
Multi-Level Constraints

Tony Clark1 and Ulrich Frank2

1 Aston University, UK, tony.clark@aston.ac.uk
2 University of Duisburg-Essen, DE, ulrich.frank@uni-duisburg-essen.de

Abstract. Meta-modelling and domain-specific modelling languages are
supported by multi-level modelling which liberates model-based engi-
neering from the traditional two-level type-instance language architec-
ture. Proponents of this approach claim that multi-level modelling in-
creases the quality of the resulting systems by introducing a second ab-
straction dimension and thereby allowing both intra-level abstraction
via sub-typing and inter-level abstraction via meta-types. Modelling ap-
proaches include constraint languages that are used to express model
semantics. Traditional languages, such as OCL, support intra-level con-
straints, but not inter-level constraints. This paper motivates the need
for multi-level constraints, shows how to implement such a language in a
reflexive language architecture and applies multi-level constraints to an
example multi-level model.

1 Introduction

Conceptual models aim to bridge the gap between natural languages that are
required to design and use a system and implementation languages. To this end,
general-purpose modelling languages (GPML) like the UML consist of concepts
that represent semantic primitives such as class, attribute, etc., that, on the one
hand correspond to concepts of foundational ontologies, e.g., [4], and on the
other hand can be nicely mapped to corresponding elements of object-oriented
programming languages.

Since GPML can be used to model a wide range of systems, they promise at-
tractive economies of scale. At the same time, their use suffers from the fact that
they offer generic concepts only. Domain-specific modelling languages (DMSL)
address this limitation by providing concepts drawn from a particular domain of
interest. Thus, modellers are not forced to find ways of representing specific con-
cepts in terms of more general modelling element types, but can reuse (hopefully)
thoroughly specified concepts that come with a DSML.

While DSMLs promise clear advantages with respect to productivity and
model quality, their construction and use are compromised by serious challenges.
First, the designer of a DSML must decide whether a concept should be part
of the language or be modelled using the language. In many cases there are no
clear criteria that would support such a decision. Second, the design of a DSML
requires dealing with a trade-off between range of reuse and productivity of reuse
(see figure 1).

Sc
al

e
o

f
R

eu
se

Degree of Specificity

P
o

te
n

ti
al

 P
ro

d
u

ct
iv

it
y

G
ai

n

Ef
fi

ci
en

cy
 o

f
In

te
gr

at
io

n

R
an

ge
 o

f
In

te
gr

at
io

n

Ea
se

 o
f

A
d

ap
ta

b
ili

ty

R
an

ge
 o

f
A

d
ap

ta
b

ili
ty

Product
name: String
desc.: String

Motor
name: String
torque: Integer
...

Sc
al

e
o

f
R

eu
se

Degree of Specificity

P
o

te
n

ti
al

 P
ro

d
u

ct
iv

it
y

G
ai

n

Class Device Laser-Printer

Fig. 1. Principal Conflict between Range of Reuse and Productivity of Reuse

Multi-level modelling is suited to overcome these challenges by allowing an
arbitrary number of classification levels. As a consequence, traditional OCL con-
straints are not sufficient, since they are attached to classes and constrain the
structure of the instances of those classes. In a multi-level model, constraints
can be attached to a meta-class and therefore apply to its instances (which
are classes) and the instances of its instances (which may be classes or ground
instances).

There are various approaches to multi-level modelling (e.g., [2], [10], [11], [1],
[12]. However, in there is no agreement on a unified multi-level object constraint
language (MOCL). In this paper, we present a MOCL that could serve this pur-
pose. The MOCL has been implemented in the XModeler [8,6,7] as an extension
to its XCore meta-kernel. The paper is structured as follows. A brief overview
of multi-level modelling in section 2 serves to illustrate requirements for corre-
sponding language architectures, and demonstrates the need for MOCLs. MLM
places requirements on a modelling language architecture - section 3 describes
a particular meta-architecture called XCore that we believe is ideally suited to
this purpose. A MOCL is defined as a language extension to XCore in section
4. We demonstrate the utility of MOCL for MLM in section 5 where constraints
are attached to meta-types in order to express domain-specific semantics that
range over multiple type-levels.

2 Multi-Level Modelling in a Nutshell

While the various approaches to multi-level modelling differ with respect to par-
ticulars, they all share a few essential properties. First, they allow for an arbitrary
number of classification levels. This feature is important because it supports ab-
straction at the type-level and as a consequence provides a mechanism for the
introduction of new language features. A DSML language designer needs this,

revenues() : Float

name: String
models = 14
pagePerMinute: Integer
resolution: Integer
salesPrice: Float
 serialNo: String
 partSalesPrice: Float

Printer

pagePerMinute = 40
resolution = 600
salesPrice: 199.00
serialNo: String
partSalesPrice: Float

CPL-844

partSalesPrice = 189.00
serialNo = ps32-3

ps32-3: CPL-844

0
0

M3

M0

name: String
resolution: Integer
pagePerMin: Integer
TWAIN: Boolean

Scanner

noOfMetaTypes: Integer()
 noOfModels: Integer()

 price: Float
 partPrice: Float
 introduced: Date
 installed: Date
 energyCon: Float
 actEnergyCon: Float
 operationCosts: Float

HardwareComponent

M4

mobile: Boolean
 internalMemory: Integer
 persistentMemory: Integer
 additionalIntMem: Integer
 additionalPersMem: Integer
 cpuSpeed: Integer
 WLAN: String

Computer

screenSize: Integer
screenResVert: Integer
screenResHor: Integer
name: String

Laptop
Desktop Server

1
0
1
0
1
0
1

0

protected: Boolean
tempControl: Boolean
availPower: Integer
emergencyGen: Boolean
 volume: Integer
 id: String

Location

0

0

0

0

suited_for

1,*0,*

positioned_at

1,10,*

0 0

positioned_at

1,10,*

0

compatible

0,* 0,*

11

2

 noOfModels()

 price: Float
....

PeripheralDevice

2

connected_to

0,* 0,*

0 0

M2

M1

mobile: false

noOfModels: 12

M1

M1

1

0

1

1
1

0

automated: Boolean
coreComp: Boolean
 maxDuration
 startTime
 finishTime

BusinessProcess

1
0
0

0,*

0,*

requires 1

 volume: Integer
 id: string

ServerRoom

0

Fig. 2. Example of Multi-Level Model

but we would argue that a conventional modeller would find this attractive too
in order to introduce new meta-concepts in a structured way.

Second, every class, no matter on what level, is an object at the same time.
This is important if technologies are to be reusable with respect to models that
have an arbitrary number of type-levels. In addition, new type-levels imply that
new types are defined including the ability to specify additional properties at
the type-level. As we shall see, it is natural to introduce new properties for types
and to treat them as objects by accessing and updating the property values.

Third, MLM approaches support deferred or deep instantiation, which means
that attributes of a class do not have to be instantiated with the direct instances
of that class, but only later in instances of instances. The example class dia-
gram in figure 2 illustrates the construction of a multi-level model. The class
HardwareComponent is located on M4. Its specification should include everything
we know about its instances, and instances of those instances etc. in order to
achieve reuse and to prevent redundant specification on lower levels. For exam-
ple, we know that every hardware component has a sales price which is defined
on the level of a particular product type, that is, on M1.

The intended instantiation level of a property (attribute, operation, associa-
tion) is represented as an integer printed white on a black rectangle next to the
property. We also know that any hardware component (represented on M3) may
be suited for a certain type of location. In addition, it is obvious that a particu-
lar exemplar of a hardware component is located at a particular location, both
represented by objects on M0. As the example shows, associations are possible
between classes on different levels.

The diagram shows that there is need for constraints that span various lev-
els. For example, the definition of an attribute like price that is supposed to be
instantiated only a few instantiation levels further down the instantiation chain
requires a constraint that applies to all affected instances. The deferred instanti-
ation of the association positioned_at requires a constraint that is dynamically
adapted on every instantiation level up to M0. At the level where it is defined,
the class attached to the association end of positioned_at typed Computer is un-
known since at M0 the corresponding link must be an instance of an instance
of Computer (for example a lap-top or a desktop). With every instantiation, the
range of possible choices is narrowed. Hence, a MOCL should allow for specify-
ing constraints that applies to the entire range of a meta-class, that is, all its
instances and instances of its instances. To this end, the MOCL must be based
on a multi-level language architecture that enables multiple classification levels.

More information about MLM, including features such as deep, struct, po-
tency, clabjects and formalisation can be found in [5,13].

3 Foundations: XCore with Single Level Constraints

Fig. 3. Abstraction: Two Dimensions

Model based engineering involves hierarchy in two dimensions: inheritance
and types, as shown in figure 3. Traditional approaches tend to promote the
former and ignore the latter. For example, when defining the semantics of a

Fig. 4. XCore

model, OCL can be used to attach model-specific constraints. There is limited
support for constraints attached to meta-classes3 which motivates the need for
a suitable kernel language architecture.

Figure 4 shows XCore. All classes (except Obj) inherit from Obj and all objects
refer to their class (which is also an object) via ‘of’. Models are instances of
Package. This provides a uniform type-agnostic representation: by default models
can contain objects, classes, meta-classes and so on without any restrictions. A
package refers to its metaPackage that contains the types for the elements in the
package. The default meta-package for any package is XCore.

The basic definition of constraints in XCore works like OCL: a constraint is
attached to a class and applies to direct instances of the class. XModeler provides
a convenient syntax construct for a constraint that abstracts the details of the
underlying operation:

context C
@Constraint ConstraintName

booleanExpression
end

The candidate object is referenced using self in the boolean expression. This
can be termed single-level constraints.

3 Note that by model-based language engineering we do not mean the use of models
at M1 to denote languages. This is used, for example, in the definition of UML.

context Obj
@Operation checkConstraints ():Boolean

self.of().classify(self)
end

context Class
@Operation classify(o:Obj):Boolean

classifier.allConstraints ()→forAll(c | c(o))
end

context Obj
@Constraint AllConstraintsSatisfied

self.checkConstraints ()
end

Fig. 5. Object Classification

Within XCore, every object o has a class (equivalently its type) that is re-
turned as o.of() and therefore o is an instance of o.of(). An object o is also
an instance of any class that can be reached by traversing parents links from
o.of(). Every object also has a meta-class (equivalently its meta-type) that is
returned as o.of().of(). The defining feature of a class is that it is an instance
of a meta-class; the defining feature of a meta-class is that it inherits from Class.
Meta-circularity follows from Class.of() = Class.

The number of type-levels between an object o and a class c is the number of
uses of of() that need to be applied to o to reach c. In general it is not meaningful
to talk of an XCore model being at level n since a type-level is contingent on
the object and type in question, and an XCore package can contain mixtures
of objects, classes and meta-classes. Therefore,, in general we refer to an object
being defined at level Mi when there are i type-levels between the object and
Class. If it is required, strict type-levels can be imposed on package structures
by requiring that a package is linked to a meta-package as follows:

context Package
@Constraint strictness

metaPackage.contents = contents→ collect(o | o.of())
end

XCore contains operations that can be called with arguments and which return
results. Boolean valued operations (without side-effects) are predicates. Attach-
ing predicates to classes implements constraints (in the sense of OCL). Since an
object can refer to its class, we can write a constraint on Obj that requires every
object to satisfy the constraints defined by its class. Since class is an object we
can require that all models are correctly formed and also define how constraints
are applied to instances. Since the architecture of XCore is reflexive, the def-
inition of constraints allows us to bootstrap an arbitrarily extensible language
architecture.

Figure 5 shows the meta-circular definition of object classification defined in
XCore. Every object (that is everything in the system) can be asked to check its
constraints. To do so, the receiver navigates to its classifier using self.of() and
then asked the resulting class to classify self. A class uses classify to check
whether the supplied object meets its classification conditions as defined by its

constraints. The operation allConstraints returns a list of constraints that are
either defined by a class or one of its parents. A constraint is just an operation
and so it can be applied to a candidate object to return true or false to indicate
whether or not it is satisfied. The language construct Constraint is used to add an
operation to the constraints list of a class and abstracts away from the arguments
common to all constraints. The constraint AllConstraintsSatisfied is added to
Obj and requires that all objects are correctly classified by their types.

The constraints that are maintained by a class are all single-level constraints
and are consistent with the constraints represented by OCL in UML. This means
that they apply to the direct instances of the class or one of its parents. With
respect to figure 3, single-level constraints can only reach down from Mn to Mn−1
in the vertical direction. It is not possible for single-level constraints defined at
M2 to refer to objects at level M0. We argue, however, that this is unreasonable
since single-level constraints are able to cross as many horizontal levels as is
required (due to inheritance). This restriction must be removed to achieve an
MOCL; an approach is described in the next section.

Model-based abstraction is supported in two dimensions: inheritance and
types. Inheritance-based abstraction does not name the abstraction levels, for
example we do not talk of Animal being one inheritance-level removed from Dog.
Conversely, type-levels are often numbered with 0 being the lowest, or ground,
level that categorizes objects that are not types, and with n being types whose
instances are at level n-1.

The semantics of modelling languages describe how inheritance works (both
in terms of classification and reuse), and how the relationships between elements
at different type-levels work. However, whilst the definition of inheritance applies
no matter how deep the inheritance hierarchy gets, the definition of type usually
just applies between level n and n-1.

The limitation on type-level semantics places a restriction on how effective
type relationships are with regard to achieving abstraction in models. Meta-
types (at level 2 or above) arise naturally in a wide range of application areas
where linguistic terms are coined and their application is defined by regulation.

4 XCore with Multi-Level Constraints

Single-level constraints are sufficient for single-level modelling, however this re-
sults in a number of compromises since single-level models cannot use type-level
abstraction which is fundamental to a language-driven approach to software engi-
neering. Figure 5 defines the XCore meta-circular classification scheme involving
constraints. New types can be added to XCore by extending Class, for example if
MC extends Class and adds an attribute a and an operation o then all instances of
MC are classes that have all the expected slots and behaviours of a class, but also
have a slot named a that can be manipulated via the operation o. Furthermore,
XCore defines a meta-circular language defined in terms of operations such as
classify and new. Since XCore defines the semantics of extension, then new lan-

guages can be defined by extending classes such as Class. Multi-level constraints
are defined using this approach.

@Package MultiConstraints extends XCore
@Class ClassWMC extends Class

@Attribute multiConstraints : [Operation] (+,-) end
@Operation classify(o:Obj):Boolean

super(o) and self.metaClassify(o,0)
end
@Operation metaClassify(o:Obj ,level:Integer):Boolean

let C:[Operation] = self.allMultiConstraints ()
in C→forAll(c | c(o,level)) and self.guardedMetaClassifyUp(o,level)
end

end
@Operation allMultiConstraints ():[Operation]

parents→ iterate(p C = multiConstraints |
C + i f p.isKindOf(ClassWMC) then p.allMultiConstraints () else [] end)

end
@Operation guardedMetaClassifyUp(candidate:Obj ,level:Integer):Boolean

i f self.of().isKindOf(ClassWMC)
then self.of().metaClassify(candidate ,level +1)
else true
end

end
end

end

Fig. 6. Multi-Level Constraints

A class ClassWMC (class with multi-level constraints) is defined in figure 6.
It is a meta-class (because it extends Class and introduces a new attribute
multiConstraints whose value in any given instance is a list of operations. When
an instance is asked to classify an object it uses metaClassify to run over the
meta-constraints at each level. Unlike normal constraint checking (such as OCL),
the meta-constraint is supplied with the level number that can be used to de-
termine whether the constraint applies to the supplied candidate object.

Note that, since ClassWMC is an extension to Class we must be careful to guard
against a reference to the slot multiConstraints when the a meta-classifier is not
an instance of ClassWMC. This guard is implemented by guardedMetaClassifyUp

which checks if the classifier at level n+1 is a ClassWMC before calling metaClassify.

A construct is provided for multi-level constraints abstracting away from two
arguments: the candidate and the level number. In addition, a multi-level con-
straint can be specified with a specific level number in which case the constraint
only applies to those instances l type-levels removed from the class:

context C
@MultiConstraint ConstraintName(l)

booleanExpression
end

The candidate object is referenced using self and the level as level in the
boolean expression. A single-level constraint is simply sugar for a multi-level

constraint with level number 0 showing that multi-level constraints are the more
general language construct.

5 Case Study

Fig. 7. Meta Levels

Figure 7 provides a simple example of a model involving multiple levels. The
application requires a model of products that will be used as the basis of an E-
Commerce platform. New customers can use an existing product type or can cre-
ate their own, therefore we require a meta-type ProductMetaType whose instances
are product types. Two product types are shown: CommercialProductType and
FinancialProductType. The class Printer is an example of a commercial product
type and Loan is an example of a financial product type. A single instance of
Loan is shown.

Using traditional level numbering, the single instance of Loan is at level
0 (or the ground level), Loan, Mortgage, Car and Printer are all at level 1,
FinancialProductType and CommercialProductType are both at level 2, and Product

MetaType is at level 3. Since everything is an instance of something, there must
be a level 4 which contains the definition of the classifier for ProductMetaType;
this is not shown, but is ClassWMC as defined below.

The description given above implies that, for any given type at level n, there
is a classifying type at level n+1. In order for this to hold, it will be the case
that there is a classifier (called Class) that classifies itself. in this way there
is no artificial limit to the level of classification starting with ground objects.
Furthermore, as defined in section 3, the level associated with the classifier Class
classifies itself and any level below it which produces a kernel level that is both
arbitrarily extensible and self-classifying.

Consider what we may know about the domain when constructing this type
hierarchy:

ProductMetaType: Some product types are regulated which means that they
will need to record whether or not the type has been checked by the regula-
tory authority. Note that this is not a property of a particular ground object
such as a loan, but is a property of the product type Loan itself. Even at the
meta-type-level, it is known that all product objects have an identifier that is
unique to the type of product. Furthermore, it is known that any product type
manages a collection of the product instances so that product analysis can be
performed across the complete collection of products (for example to work out
total profit).

CommercialProductType: Some product types are bought and sold as in-
dividual items and therefore are instances of the type CommercialProductType.
Such types define a list-price that is common to all products of that type each
of which has its own sales-price which must be no greater than the list-price.

FinancialProductType: We know that all financial products are regulated
and much be checked by the appropriate authority before they can be bought
and sold.

Printer, Car: Both Printer and Car are commercial product types that define
particular list prices. A car has a registration number.

FinanceLoan, Mortgage: Both FinanceLoan and Mortgage are financial prod-
uct types that have interest rates for repayment. They also define whether or
not they have been checked by the appropriate regulatory body.

The description above shows four different type-levels (and an implicit fifth which
is the type of ProductMetaType). Each class defines properties and behaviour that
must hold for objects at lower levels and the information is placed at the highest
possible level. For example, when defining ProductMetaType it is known that all
products must have a unique identifier, even though the id property will be
attached to objects three type-levels below.

Figure 8 shows a class diagram for the product language that uses ClasswMC

(note that we do not show the of links which are shown in figure 7). The model
shows how the attributes defined in meta-classes become slots in classes, for
example the listPrice attributes defined by CommercialProductType becomes a
slot with the same name in Printer and Car.

The semantics of the product language is defined by meta-constraints. The
rest of this section lists the meta-constraints and describes their effect on the
model. Much of the semantics for products is known when ProductMetaType is
defined. We know that any regulated product must be checked by an appropriate
authority:

context MetaProductType
@MultiConstraint Reglation Checked (1)

self.isKindOf(RegulatedProductType) implies self.checked
end

The meta-constraint Regulation Checked applies only to candidates whose type-
level is 1, i.e. where candidate.of().of() = MetaProductType. With respect to

Fig. 8. Product Classes Using Multi-Level Constraints

figure 8, classes Car and Mortgage are both examples of classes at level 1 with
respect to this meta-constraint and where Mortgate is a RegulatedProduct but
Car is not. The meta-constraint requires Mortgage.checked to be true.

At level 3 it is also known that products should be managed by their product
type so that all available products of that type can be analyzed. To achieve this
we can set up a class called ObjectManager that is used as a mixin to product
types and which adds a slot allInstances that will hold all the instances of the
type, and add meta-constraints that require product types to manage products
in the required way:

@Class ObjectManager
@Attribute allInstances :[Obj] (+) end
@Constraint checkAllInstances

allInstances→forAll(o | o.isKindOf(self))
end

end
context MetaProductType

@MultiConstraint Inherit Object Manager (0)
self.inheritsFrom(ObjectManager)

end
@MultiConstraint Recorded Instances (2)

self.of().allInstances.includes(self)
end

The class ObjectManager has a constraint that requires the value of allInstances
to be a list of objects that are all instances of the class to which ObjectManager

is added as a parent. Note that this is defined as a constraint since it does not
care what the level number is.

The meta-constraint Inherit Object Manager requires that all meta-product
types inherit from ObjectManager and therefore all product-types will have the
slot allInstances. The meta-constraint recorded Instances requires that the
products are recorded in the slot.

A key feature of products is that they must have an identifier that is unique
among products of that particular type. Meta-constraints can be used to require
a mixin Product to be a parent of all particular product types (Is A Product),
and for the identifier to be unique (Unique Identifiers):

@Class Product
@Attribute id:String end

end
context MetaProductType

@MultiConstraint Is A Product (2)
self.isKindOf(Product)

end
@MultiConstraint Unique Identifiers (2)

self.of().allInstances→forAll(p1 |
self.of().allInstances→forAll(p2 |

p1.id = p2.id implies p1 = p2))
end
@MultiConstraint Is A Product (2)

self.isKindOf(Product)
end

A commercial product type has a further constraint that requires the sales price
to be less than the list price:

context CommercialProductType
@MultiConstraint Sales Price <= List Price (1)

self.salesPrice <= self.of().listPrice
end

XModeler provides a tool that records the results of checking constraints
and displays them as a tree where each node is labelled with the name of the
constraint and is coloured green of the constraint was satisfied and red if it failed.
Figure 9 shows the result of performing various constraint checks on elements
of the product model. Figure 9(a) shows a loan object with id l1, interest rate
0.0 and sales price 10. All of the multi-level constraints are satisfied by the loan.
Figure 9(b) shows a printer that does not satisfy the multi-level constraints
because it is a second printer created with the id p1 and the sales price 101 is

(a) Loan (b) Printer

(c) Mortgage

(d) Commercial Product

Fig. 9. Constraint Checking in XModeler

greater than the list price 100 associated with the product-class Printer. Figure
9(c) shows that the financial product-type Mortgage fails because it is a regulated
type that has not been checked. Figure 9(d) shows that the commercial product-
type satisfies all constraints.

6 Related Work

There are various language architectures that support multi-level modelling. The
majority follow an object-oriented approach while a few are based on logic [10] or
set theory [12]. None of the language architectures address unlimited multi-level
constraints. Gogolla et al. [9] describe a 3-level language architecture where OCL
can be applied to a model as an instance of a meta-model and where a language
extension is added to OCL do designate whether it is being applied at the type
or instance level. The XCore language architecture does not require such an
extension since everything is an object and the kernel is self-describing. FOML
[3] can be used in conjunction with multi-level models and, like the approach
described in this paper is not limited in terms of levels; however, unlike XCore it
is based on an exogeneous language (Prolog) which means that the constraints
are not integrated with the modelling framework.

7 Analysis and Conclusion

We have presented a motivation for multi-level constraints to support the con-
struction of multi-level models, and shown how these constraints can be defined
within a reflexive kernel language, XCore. Our kernel language is both precise
and self-describing. Other approaches to defining the semantics of MLM use for-
mal logic, for example [5], as an external language. A key benefit of our approach
is that the definition of MLM is extensible within the provided language frame-
work as shown in this paper. We have evaluated our proposal by implementing a
multi-level constraint language in XCore and applying it to a multi-level model
based on products and product-types.

We have claimed that type-level should be as prominent as inheritance in
modelling languages as a basis for supporting abstraction, and have shown a
novel mechanism that supports it. There is work still to be done, for example
just like there are multiple approaches to inheritance, there are different ways of
implementing MLM and therefore MOCL. Adding multiple type-levels increases
the complexity of a language and there is a need for tools to support the use of
these techniques. Unlike inheritance, MLM implies a potential change in imple-
mentation technology (for example requiring that types exist at run-time) which
can come with a cost that may be undesirable.

References

1. Atkinson, C., Gutheil, M., Kennel, B.: A flexible infrastructure for multilevel
language engineering. IEEE Trans. Software Eng. 35(6), 742–755 (2009), http:

//dblp.uni-trier.de/db/journals/tse/tse35.html#AtkinsonGK09

2. Atkinson, C., Kühne, T.: The essense of multilevel metamodeling. In: Gorgolla,
M., Kobryn, C. (eds.) UML 2001 - The Unified Modeling Language. Modeling
Languages, Concepts, and Tools, Lecture Notes in Computer Science, vol. 2185,
pp. 19–33. Springer, Berlin and London, New York (2001)

3. Balaban, M., Khitron, I., Kifer, M.: Multilevel modeling and reasoning with foml.
In: Software Science, Technology and Engineering (SWSTE), 2016 IEEE Interna-
tional Conference on. pp. 61–70. IEEE (2016)

4. Bunge, M.: Treatise on Basic Philosophy: Volume 3: Ontology I: The Furniture of
the World. Reidel, Dordrecht (1977)

5. Carvalho, V.A., Almeida, J.P.A.: Toward a well-founded theory for multi-level
conceptual modeling. Software & Systems Modeling 17(1), 205–231 (2018)

6. Clark, T., Sammut, P., Willans, J.S.: Applied metamodelling: A foundation for
language driven development (third edition). CoRR abs/1505.00149 (2015), http:
//arxiv.org/abs/1505.00149

7. Clark, T., Sammut, P., Willans, J.S.: Super-languages: Developing languages and
applications with XMF (second edition). CoRR abs/1506.03363 (2015), http://
arxiv.org/abs/1506.03363

8. Clark, T., Willans, J.: Software language engineering with xmf and xmodeler. In:
Computational Linguistics: Concepts, Methodologies, Tools, and Applications, pp.
866–896. IGI Global (2014)

9. Doan, K.H., Gogolla, M.: Extending a uml and ocl tool for meta-modeling: Appli-
cations towards model quality assessment. Modellierung 2018 (2018)

10. Jeusfeld, M.A.: Metamodeling and method engineering with conceptbase. In:
Jeusfeld, M.A., Jarke, M., Mylopoulos, J. (eds.) Metamodeling for Method En-
gineering, pp. 89–168. MIT Press, Cambridge (2009)

11. Kühne, T., Schreiber, D.: Can programming be liberated from the two-
level style: multi-level programming with deepjava. In: Gabriel, R.P., Ba-
con, D.F., Lopes, C.V., Steele, G.L. (eds.) Proceedings of the 22nd annual
ACM SIGPLAN conference on Object-oriented programming systems and ap-
plications (OOPSLA ’07). ACM SIGPLAN notices, vol. 42,10, pp. 229–244.
ACM Press, New York (2007), http://atlas.tk.informatik.tu-darmstadt.de/
Publications/2007/p229-kuehne.pdf

12. Neumayr, B., Grün, K., Schrefl, M.: Multi-level domain modeling with m-objects
and m-relationships. In: Kirchberg, M., Link, S. (eds.) Conceptual Modelling
2009. pp. 107–116. Australian Computer Society (2009), http://crpit.com/

confpapers/CRPITV96Neumayr.pdf

13. Rossini, A., Lara, J., Guerra, E., Rutle, A., Wolter, U.: A formalisation of deep
metamodelling. Form. Asp. Comput. 26(6), 1115–1152 (2014)

