations that take as input an MXML document, and temporarily generate one
XML instance document and one XML Schema Definition document out of it.
The instance document can then be validated against the schema document
using an existing XSD validator.

The documents involved in an MXML application and their interrelation-
ships are shown in Fig. 1. To validate an MXML document doc.xml, the XSLT
transformation mlschema.xsl is applied to it, which generates a temporary XML
Schema Definition document doc-schema.xsd. The mlinstance.xsl transfor-
mation is applied to generate a plain XML instance document without multi-
level specification parts. This document is then validated against the generated
schema.

A fundamental advantage of this validation approach is that it proves the
backward compatibility of MXML by construction, because the relationships
between the original MXML document and the temporary non-MXML instance
and schema documents are formally defined by the mlschema.xsl and mlin-

stance.xsl transformations. One disadvantage, however, is that in case a val-
idation error occurs, it might be challenging to trace an error message that
was issued for the transformed documents, back to the origin of an error in
the MXML document. A solution to this would be to supplement the schema
validator with another XSLT transformation that checks additional validity con-
straints on the MXML document. An example of such a constraint would be to
ensure that an entity on level m must not contain intrinsic attributes with an
instantiation level greater than m. This option is not implemented yet, which is
why the transformation mlvalidate.xsl is displayed with a dashed border in
Fig. 1.

2.4 Related work

The fundamental idea behind multi-level modeling is based on the combined
notion of entities carrying instance properties and type declarations at the same
time. This kind of entities has been discussed in several works on extensions

∗The schema validator implementation and the example artifacts are available at
https://www.wi-inf.uni-due.de/FGFrank/download/mxml-0.1.0.zip.

https://www.wi-inf.uni-due.de/FGFrank/download/mxml-0.1.0.zip

doc.xml

doc-schema.xsd
(temporary)

doc-instance.xml
(temporary)

schema validator

mlschema.xsl

mlinstance.xsl

mlvalidate.xsl
validation
result+

Fig. 1. Documents architecture and validation process

to the object-oriented modeling paradigm, e. g., by [10] which introduces the
concept of “Power Types” as a kind of entities with both objects and class
characteristics, and [6] which proposes the use of “Clabjects”.

Modeling approaches that incorporate the notion of such entities into a multi-
level modeling language are proposed by, e. g., [2] and [5]. Corresponding tooling
support that offers functionality for creating and using multi-level models has
been provided, e. g., by the Melanee modeling environment [1], XModeler
[3], and MetaDepth [4]. While in principle comparable to each other, these
approaches each follow proprietary conceptualizations with respect to the lan-
guages they provide and the implementations of the underlying tooling support.
This is exactly the reason why a unified document representation and a tool-
independent exchange format is useful to communicate about essential concepts,
and to provide interoperability among tools.

An approach which combines the XML Metadata Interchange (XMI) for-
mat with Ecore representations of meta-models is MultEcore [9]. This is
an attractive alternative to using plain XML for expressing multi-level mod-
els, because it integrates into the widespread Eclipse Modeling Framework
(EMF). However, MultEcore achieves downward compatibility to Ecore by
storing representations of each abstraction level individually in one Ecore
model. The extension of Ecore to a multi-level architecture is achieved by
organizing multiple single-level models to appear as one multi-level model. This
is contrary to the goal of this work, which aims at reflecting multi-level charac-
teristics with internal language extensions to XML.

One should be aware that the term “multi-level XML document” is sometimes
used in XML teaching literature with a different meaning. Several web pages
about XML basics use the term “multi-level” to refer to XML documents with
a nesting depth of children elements greater than one. That means, whenever
an element that is a direct child of the document root element has at least one
more child element nested inside, the XML document is considered to be “multi-
level”. This, of course, has nothing to do with the notion of multiple abstraction
levels for type descriptions as it is addressed in this work.

3 Example

The following listing shows an MXML document that specifies ingredients of a
cooking recipe. A general type Ingredient is refined into the types Vegetari-

anIngredient and Spice, the latter of which gets further refined into Salt and
Pepper.

<ingredients xmlns:ml="urn:ml" xmlns:xs="http://www.w3.org/2001/XMLSchema">

<ingredient ml:abstract="yes">
<xs:complexType>

<xs:sequence>
<!-- <xs:element ref="name"/> (implicit by language) -->
<xs:element name="price" type="xs:string" ml:potency="-1"/>
<xs:element name="tasteDescription" type="xs:string" ml:potency="2"/>

</xs:sequence>
<xs:attribute name="healthy" type="xs:boolean" ml:potency="1"/>

</xs:complexType>
</ingredient>

<vegetarianIngredient ml:of="ingredient" healthy="true">
<xs:complexType>

<xs:sequence>
<xs:attribute name="healthy" type="xs:boolean"/>

</xs:sequence>
</xs:complexType>

</vegetarianIngredient>

<spice ml:of="ingredient">
<xs:complexType>

<xs:attribute name="appetizing" type="xs:boolean"/>
<xs:attribute name="sudatory" type="xs:boolean"/> <!-- makes you sweat -->
<xs:attribute name="digestive" type="xs:boolean"/>

</xs:complexType>
</spice>

<pepper ml:of="spice" color="red">
<xs:complexType>

<xs:attribute name="color" type="pepperColor"/>
</xs:complexType>
<tasteDescription>very tasty!</tasteDescription>

</pepper>

<!-- this is a regular level-agnostic auxiliary XML Schema definition -->
<xs:simpleType name="pepperColor" final="restriction">

<xs:restriction base="xs:string">
<xs:enumeration value="green" />
<xs:enumeration value="black" />
<xs:enumeration value="white" />
<xs:enumeration value="red" />

</xs:restriction>
</xs:simpleType>

<salt ml:of="spice">
<xs:complexType>

<xs:attribute name="avgLifetime" type="xs:double"/>
</xs:complexType>
<tasteDescription>very tasty!</tasteDescription>

</salt>

<pepper ml:of="spice" color="green"/>

</ingredients>

This document can be validated using the run-validator.xml script from
the example implementation package, which produces both a temporary .xsd file
and a temporary .xml file. The former is subsequently applied as the validating
schema to the latter, using a standard XSD schema validator. When run with the
example, the output of the run-validator.xml script is empty, which indicates
that no error during validation has been found and the MXML document is
considered to be formally valid.

4 Conclusion and future work

This work has suggested fundamental design principles to extend XML with
multi-level modeling capabilities. It includes a lean language implementation
that integrates well with existing XML concepts and tools. As the language
is independent from any tooling environment, it can potentially serve as an
exchange format for experts to communicate about multi-level models, build
shared libraries of multi-level models, and achieve interoperability between dif-
ferent multi-level modeling tools on the technical level.

Two research questions had initially been asked, the first about how XML
can be extended in a way that both instance and type characteristics of multi-
level model entities can be represented by XML elements (Q1), and the second
on how a schema validation mechanism for multi-level XML documents can
be provided, based on the existing XSD language (Q2). Both questions have
been answered by designing an XML dialect which fulfills 4 main requirements:
Req. 1 demanded for the ability to combine type definitions and instance entity
definitions in the representation format. This has been achieved by interweaving
regular XML content with XSD fragments. Req. 2 demanded for multi-level type
characteristics, such as delayed instantiation, to be expressable by the language,
which has been achieved by defining attributes using the ml: namespace prefix
for describing multi-level characteristics of XML entities. These attributes extend
the semantics of <xsd:element> and <xsd:attribute> declarations. This lean
set of proposed language extensions also adheres to Req. 3, which demanded for
applying minimal invasive changes to the existing XML language mechanisms.
The last requirement Req. 4 suggested to reuse existing schema validation com-
ponents to implement a multi-level schema validator, which has been realized by
a prototypical schema validator implementation (see Sect. 2.3).

The presented work is intended to elaborate fundamental design principles for
representing multi-level models with XML. It does not claim to offer a complete
exchange format for tool integration, which would require a set of significantly
longer standardization documents. As a consequence, several limitations apply
to the current elaboration of MXML. At first, the range of supported multi-level
features is limited to a set of concepts provided by selected multi-level modeling
approaches. Extending the range of supported approaches will be subject to
future work. On the implementation level, the next step to improve the schema
validator will be to support the use of the ml:intrinsic attribute to specify
an absolute intrinsic level attached to <xsd:element> and <xsd:attribute>

declarations. Currently, only relative level distances specified by ml:potency

are supported.
Behavior-related aspects, e. g., the adaptation of the XPath query language

[8] or the Object Constraint Language (OCL) [12] to multi-level concepts,
are out of the scope of this article and also subject to future work.

Future work should also cover the extension of MXML to a unified representa-
tion of language features from all representative multi-level modeling approaches.
This could be done by assembling meta-models of the respective languages, and
create a unified meta-model for MXML that incorporates all individual language
approaches. To exemplify the integration capabilities of the exchange format, a
set of importers and exporters should be provided for existing multi-level mod-
eling tools, e. g., in the form of model transformations that convert between the
internal representation formats of the tools and MXML.

References

1. Colin Atkinson and Ralph Gerbig. Flexible deep modeling with Melanee. In
Stefanie Betz Ulrich Reimer, editor, Modellierung 2016, 2.-4. März 2016, Karlsruhe
– Workshopband, volume 255, pages 117–122, Bonn, 2016. Ges. f. Informatik.

2. Colin Atkinson and Thomas Kühne. The essence of multilevel metamodeling. In
Martin Gogolla and Cris Kobryn, editors, UML ’01 Proceedings of the 4th In-
ternational Conference on The Unified Modeling Language, Modeling Languages,
Concepts, and Tools, pages 19–33, London, 2001. Springer UK.

3. Tony Clark and James Willans. Software language engineering with XMF and
XModeler. In Marjan Mernik, editor, Formal and Practical Aspects of Domain-
Specific Languages: Recent Developments, pages 311–340. IGI Global, 2012.

4. Juan de Lara and Esther Guerra. Deep meta-modelling with metadepth. In Jan
Vitek, editor, Objects, Models, Components, Patterns, pages 1–20, Berlin, Heidel-
berg, 2010. Springer Berlin Heidelberg.

5. Ulrich Frank. Multi-level modeling – toward a new paradigm of conceptual model-
ing and information systems design. Business & Information Systems Engineering
(BISE), 6(3), 2014.

6. C. A. González-Pérez and B. Henderson-Sellers. Metamodelling for software engi-
neering. John Wiley, Chichester, UK and Hoboken, NJ, 2008.

7. Jens Gulden and Ulrich Frank. MEMOCenterNG – a full-featured modeling en-
vironment for organization-modeling and model-driven software development. In
Pnina Soffer and Erik Proper, editors, Proceedings of the CAiSE Forum 2010 Ham-
mamet, Tunisia, June 9-11, 2010, volume 592 of CEUR Workshop Proceedings,
pages 76–83. CEUR, 2010. ISSN 1613-0073.

8. Michael Kay. XSLT 2.0 and XPath 2.0 Programmer’s Reference. Wrox Press Ltd.,
Birmingham, UK, UK, 4th edition, 2008.

9. Fernando Maćıas, Adrian Rutle, and Volker Stolz. MultEcore: Combining the best
of fixed-level and multilevel metamodelling. In MULTI@MoDELS, volume 1722 of
CEUR Workshop Proceedings, pages 66–75. CEUR-WS.org, 2016.

10. James Odell. Power types. Journal of Object Oriented Programming, 1994.
11. Eric van der Vlist. XML Schema. O’Reilly, Cambridge, 2002.
12. Jos Warmer and Anneke Kleppe. The Object Constraint Language. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2003.

	Multi-level modeling with XML

