
Introducing the Active Map operation to unify
and improve efficiency of active operations

Frédéric Jouault and Fabien Chhel

ERIS, ESEO-TECH, Angers, France
{firtname.lastname}@eseo.fr

Abstract. The active operations approach enables incremental evalu-
ation of OCL-like expressions, and can also be used to implement in-
cremental model transformation. Each active operation corresponds to
a basic building block such as select, or collect, and encapsulates both
its initial computation algorithm as well as its change propagation algo-
rithms. Complex operations such as groupBy can generally be expressed
using simpler operations such as select and collect, but have better per-
formance with an efficient map data structure (e.g., a HashMap) as in-
ternal state. However, implementing new algorithms for each new kind
of complex active operation is costly and error prone. In this paper, we
introduce the Active Map active operation that can be used as a basis
to express several complex operations, such as groupBy, without spe-
cific propagation algorithms. Several complex operations are shown to
be expressible in terms of the Active Map operation without sacrificing
scalability when compared to ad-hoc implementations.

1 Introduction

Incremental evaluation of OCL-like expressions, including in the context of model
transformation, has many potential applications. It can for instance be used to
improve the performance of querying or transforming rapidly changing models.
Another usage scenario is to update existing target models in-place to make sure
other connected elements (e.g., diagrammatic views) are updated automatically.
In order to address this need for incremental evaluation, active operations [1]
provide a conceptual approach for incremental evaluation of OCL-like expres-
sions [7]. All mutable values are wrapped in boxes, which may be either single-
tons: options that may be empty (then equivalent to null), or ones that may
never be empty; or collections. Each active operation basically corresponds to an
OCL operation like size, collect, or select. Active operations are not only
able to compute result boxes from source boxes (like most OCL implementa-
tions), but they are also able to propagate changes occurring on either side to
the other. When a change occurs, the source and target boxes are temporarily
inconsistent, and it is the role of the active operation to restore consistency by
propagating the change.

The Active Operations Framework (AOF) [8] provides an implementation of
this approach. One of the main difficulty in implementing a framework like AOF

is to handle the many existing operations from the OCL standard library [10],
for all the types of boxes (two singletons, plus the four OCL collection types)
with algorithms for all possible kinds of changes (element addition, removal,
replacement, and move). In order to alleviate this difficulty, several choices have
been made. All kinds of boxes share as much code as possible, and each operation
supports all kinds of boxes. Moreover, not all OCL standard library operations
are implemented as specific operations. Many operations are expressed in terms
of a limited set of basic operations.

However, when scalability becomes an issue, some specific operations require
ad-hoc implementations. This was notably observed in [8] for two operations:
groupBy and selectBy. These are not standard OCL operations, but they can
be expressed using standard OCL operations. However, such implementations
are not scalable, which made it necessary to implement optimized groupBy and
selectBy operations, each using a HashMap as internal state.

All such specific operations cannot be integrated in a framework like AOF,
otherwise its complexity would increase, at the risk of becoming unmaintain-
able. It would therefore be useful to define a single active operation using which
operations like groupBy, and selectBy can be expressed without sacrificing scal-
ability.

This paper presents such an operation called Active Map. This operation also
wraps a HashMap, but provides general-purpose access to multiple changeable
views, which makes it possible to express groupBy, and selectBy with it.

The Active Map operation makes it possible to express several other opera-
tions, while preserving scalability properties. It thus enables the unification of
multiple operations relying on HashMaps to ensure scalability, and makes it easier
for developers to create new scalable operations.

The remainder of the paper is organized as follows. Section 2 details the
tackled problem, and gives a motivating example. The Active Map operation is
defined in Section 3, and its API is presented in Section 4. Section 5 presents
several applications of the Active Map operation. Finally, some related work are
discussed in Section 6, and Section 7 gives some concluding remarks.

2 Problem statement

This section states the problem in more details by starting with some context
on operation reuse (Section 2.1) before explaining why preserving efficiency and
scalability is not trivial (Section 2.2). Finally, Section 2.3 presents a motivating
example.

2.1 Reusing operations

When writing OCL code, developers use the set of operations (including iterator
expressions such as collect, and select) provided in the OCL standard library
to write their own expressions, or even create their own operations (e.g., using
the def keyword). Having such a rich standard library makes the developers’ job

easier: they do not need to implement the same basic algorithms constantly. How-
ever, for OCL implementors, the richer the standard library, the more costly its
implementation is. This is even more the case for incremental implementations:
in addition to designing and implementing algorithms for specific computations,
algorithms for change propagation are also required for each possible kind of
change: adding, removing, replacing, and moving elements. Moreover, these spe-
cific algorithms also need to be tested. Non-incremental implementations must
be tested for each corner case of their computation, but incremental implemen-
tations must also be tested for each propagation corner case for each possible
kind of change. Then there is also maintenance cost.

Fortunately, many OCL operations can actually be expressed in terms of
other operations, which is notably done in the OCL specification [10, Section
11.9, pp. 177–183] to define iterator expressions. For instance, reject is de-
fined in terms of select, while exists and most others are defined in terms
of iterate. But, although not detailed in the specification, most non-iterator
operations can also be expressed in terms of other operations, and some iterator
operations can also be expressed without iterate. We can, for instance, reuse
the syntax used in the OCL specification to define iterator expressions in order
to express notEmpty in terms of size, includes, and exists in terms of select,
and notEmpty, as well as express count in terms of select and size, as shown
in Listing 1.1.

Listing 1.1. notEmpty, includes, exists, and count expressed using other operations
1 source−>notEmpty () = source−>size () <> 0
2 source−>includes (o) = source−>select (e | e = o)−>notEmpty ()
3 source−>exists (iterator | body) =
4 source−>select (iterator | body (iterator))−>notEmpty ()
5 source−>count (o) = source−>select (e | e = o)−>size ()

Note that this syntax, although used in the OCL specification, cannot itself
be OCL compliant because OCL has no mechanism to define general lambda
expressions. Adding lambdas to OCL has already been discussed [3,13], but not
done yet. OCL only supports the limited mechanism provided by iterator expres-
sions, and does not provide any mechanism to call lambda expressions. Therefore,
the way iterator and body are expressed at line 3, and the way body is applied
to iterator at line 4 are not OCL compliant. Moreover, it would actually be
possible to express notEmpty, includes, and count, which are not iterator ex-
pressions, in pure OCL syntax, for instance by defining def constraints. However,
we choose here to use the same syntax for all such expressions of one operation
in terms of others for simplification reasons.

There are generally several ways to express one operation in terms of oth-
ers. For instance, exists is defined using iterate in the OCL specification,
whereas we defined it above using select, and notEmpty. Which expression of
an operation in terms of others is the most useful depends on the context.

2.2 Preserving scalability

For incrementality purposes, expressing operations in terms of iterate is not
especially useful. Indeed, iterate is hard to make efficiently incremental because

it computes its result by successively applying its body to both each element
of its source collection as well as the intermediate result it computed for the
previous element. Therefore, a change to any element in its source collection
requires recomputing the iteration for that element as well as all iterations for
the following elements. This typically results in linear change propagation time: a
change on any source element can entail retraversing the whole source collection.

There are consequently two main ways to preserve the scalability of all op-
erations: 1. lots of code, and 2. smart rewriting. Writing specific code for each
operation (i.e., solution 1) results in more efficient code, but high development
costs as mentioned at the beginning of Section 2.1. The second approach con-
sists in implementing a relatively small number of basic operations, and finding
a way to express most others in terms of the basic ones while preserving compu-
tational complexity. This second approach has a certain overhead, but as long as
computational complexity is kept as low as possible, scalability is not threatened.

Let us, for instance, consider the operations defined in Listing 1.1: notEmpty,
includes, exists, and count. They are all directly or indirectly expressed in
terms of size, which has trivial constant time propagation algorithms if it main-
tains the current size in a variable. This is true even if its source collection is a
linked list, for which length computation requires linear time1. The current size
variable can be incremented when an element is added to the source collection,
or decremented when an element is removed from the source collection. Replac-
ing, or moving elements has no impact on the size. notEmpty also has constant
change propagation time when expressed in terms of size because the only other
operation involved is comparing a scalar value (i.e., the result of size) to 0.

includes, exists, and count all require linear initial computation time be-
cause they need to traverse their source collections at least once. Expressing
them in terms of select does not increase complexity since select can also be
implemented with a linear initial computation time. Because size and notEmpty

both have constant time propagation algorithms, includes, exists, and count

can also have constant time propagation algorithms if select has constant time
propagation algorithms. As a matter of fact this is the case if select does not
need to preserve order, which is true here (only size of result is used):

– Adding an element to its source results in adding it to its target if its body
evaluates to true for that element.

– Removing an element from its source results in removing it from its target
if its body evaluates to true for that element.

– Replacing an old element by a new one in its source can be treated as
removing the old one, then adding the new one.

– Moving an element in its source has no influence on its target, because
order does not need to be preserved.

Other expressions of these operations would not necessarily have constant change
propagation time but may rather have linear change propagation time. This is
notably the case when expressing exists in terms of iterate.

1 This is an example application of the classical time-memory trade-off: it is often
possible to get a lower change propagation complexity by storing specific data.

At this point, several interesting questions can be asked: (1) What is the
best change propagation complexity achievable for each OCL standard library
operation? (2) Is there a minimal set of operations from which all other OCL
standard library operations can be expressed while preserving scalability? (3) If
so, what is this minimal set? (4) What is the time-memory complexity trade-off
for each operation? However, they are all beyond the scope of the present paper.
The problem tackled in this paper is to define an operation that can be reused
to express operations that so far only have specific implementations relying on
HashMaps, such as: groupBy, and selectBy. These operations are not in the
OCL standard but were introduced in [8] in order to ensure scalability of the
AOF implementation of the VIATRA CPS benchmark [6]. As mentioned in [8],
these operations do not need to be made available to users. Instead, they can be
used internally by an execution engine, which could detect patterns correspond-
ing to their semantics and rewrite user-specified expressions in terms of these
more efficient implementations. However, we place ourselves in the position of
an implementor who must define all necessary optimized operations.

2.3 Motivating example: groupBy

The previous sections presented the problem of reusing operations while preserv-
ing scalability, and concluded by focusing on the problem of finding a reusable
operation for cases where a HashMap is necessary to achieve scalability. One
such case presented itself (see [8]) while implementing the VIATRA CPS bench-
mark [6]: computing the trace model requires performing a groupBy operation.
This operation is well-known in database query languages such as SQL, but is
not provided by the OCL standard library.

Listing 1.2 gives a definition of this groupBy operation in terms of collect,
asSet, and collect. groupBy is defined as a custom iterator expression taking
a body that returns the keys by which the elements of its source collection must
by grouped. The Set of keys is first computed by collecting the results of calling
groupBy’s body over its source collection, and then converting it into a Set using
the asSet operation. In a second time, a tuple is constructed for each unique
key by collecting over this Set of keys. The left part of the tuple is set to the
key, while its right part is set to the collection of elements having that key. This
right part is computed using a select nested inside the collect. Because of
this nesting of “loops”, a naive implementation therefore has quadratic computa-
tion time. Moreover, even if a version of select with constant propagation time
is used, there is one call to select per key. This results in linear propagation
time when an element is added to or removed from the source collection, as well
as when the key of an element changes. Depending upon its implementation, the
asSet operation may also have linear propagation time.

Listing 1.2. Possible implementation of GroupBy in OCL
1 source−>groupBy (iterator | body) =
2 l e t keys : Set (OclAny) =
3 source−>collect (iterator | body (iterator))−>asSet () in
4 keys−>collect (key |

5 Tuple { left = key , right =
6 source−>select (iterator | body (iterator) = key)}
7)

The implemented solution proposed in [8] consists in developing a specific ad-
hoc groupBy operation, which uses a HashMap internal state in order to achieve
linear computation time, and constant change propagation time. Having to de-
velop and maintain such a specific operation would not be such an issue if it was
one of its kind. However, a second operation called selectBy (described in [8]
as well) also had to be developed around a HashMap in order to preserve scala-
bility of the same model transformation. This situation triggered the search for
a more general operation in terms of which both groupBy, and selectBy could
be expressed without sacrificing scalability.

3 Active Map definition

The previous section has motivated the need for a reusable operation able to
wrap a HashMap in such a way that other operations requiring HashMaps to ensure
their scalability can be expressed using it. This section defines such an operation,
which we call Active Map. Section 3.1 defines the Active Map operation in terms
of the views it keeps synchronized, and Section 3.2 extends this definition to
support multiple values per key.

3.1 Synchronized views

The Active Map operation is inspired by the Map (or associative array) data type
found in many programming languages, notably Java in which AOF is imple-
mented. In Java, a Map (as defined in interface java.util.Map) provides three
collection views2: a set of keys accessible via the keySet method, a collection of
values accessible via the values method, as well as a set of key-value mappings
accessible via the entries method. When a Java Map is changed, its collection
views are also updated. However, they are neither observable nor changeable
from without the Map itself. As can be seen on Figure 1, the Active Map op-
eration also provides these views, called after the corresponding Java methods.
The central ellipse represents the Active Map operation, while the rectangles
denote boxes. The two-ended arrows link the Active Map operation to the boxes
it keeps synchronized.

Figure 1 also shows that there are two other boxes in addition to the three
collection views. They both also correspond to the Java methods with the same
names, but where the Java methods only return plain objects, they are also
boxes for the Active Map operation. The reason is that they may be changed
externally, or be made to change by the Active Map operation when propagating
a change that occurred on one of its other boxes. These additional boxes are:
size that contains a single integer whose value is the size of the Active Map,

2 As specified in the Javadoc documentation: https://docs.oracle.com/javase/8/
docs/api/java/util/Map.html.

https://docs.oracle.com/javase/8/docs/api/java/util/Map.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html

and isEmpty that contains a single boolean whose value is true if and only if the
Active Map is empty.

Finally, each of the two “3D” boxes shown at the bottom of Figure 1 cor-
responds to a set of boxes. They correspond to Java methods that take a key
as argument: get(key) that contains the single value associated to the key, and
containsKey(key) that contains a single boolean indicating whether the Active
Map has a mapping for that key. Each set contains one box per possible key.

An Active Map is consistent if all its boxes have the values a non-active Map

would have. The purpose of the Active Map operation is to restore consistency
upon changes: whenever a change occurs on any of its boxes3, it must update
the other boxes so that it is again consistent.

entries

ActiveMap

keySet values size isEmpty

get(key) containsKey(key)

Fig. 1. Active Map views

Remark: calling the Active Map an operation may seem counter-intuitive
to the reader. A Map is generally considered to be a data type, and a HashMap

to be a data structure implementing such a data type (among other possible
implementations). We could arguably have considered it a map box, or defined
it as a new kind of active data structure. The choice of calling it an operation
may be controversial, but is based on the following consideration. Each active
operation keeps a set of boxes synchronized. This set often has a fixed size of
2, and simply consists of a source and target boxes. This is notably the case for
collect, and select, which each have a source collection, and a result collection.
An Active Map also keeps a set of boxes synchronized, even if this set does not
have a fixed size (there may be any number of get and containsKey boxes). This
shared characteristic of keeping a set of boxes synchronized is why we call the
Active Map an operation.

3.2 Extension to Multimap

A Multimap is the generalization of a Map to the case where multiple values
may be associated to each key. There are several Multimap implementations for

3 Conceptually, the Active Map operation maintains synchronization upon changes
occurring on any of its boxes, and is thus multidirectional. This makes it quite
versatile. However, depending on how a given Active Map operation is created, some
of its boxes may be read-only, but this is implementation-dependent.

Java4, but none is provided in the standard library. It is similar to a Map with
collections as values, but is designed to hide its implementation. For instance,
it is possible to add new entries without having to write the code that creates
collections for new keys. One of the most notable differences when compared to a
Map is that the get(key) method of a Multimap returns a collection view instead
of a single plain object. As a matter of fact the Active Map operation as defined
in the previous section already has get(key) boxes. Extending the Active Map
operation to handle multiple values per keys is therefore mostly a matter of
allowing multiple objects in the get(key) boxes. We therefore chose to extend
the Active Map operation instead of defining a separate Active Multimap.

Figure 2 shows the boxes kept synchronized by the Active Map operation ex-
tended to Multimap. The extended Active Map provides two additional boxes:
groupedEntries that contains a set of key-collection of values mappings, and
keys that contains the list of all keys, including duplicates when a key is asso-
ciated to multiple values. Depending on whether the boxes used as get(key)

boxes are singletons, or collections, the extended Active Map behaves respec-
tively either as a Map, or as a Multimap. When it behaves as a Map, keys and
keySet contain the same set of keys, and the value part of the groupedEntries

mappings are all collections with a single element.

An Active Map extended to Multimap, which we will simply call an Active
Map from now on, is consistent if all its boxes have the values a non-active
Multimap would have. The purpose of the extended Active Map operation can
be summarized in the the same way as its non-extended version was: whenever
a change occurs on any of its boxes, it must update the other boxes so that it is
again consistent.

entries

ActiveMap

groupedEntries keys keySet values size isEmpty

get(key) containsKey(key)

Fig. 2. Views of the Active Map operation extended to Multimap

4 Guava notably provides a Multimap class: https://google.github.io/guava/

releases/23.0/api/docs/com/google/common/collect/Multimap.html, as does
Eclipse Collections: https://www.eclipse.org/collections/javadoc/9.2.0/org/
eclipse/collections/api/multimap/Multimap.html.

https://google.github.io/guava/releases/23.0/api/docs/com/google/common/collect/Multimap.html
https://google.github.io/guava/releases/23.0/api/docs/com/google/common/collect/Multimap.html
https://www.eclipse.org/collections/javadoc/9.2.0/org/eclipse/collections/api/multimap/Multimap.html
https://www.eclipse.org/collections/javadoc/9.2.0/org/eclipse/collections/api/multimap/Multimap.html

4 Active Map API

The two previous sections defined the Active Map operation in terms of the
boxes it keeps synchronized, and in terms of how it should behave. This section
presents its API: how its boxes can be retrieved (Section 4.1), and how Active
Maps can be created (Section 4.2).

4.1 Accessing boxes

Figure 3 gives an overview of the Active Map API in the form of a class diagram.
The Box interface represents all mutable values by wrapping them, and is generic
over the type of these values. It notably provides all pre-existing operations such
as collect and select, but they are not all detailed here. Note that type
λ < E,R > denotes the type of anonymous functions (also known as lambda
expressions or closures) taking an E as argument, and returning an R. Non-
OCL operations such as zip, or zipWith (not shown on Figure 3), borrowed
from functional languages like Haskell, and already discussed in [7,8,9], are also
defined. The zip operation requires the definition of a Pair, which has a left, and
right parts, over which types it is generic. This is similar to an OCL tuple, but
is represented explicitly here to improve readability of the diagram. zip returns
a BoxOfPairs, which is a specialization of Box to the case where its elements are
Pairs, as denoted by the E → Pair < K, V > template binding. Finally, Box is
extended with specific operations to create Active Maps.

The ActiveMap interface represents Active Maps, and is generic over the
type of their keys (K), and values (V). It provides one zero-argument operation
for each Active Map box: entries, groupedEntries, keys, keySet, values,
size, and isEmpty, as well as one single-argument operation for each set of
boxes: get(key), and containsKey(key). Note that they are no operation to
get the get(key), and containsKey(key) boxes from mutable keys. They could
be integrated to the API, but they are not strictly necessary because they can
be expressed using collect. For instance, a getMutable method taking a box
of keys as argument can be defined in the following way by leveraging the fact
that collect can not only propagate changes occurring in its source collection
but also in the boxes its body returns:

1 sourceMap−>getMutable (key : Box<K>) = key−>collect (e | sourceMap−>get (key))

Note also that getting the box corresponding to a non-existing mapping (i.e.,
when containsKey(key) is false) is allowed. Such a box will be empty, but may
be populated later when changes occur. These empty boxes do not show up in
groupedEntries(key), and their existence does not impact any other box until
they are populated. This mechanism is useful to be able to use the Active Map
operation in more situations. Guava’s Multimap behaves similarly.

4.2 Creating Active Maps

There are multiple ways to create an Active Map depending on which one of
its boxes is initially available. The corresponding operations are provided by

interface Box, and its specializations BoxOfPairs, and BoxOfMutablePairs. The
latter specializes Box to the case where its elements are Pairs with a mutable
(and therefore wrapped in a box) right part, as denoted by the E → Pair <
K,Box < V >> template binding.

An Active Map can be created from a box of keys. If one wants a simple
Map, not a Multimap, one either uses the keysToMap, or keysToMapM opera-
tions that both take a lambda expression specifying how to compute a value
from a key. keysToMapM allows the key corresponding to a value to change
(e.g., because it is a changeable property of a model element), whereas with
keysToMap a given value always has the same key. If one wants a Multimap,
one uses keysToMultimapM which is similar, but with a lambda that always re-
turns a collection box. Because it always returns a box, their is no “immutable”
keysToMultimap operation.

An Active Map may also be created from a box of values, given a lambda
to compute the corresponding immutable keys (one per value) or mutable keys
(possibly several per value). Operations valuesToMultimap, and valuesToMul-

timapM perform these roles.

An Active Map can also be created from a box of pairs representing its
entries. The entriesToMap, and entriesToMultimap operations perform these
roles depending on whether one respectively wants a Map, or a Multimap. In the
first case, there should not be multiple pairs with the same key as left part,
otherwise a runtime error will occur.

Finally, an Active Map can also be created from a box of “mutable” pairs,
each with an immutable key, and a mutable value. There are two overloaded
operations named groupedEntriesToMultimap for this purpose. The second one
takes a lambda as argument that computes keys from values. This makes it
possible to have a changeable values box.

Remarks: other ways to create Active Maps exist, but we focused on the
ones we found useful in practice. Upon creation, an Active Map starts observing
the box from which it is created in order to propagate changes to all its views.
Which boxes are changeable or not depending on how the Active Map operation
is created cannot be discussed here systematically for space reasons. A rule of
thumb is: if there is enough information to properly propagate a change occurring
on a box to the other boxes, then it is changeable, otherwise changing it results
in a runtime error. Active Maps observe all their changeable views.

5 Using Active Maps

The two previous sections defined the Active Map operation and its API. This
section shows how it can be used to express various other operations, while
preserving scalability. Like in Section 2.1, the syntax used in this section is
similar to the one used in the OCL specification [10, Section 11.9, pp. 177–183]
with some extensions.

Pair
L,R

left : L
right : R

Box
E

collect<R>(λ<E, R> body) : Box<R>
select(λ<E, Boolean> body) : Box<E>
. . .
zip<R>(right : Box<R>) : BoxOfPairs<E, R>
. . .
keysToMap<V>(λ<E, V> computeValues) : ActiveMap<E, V>
keysToMapM<V>(λ<E, Singleton<V>> computeValues) : ActiveMap<E, V>
keysToMultimapM<V>(λ<K, Box<V>> computeValues) : ActiveMap<E, V>
valuesToMultimap<K>(λ<E, K> computeKeys) : ActiveMap<K, E>
valuesToMultimapM<K>(λ<V, Box<K>> computeKeys) : ActiveMap<K, V>

BoxOfPairs
K, V

entriesToMap() : ActiveMap<K, V>
entriesToMultimap() : ActiveMap<K, V>

BoxOfPairsWithMutableRight
K, V

groupedEntriesToMultimap() : ActiveMap<K, V>
groupedEntriesToMultimap(λ<V, K> computeKeys) : ActiveMap<K, V>

ActiveMap
K, V

entries() : BoxOfPairs<K, V>
groupedEntries() : BoxOfPairsWithMutableRight<K, V>
keys() : Box<K>
keySet() : Box<K>
values() : Box<V>
size() : One<Integer>
isEmpty() : One<Boolean>
get(K key) : Box<V>
containsKey(K k) : One<Boolean>

«bind» <E -> Pair<K, V>> «bind» <E -> Pair<K, Box<V>>>

Fig. 3. Active Map API

5.1 groupBy

The first operation we consider is the one given as motivating example in Sec-
tion 2.3. The initial expression of groupBy given in Listing 1.2 used collect,
asSet, and select. It had quadratic computation time, and linear propagation
time. The new expression of groupBy in terms of the Active Map operation is
given below for an immutable body (i.e., always the same grouping key for a
given value):

1 source−>groupBy (iterator | body) =
2 source−>valuesToMultimap (iterator | body (iterator)) . groupedEntries ()

Supporting a mutable body (i.e., a body expression returning a mutable value) is
simply a matter of switching from valuesToMultimap to valuesToMultimapM:

1 source−>groupByM (iterator | body) =
2 source−>valuesToMultimapM (iterator | body (iterator)) . groupedEntries ()

Both versions define a Multimap with the source collection as values, and the
groupBy body as key computation lambda argument. The grouped entries of the
Multimap are then returned, resulting in a collection of pairs with each one’s left
part equal to a key, and its right part equal to a collection box of all associated
values. There is a slight typing difference between these expressions of groupBy
and the one given earlier in Listing 1.2: we had tuples, and we now have Pairs.
However, this is mostly a cosmetic issue due to the fact that we decided to add
an explicit Pair interface to the API class diagram in Figure 3. There is no
fundamental difference, and a concrete implementation can be made to return
the same kind of tuples in all cases. Remark: the mutable version also supports

grouping a given value with multiple keys if its body returns a collection box
instead of a singleton box.

5.2 selectBy

The second operation we consider is selectBy, defined in [8] to be:

1 source−>selectBy (searchedKey , iterator | body) =
2 source−>select (iterator | body (e) = searchedKey)

Note that selectBy requires two arguments: the key to search (searchedKey),
and a lambda expression to compute keys from values. No standard OCL op-
eration has such a signature, but this should not prevent us from defining one:
it may not even be made available to users if the execution engine automati-
cally optimizes a standard select used according to the above pattern into a
selectBy. If searchedKey changes, propagation requires retraversing the whole
source collection. Moreover, as noted in [8], this version requires a significant
amount of memory due to the fact that each comparison results in a mutable
boolean. A more scalable version expressed using the Active Map operation is
the following:

1 source−>selectBy (searchedKey , iterator | body) =
2 source−>valuesToMultimap (iterator | body (iterator)) . get (searchedKey)

Multiple variants exist. Firstly, if the body is mutable, then valuesToMultimapM

can be used instead of valuesToMultimap. Secondly, if searchedKey is a mutable
value, then getMutable can be used instead of get. All versions based on the
Active Map operation have linear computation time, constant propagation time,
and use less memory than the original expression.

5.3 Previous and next elements from OrderedSet

Another application example consists in finding the previous or next element in
an OrderedSet. These can both be expressed using iterate, or zip plus select
(expressions not detailed here), but is easier to express, and more scalable using
an ActiveMap. We can compute an Active Map for the previous elements using
the following expression:

1 source−>prevMap () =
2 source−>zip (source−>prepend (null))−>entriesToMap ()

Each element is paired with its previous one by zip thanks to the prepend of
null perform on the right box. Given an element a of the source OrderedSet,
getting its previous element consists in calling get(a) on the result of prevMap.

Similarly, we can compute an Active Map for the next elements using the
following expression:

1 source−>nextMap () =
2 source−>prepend (null)−>zip (source)−>entriesToMap ()

Remark: both prevMap, and nextMap rely on a zip. For them to work cor-
rectly, the change alignment problem discussed in [9] must have been solved.

6 Related work

There are two main categories of related work: those related to integrating Maps
into OCL, and those about incremental computations. Regarding the first cate-
gory, QVT [11] defines a Dict mutable data structure that behaves like a muta-
ble Map. Immutable Maps are supported in ATL, and Eclipse OCL5. Integrating
such Maps into the OCL standard has notably been proposed a few years ago [13,
slide 23]. However, none of these works consider incremental evaluation of Maps,
which are always considered as some kind of data structure, and none consider
Multimaps. Moreover, immutable Maps may not actually be much more efficient
than other structures like collections of pairs. Finally, factory operations like
those described in Section 4.2 are generally not available.

Regarding the second category of related work about incremental computa-
tions, IncQuery and VIATRA [12] are based on an entirely different incremental
approach built around the Rete [4] algorithm. A subset of OCL can be trans-
lated to the kind of graph patterns used by IncQuery and VIATRA [2], but
active operations are able to support OCL more extensively. Although it does
not necessarily make sense to compare the Active Map operation to Rete, one can
observe that in [8], both VIATRA and AOF (with ad-hoc groupBy and selectBy

that should scale like the Active Map operation) were shown to scale similarly.
Therefore, there is probably already in VIATRA a mechanism playing some of
the roles that an Active Map operation can play. Finally, works in databases on
the view update problem (e.g., [5]) do support incremental groupBy computa-
tion. However it does not seem that these works have defined a more general
operation similar to the Active Map operation.

7 Conclusion

This paper has presented a new versatile active operation called Active Map.
It keeps multiple boxes synchronized in a scalable way thanks to the HashMap

it wraps. Specific operations such as groupBy can therefore be expressed in
terms of it without sacrificing scalability, thus reducing the need for ad-hoc
implementations.

Several aspects of the Active Map operation have not been discussed in the
present paper for space reasons. Possible extensions of this work therefore in-
clude developing these aspects. For instance, this paper is limited to discussing
time complexity without proofs. It may be possible to write such proofs, or at
least to benchmark various implementations of operations such as groupBy with
and without relying on the Active Map operation. Other notable aspects that
would benefit from being examined include memory complexity, different kinds
of Multimaps (depending on the type of get(key) boxes such as Sequence, or
Set), order preservation, and further unification by expressing more operations

5 https://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.ocl.doc%

2Fhelp%2FMap.html

https://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.ocl.doc%2Fhelp%2FMap.html
https://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.ocl.doc%2Fhelp%2FMap.html

in terms of the Active Map operation. Finally, multiple open questions have been
asked in Section 2.2. Looking for answers should prove useful.

References

1. Beaudoux, O., Blouin, A., Barais, O., Jézéquel, J.: Active Operations on Collec-
tions. In: Model Driven Engineering Languages and Systems - 13th International
Conference, MODELS 2010, Oslo, Norway, October 3-8, 2010, Proceedings, Part
I. Lecture Notes in Computer Science, vol. 6394, pp. 91–105. Springer (2010)

2. Bergmann, G.: Translating OCL to Graph Patterns. In: Dingel, J., Schulte, W.,
Ramos, I., Abrahão, S., Insfran, E. (eds.) Model-Driven Engineering Languages and
Systems: 17th International Conference, MODELS 2014, Valencia, Spain, Septem-
ber 28 – October 3, 2014. Proceedings. pp. 670–686. Springer International Pub-
lishing, Cham (2014)

3. Brucker, A.D., Clark, T., Dania, C., Georg, G., Gogolla, M., Jouault, F., Teniente,
E., Wolff, B.: Panel discussion: Proposals for improving OCL. In: Proceedings of
the 14th International Workshop on OCL and Textual Modelling. CEUR Workshop
Proceedings, vol. 1285, pp. 83–99 (2014)

4. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence 19(1), 17 – 37 (1982)

5. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining views incrementally.
ACM SIGMOD Record 22(2), 157–166 (1993)

6. IncQuery Labs Ltd.: VIATRA CPS Benchmark: Performance benchmark
using the VIATRA CPS demonstrator, https://github.com/viatra/

viatra-cps-benchmark

7. Jouault, F., Beaudoux, O.: On the Use of Active Operations for Incremental Bidi-
rectional Evaluation of OCL. In: Proceedings of the 15th International Workshop
on OCL and Textual Modeling. CEUR Workshop Proceedings, vol. 1512, pp. 35–
45. Ottawa, Canada (Sep 2015)

8. Jouault, F., Beaudoux, O.: Efficient OCL-based Incremental Transformations. In:
Proceedings of the 16th International Workshop in OCL and Textual Modeling.
CEUR Workshop Proceedings, vol. 1756, pp. 121–136. Saint-Malo, France (Oct
2016)

9. Jouault, F., Beaudoux, O., Brun, M., Chhel, F., Clavreul, M.: Improving Incre-
mental and Bidirectional Evaluation with an Explicit Propagation Graph. In: Seidl,
M., Zschaler, S. (eds.) Software Technologies: Applications and Foundations. pp.
302–316. Springer International Publishing, Cham (2018)

10. Object Management Group (OMG): Object Constraint Language (OCL), v2.4.
http://www.omg.org/spec/OCL/2.4/ (Feb 2014)

11. Object Management Group (OMG): Meta Object Facility (MOF) 2.0
Query/View/Transformation, v1.3. http://www.omg.org/spec/QVT/1.3/ (Jun
2016)

12. Varró, D., Bergmann, G., Hegedüs, Á., Horváth, Á., Ráth, I., Ujhelyi, Z.: Road
to a reactive and incremental model transformation platform: three generations of
the VIATRA framework. Software & Systems Modeling 15(3), 609–629 (2016)

13. Willink, E.: OCL 2.5 Plans. Presentation given at the 14th International Workshop
on OCL and Textual Modelling (2014), http://software.imdea.org/OCL2014/

slides/OCL25Plans

https://github.com/viatra/viatra-cps-benchmark
https://github.com/viatra/viatra-cps-benchmark
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/QVT/1.3/
http://software.imdea.org/OCL2014/slides/OCL25Plans
http://software.imdea.org/OCL2014/slides/OCL25Plans

	Introducing the Active Map operation to unify and improve efficiency of active operations

