
Using process algebra to statically analyze
incremental propagation graphs

Théo Le Calvar12, Fabien Chhel2, Frédéric Jouault2, and Frédéric Saubion1

1 LERIA, Université d’Angers, France
{firstname.lastname}@univ-angers.fr
2 ERIS, ESEO-TECH, Angers, France

{firstname.lastname}@eseo.fr

Abstract. Active Operations are a set of operations that can be com-
posed to build incremental bidirectional OCL-like expressions on collec-
tions. Each operation is capable of updating its result (resp. source) when
a change occurs on its source (resp. result). The current implementation
of active operations relies on the Observer design pattern to propagate
changes from each operation to its successors. These relations form an im-
plicit directed acyclic propagation graph. Previous work showed that this
approach is limited and alignment issues appear in some situations. Sev-
eral workarounds were proposed to mitigate these issues. In this work we
present a new relational notation to describe propagation graphs. Along
with this notation, we also present a new static analysis method of the
propagation graph based on process algebra. This new method enables
optimizations of the propagation graph not achievable with previous ap-
proaches, such as detection of parallelizable sections of the propagation
graph or cache optimizations in specific situations.

1 Introduction

In Model-Driven Engineering (MDE) [10], model transformation is used to bridge
the gap between design and implementation by providing tools to express links
between different models. These models are typically subject to constant changes,
in particular due to requirements changes. In this case, dependent models must
be updated appropriately. When considering small and numerous changes, the
execution of the whole transformation process is costly. Therefore, it is important
to be able to focus only on the elements of the models that have been changed,
which is usually referred to as incremental transformation.

The incremental evaluation of transformations has many advantages since
it reduces the amount of computation required to obtain a new target model,
after a developer has updated a source model, or even the reverse case. The
main purpose is then to devise more responsive systems for the model designer.
Another purpose is to avoid creating new target elements, but rather to update
existing ones, which may be connected to other kinds of objects (e.g., view
objects). Creating new elements would break such connections. For instance,

an incremental execution can be used to update target models in-place and to
update the target model’s visual representation automatically.

Active operations [5,1] have been defined to ensure incremental model trans-
formations, considering even bidirectional transformation processes when rele-
vant. In the present work, we will only consider forward change propagation. In
active operations, mutable values from the models (i.e., values that can change)
are wrapped into observable boxes. Operations can then be applied to these
boxes in order to compute initial values and also to propagate changes. Each op-
eration ensures the change of its result boxes when changes occur on its source
boxes. These operations can be combined in order to achieve complex transfor-
mations. They thus form a directed acyclic propagation graph3 that connects
source boxes to target boxes via active operations and intermediate boxes [7].
Active operations have been used for incremental OCL (Object Constraint Lan-
guage) evaluation in the Active Operations Framework (AOF), which has been
shown to scale to relatively large models [6]. However, in AOF operations ob-
serve their source boxes in order to be notified of changes, resulting in an implicit
propagation graph. We observed in [7] that implicit propagation graphs can lead
to change alignment issues, which can result in invalid propagations, and useless
computations. These problems occur when an operation can be notified sev-
eral times during propagation of a single change. This can notably happen to
operations having several source boxes.

In [7] several approaches have been presented to mitigate these alignments
issues. It has been shown that decoupling propagation graphs from propagation
algorithms allows a better handling of complicated situations (e.g., alignment
issues with zip operation). In this paper, we present a formalization of prop-
agation graphs, as well as a static analysis approach that is based on process
algebra. This leads to more in-depth analysis of the propagation graphs. For
instance it can be used to discover parallelizable parts of the propagation.

The paper is organized as follows. section 2 describes the problems due to
implicit propagation and previously presented approaches. section 3 defines the
main concepts used in our approach. section 4 presents the method used to
build a process algebra formula from a given propagation graph. Then, section 5
presents several possible outcomes of our analysis method. We discuss about
other interesting properties of the approach in section 6 and section 7 provides
some concluding remarks.

2 Context and problem

2.1 Active operations

Active Operations consist of a set of OCL-like operations operating on collections
(e.g., collect, select but also zip and zipWith4). After initialization, each
operation maintains synchronization between its source and its result. If the

3 Called propagation graph in the rest of the paper.
4 Borrowed from functional languages like Haskell.

source is modified, the operation incrementally computes how the result should
be changed to maintain synchronization. By composing these simple operations
in a functional way it is possible to build complex incremental expressions. Active
Operations can operate in both unidirectional and bidirectional mode. In this
work we focus on unidirectional transformations but similar concepts could be
applied to reverse change propagation.

The current implementation of Active Operations relies on the well-known
Observer design pattern. Each value is boxed so that it can be observed. Oper-
ations observe changes on their sources and react whenever an update occurs.
An operation then computes the corresponding target updates and notifies its
successors (i.e., next operations). This process is called Observer-based propa-
gation. Source boxes are boxes that are not computed by operations and thus
that correspond to entry-points of the transformations (i.e., properties of source
model elements).

2.2 Problem statement illustrated on motivating examples

We use a graph to represent the propagation process. Nodes correspond to op-
erations and boxes5. Small black dots correspond to inputs and outputs of op-
erations, which can have several inputs and outputs. Arrows connect outputs of
upstream operations to inputs of downstream operations.

For instance, the graph in Figure 1 corresponds to the following expression,
which is the motivating example from [7]:

def : f (a) =
l e t b = a−>collect (λ1) in
let c = a−>collect (λ2) in
let d = b−>zip (c) in
d

collect(λ1) b

a zip d

collect(λ2) c

Fig. 1: Simple example with alignment issues

5 Boxes can be assimilated to identity operations, which store intermediate results and
forward changes. In complex examples we omit them for clarity.

A more complex example with multiple source boxes is presented in Figure 2,
which corresponds to the following expression:

def : g (a , b) =
l e t v1 = a−>A () in
let v2 = a−>B (b) in
let v3 = v1−>C (v2) in
let v4 = v2−>D () in
let c = v3−>E (v4) in
c

Note that in this example we used dummy operation names (as our approach
only cares about the shape of the graph) and removed intermediate boxes from
the graph representation.

A

a C

B E c

b D

Fig. 2: Another example with alignments issues

In [7], it has been pointed out how the observer-based approach is flawed
when operations with several inputs depend on the same input box, directly or
indirectly. Several possible mitigations have been proposed.

These problems occur when there are several paths between a given source
box and operation. For instance, with a depth-first traversal of the propagation
graph, the expression depicted in Figure 1 would notify the zip operation twice,
which would also notify d twice. In [7] a simple workaround has been proposed
that consists in adding an option to the zip operation so that it can ignore one
of its inputs. This workaround is used in our current implementation of Active
Operations. However, it has proven to be complex to use for users without a
solid understanding of the internal propagation algorithms.

Another possible approach, presented in [7], consists in taking advantage of
an explicit propagation graph. Using an explicit propagation graph, it is possible
to perform a breadth-first propagation instead of a depth-first one. The breadth-
first propagation does not exhibit the same problematic behavior than the depth-
first propagation.

In this paper, we present a new approach also based on an explicit propaga-
tion graph but that uses the process algebra formalism to define valid propaga-
tion ordering.

3 Background and definitions

3.1 Relational model for active operations

Active Operations are operations (such as bind, collect, select, union or
zip) over collections (e.g., singletons, sets or ordered sets). After an initialization
phase, which ensures that the inputs and outputs are in a coherent state, changes
on the inputs are transformed into changes on the outputs so that both stay
coherent. When combined, these operations constitute complex expressions.

For instance, let a = [1, 2, 3] (using the Haskell notation for lists), then the
following expression multiplies each value of a by 2 and then selects the multiples
of 3, h(a) = [6].

def : h (a) =
l e t b = a−>collect (e | e ∗ 2)−>filter (e | (e mod 3) = 0) in

b

Based on these expressions we derive the following relational notation. Let
us consider the following sets:

– O is a set of (active) operations (e.g. collect or filter in h)
– Π is a set of ports that represent inputs and outputs of operations

Given O and Π, a transformation is defined by the following relations :

– Πin ⊆ O ×Π describes the inputs ports of an operation
– Πout ⊆ O ×Π describes the outputs ports of an operation
– L ⊆ Π×Π represents the links between the ports that describe the different

interactions between operations in order to achieve the transformation.

The following conditions are required:

– ∀(p, p′) ∈ L, (∃o ∈ O, (o, p) ∈ Πout)∧ (∃o′ ∈ O, (o′, p′) ∈ Πin) (elements of L
are used to link outputs of an operation with the input of another operation.)

A transformation is a tuple Trans = (O,Πin, Πout, L). However this tuple
alone cannot ensure the transformation is correct. Hence a specification of ex-
isting operations is needed.

3.2 Operation specification

Let us consider Σ = {σ1, σ2, · · · } a set of sorts and a set P = {p1, p2, · · · } of port
variables. Given an operation o ∈ O we consider the two following functions :

– Pin : O → 2(P×Σ)

– Pout : O → 2(P×Σ)

such that Pin(o) (resp. Pout(o)) define the set of sorted input (resp. output)
ports of o.

Back to our zip example, we would have Pin(zip) = {left : l, right : r}
and Pout(zip) = {out : (l, r)}. Let us remark that (1) we denote pairs (p, s) of

the Cartesian product (P ×Σ) as p : s and (2) that such a zip operation should
be formally defined for all relevant sorts s ∈ Σ.

An operation specification is thus a tuple Spec = (O,Pin, Pout, Σ).
We can list other operations such as:

– collect: Pin(collect) = {in : i}, Pout(collect) = {out : o}
– select: Pin(select) = {in : i}, Pout(select) = {out : i}
– concat: Pin(concat) = {in1 : s, in2 : s}, Pout(concat) = {out : s}

This list is not complete but we can generalize operations based on their
arity. Let o1 be an operations with arity 1, it is defined as Pin(o1) = {in : i},
Pout(out : o). For o2 a binary operation we have, Pin(o2) = {in1 : i1, in2 : i2},
Pout(out : o), and so on for arities greater than 2.

Some special operations may have ports named differently for semantic rea-
sons such as zip.

3.3 Validation of a transformation with respect to a specification

Given an operation specification Spec = (O,Pin, Pout, Σ), and a transformation
Trans = (O,Πin, Πout, L), we need to check if Trans is a valid instance with
respect to Spec.

A transformation mapping from Trans to Spec consists in defining the fol-
lowing mappings :

– χports : Πin ∪Πout → Pin ∪ Pout
– χsorts : Πin ∪Πout → Σ

A transformation mapping χTrans,Spec is thus a pair (χports, χsorts).
A transformation mapping is valid if the following conditions are satisfied :

– ∀o ∈ O,∀p ∈ Π, (O, p) ∈ Πin ⇒ χports(p) : χsorts(p) ∈ Pin(o)
– ∀o ∈ O,∀p ∈ Π, (O, p) ∈ Πout ⇒ χports(p) : χsorts(p) ∈ Pout(o)

These conditions just ensure that the input/output specifications of the op-
erations are satisfied.

3.4 Graphical view of relational notation

To ease the visualization of propagation in these expressions we introduce a
graphical notation. It consists of a directed graph, nodes represent operations
and arcs are links betweens them. An incoming (resp. outgoing) arc is an input
(resp. output) parameter of an operation. If an operation has multiple inputs or
outputs, each distinct input/output corresponds to a distinct black dot outside
the operation. Arguments can be named to remove any ambiguity for operations
with multiple inputs or outputs. An operation can have multiple inputs but only
one incoming arrow for each of its input. An operation may have multiple arrows
going out from a single output.

Figure 3 corresponds to the expression shown in subsection 3.1.

a collect(λ1) filter(λ2) b

Fig. 3: Propagation graph corresponding to expression h(a)

The previous formalism allows us to represent an instance of a transformation
that should be clearly related to a set of given specified operations, which have
a specific profile (signature). For instance, a zip operation is represented by the
graph shown in Figure 4. It should be noted that both inputs can have different
types, which induce the type of the result.

zip

left

rig
ht

out

Fig. 4: Graphical representation of the zip operation.

3.5 Process algebra

The foundations of process algebra have been developed by Milner [9] and Hoare
[4]. Process algebra constitutes a framework for reasoning about processes and
data, focusing on processes that are executed concurrently. In particular, process
algebra can be used to formally derive properties of a system specification. A
system is expressed by a process term, using operators. It is then possible to
force actions into communication using input/output relations.

We recall here the basic material related to process algebra that will be useful
in our context (we refer the reader to [3] for more details). In this work, we use
a variant of process algebra called Algebra for Communicating Processes (ACP)
introduced in [2].

– Actions: we consider processes that are composed of atomic actions a, b, c, · · · ,
or steps. Let A = a, b, c, · · · be the set of atomic actions.

– Operations on actions: atomic actions can be combined by means of oper-
ators in order to define more complex processes. The sequential composition,
is denoted . (i.e., a dot, which can be omitted when there is no ambiguity).
The alternative composition is denoted +. For instance, a.(b+c) is a process

that executes the action a, then executes b or c and then stops. These two
operators are the building blocks for complex processes.

– Deadlock: we define the special action δ, called the deadlock. δ represents
failure: once δ is reached, the process is blocked. In the previous example,
a(b+ c), once the process has executed a then b or c it gracefully finishes. If
we consider a.b.δ, once a and b have been executed, the process fails since it
cannot escape from the deadlock state.

– Parallel execution: processes can be executed in parallel thanks to parallel
composition operators. We note x‖y the process that starts with x or y
and then executes the remaining of x and y in parallel. We introduce an
auxiliary operator T such that xTy behaves like x‖y but forces to start with
x. Therefore we have x‖y = xTy + yTx.
While ‖ is sufficient to describe basic parallelization, it does not allow us to
describe situations where two processes have to communicate.

To model communications we define a partial binary function γ : A×A→ A,
where γ(a, b) represents the result of the communication between a and b. If
γ(a, b) is not defined then it means that a and b do not communicate. We use
this function to define a new parallel composition operator |, such that a|b = δ if
γ(a, b) is not defined and a|b = γ(a, b) when it is defined. Using this new operator
we get x‖y = xTy + yTx+ x|y.

Finally, we add the encapsulation operator ∂H , H ⊆ A. This operator re-
places every action in H by δ. For instance ∂H(a + b), with H = {a, c, d}, is
equivalent to (δ+b).This operator is useful to force communication between two
processes. The axioms corresponding to the resulting algebra, defined by A and
the previously described operators and functions, are defined below:

A1 x+ y = y + x
A2 (x+y)+z = x+(y+z)
A3 x+ x = x
A4 (s+ y)z = xz + yz
A5 (xy)z = x(yz)
A6 x+ δ = x
A7 δx = δ
CM1 x‖y = xTy+yTx+x|y
CM2 aTx = ax
CM3 axTy = a(x‖y)

CM4 (x+y)Tz = xTz+yTz
CM5 ax|b = (a|b)x
CM6 a|bx = (a|b)x
CM7 ax|by = (a|b)(x‖y)
CM8 (x+ y)|z = x|z + y|z
CM9 x|(y + z) = x|y + x|z
C1 a|b = b|a
C2 (a|b)|c = a|(b|c)
C3 δ|a = δ
HA x|y|z = δ

D1 ∂H(a) = a if a /∈ H
D2 ∂H(a) = δ if a ∈ H
D3 ∂H(x+y)=∂H(x)+∂H(y)
D4 ∂H(xy) = ∂H(x).∂H(y)
SC1 x|y = y|x
SC2 x‖y = y‖x
SC3 x|(y|z) = (x|y)|z
SC4 (xTy)Tz = xT(y‖z)
SC5 (x|ay)Tz = x|(ayTz)
SC6 x‖(y‖z) = (x‖y)‖z

4 Translating propagation graph into process algebra

In order to generate an ACP formula corresponding to the propagation graph, we
first need to enrich the relational representation with intermediary operations.

Isolating the sub-propagation graphs
First, we define Start = {o ∈ O|Pin(o) = ∅}, the set of starting operations,

these operations are the entry-points of the transformations.

To generate an ACP formula that is equivalent to the transformation, we
need to split the transformation for each of its entry-points. To this aim, we
need to define the notion of path between two operations.

There is a path from operation a to operation b, noted Path(a, b) if any is
verified:

– ∃(p, p′) ∈ L, (∃(a, p) ∈ Πout) ∧ (∃(b, p′) ∈ Πin)
– ∃o ∈ O,Path(a, o) ∧ Path(o, b)

The sub-propagation graph of a transformation t = {O,Πin, Πout, L} for a
given entry-point s, PTrans(t, s) = {O′, Π ′in, Π ′out, L′}, is derived from t with :

– O′ = {s} ∪ {o ∈ O|Path(s, o)}
– Π ′in = {(o, p) ∈ Πin|o ∈ O′}
– Π ′out = {(o, p) ∈ Πout|o ∈ O′}
– L′ = {(p, p′) ∈ L|(p ∈ Π ′in) ∧ (p′ ∈ Π ′out)}

The sub-propagation graph of an entry-point keeps only the operations, ports
and arcs that depends on the entry-point. This sub-propagation graph of an
entry-point corresponds to the part of the propagation graph involved in the
propagation resulting from a change on that entry-point.

Adding the synchronization operations
We need to add special synchronization operations in the transformations.

They are required when an operation can be reached from an entry-point by
more than one path. An operation o needs synchronization if ∃o′ ∈ O,∃o′′ ∈
O, o′ 6= o′′, Path(s, o′) ∧ Path(o′, o) ∧ Path(s, o′′) ∧ Path(o′′, o).

Adding a synchronization operation is achieved by adding an operation and
modifying the operation o that needs synchronization.

A synchronization operation, Syno, that takes all the inputs of the former
operation o, Pin(Syno) = Pin(o) and has one output, is created. o is modified
so that it takes only one input. Then a link is added between Syno and o.
Figures 5a and 5b illustrate this step. Remark: because this transformation is
only for static analysis, there is no need to consider how the actual data that
flows from the inputs is merged into a single output, but one can imagine that
the synchronization operation performs some kind of pairing.

Split of the synchronization operations
Considering now propagation graphs with only one input and synchronization

operations when they are needed, we can divide each synchronization operation
that has been added in the previous step.

Each synchronization operation is split into multiple ones, based on its inputs.
Let s be a synchronization operation. For each i ∈ Pin(s), we create an operation
si with Pin(si) = i and Pout(si) = ∅. One of the newly created operations, s′

is selected to receive the output pin of s, Pout(s
′) = Pout(s) and finally s is

removed. We define Split(s) as the set of all the new operations intruded while
splitting a synchronization node s, Split(s) = {si|∀i ∈ Pout(s)}.

C

in
1

in2

out

(a) Before adding synchronization

SynC C
out in

in
1

in2

out

(b) After adding synchronization

SynCin1 C

SynCin2

out inin1

in2

out

(c) After splitting synchronization operation

Fig. 5: Graphical representation of an operation needing synchronization

We also need to define the ACP communication function for each pair of
the synchronization operations that have been created in this step (i.e., we de-
fine γ(o, o′) ∀o, o′ ∈ Split(s), o 6= o′). This allows synchronization operations to
communicate together.

Finally, we keep track of all the operations that were added in Syncs(o), so
that we can use them later, with o the entry-point of the partial transformation
being processed.

This step is illustrated in Figure 5c, in this example, SynCin1
is the operation

that was selected to receive the output.

Building the process algebra formula
Since the propagation graph has now been processed, it can easily be con-

verted to an ACP formula. We define the function Next : O → O that returns
all the operations directly connected to an output port of an operation. Let o be
an operation. Next(o) is defined as:

Next(o) = {o′ ∈ O|∀p ∈ Pout(o) ∧ ∃p′ ∈ Pin(o′) ∧ (p, p′) ∈ L}

Finally, we define R2ACP (o), a function that takes an operation and tran-
scribes it to an ACP formula.

R2ACP (o) =

Next(o) = ∅, o

Next(o) = o′, o . R2ACP (o′)

Next(o) = {o1, ..., on}, o .
(
R2ACP (o1) ‖ ... ‖ R2ACP (on)

)
This function returns an ACP formula for any given operation: the complete

formula can be created by using the alternative composition between the formula

of each entry-points of the transformation. We also need to add encapsulation
to force a synchronization operation to wait for its counterpart.∑

o∈Start
∂{s∈Syncs(o)}

(
R2ACP (o)

)
This method can be seen as a tree traversal with sequential composition

of operations when going down the tree and parallel composition between the
children of an operation.

A complete example is shown in Figure 6. Labels on the ports were removed
to make the reading easier. The graph in Figure 6a has only one entry-point,
so we can skip the isolation of the sub-propagations graphs. In Figure 6b syn-
chronization operation SyncC is added before C because it can be reached from
B and D. Then, in Figure 6c the synchronization operation SyncC is split into
two new synchronization operations SyncCB

and SyncCD
and the first one is

chosen to keep the output of SyncC . Finally, in Figure 6d a corresponding for-
mula is given. Below the formula all allowed communications are listed (only
SynCB

|SynCD
in this example).

5 Possible analysis outcomes

Once the propagation graph has been transformed into a tree and after a cor-
responding ACP formula has been generated, the formula can be used to infer
several interesting facts about the transformation.

The generated formula defines all valid operations orderings. Thus it can be
used to check if existing approaches generate correct orderings. It can also be
used to generate new propagation orderings.

During the graph transformation, synchronization operations are added when
needed. Adding these synchronization operations generates situations where syn-
chronization is needed explicitly unlike the classical approach that consists in
ignoring the first notification. Therefore, it does not require a deep understand-
ing of the propagation. Moreover, adding this operation also means that the zip

and zipWith operations do not need to use a specific algorithm to deal with
alignments problems.

As observed in section 4, propagation graphs are split into sub-propagation
graphs and a formula is created for each of these graphs. This means that only
relevant operations are considered during propagation. This results in a special-
ized formula for each of the entry-points of the transformation.

Unlike topological sorting that can be used in breadth-first propagation (as
proposed in [7]), generated formulas also contain explicit parallel sections. Each
time a ‖ is found, actions in both its operands can safely be executed in parallel6.
For instance, with the formula in Figure 6d it is possible to infer that both
operations B and D can be executed in parallel (it is also true for C and E).

6 Assuming lambdas given to operations do not have any side effects.

A B C

D E

(a) Propagation graph

A B SynC C

D E

(b) Adding synchronization nodes

A B SynCB C

D SynCD

E

(c) Splitting the synchronization nodes

F = ∂{SynCB
, SynCD

}

(
A .

((
B . SynCB . C

)
‖
(
D . (SynCD ‖ E)

)))
SynCB |SynCD = S

(d) Corresponding ACP formula and communication function

Fig. 6: Illustrated example of transformation from propagation graph to ACP
formula.

Exploiting these parallel sections would not be difficult with a central algorithm
responsible for dispatching operation execution as proposed in [7].

Finally, with an explicit graph transformation and a corresponding formula,
it is possible to detect patterns in the transformation. These patterns could be
used to infer parts of the transformation where operations do not need to keep
a cache. For instance, with a zip operation, it is usually convenient to keep a
cache of its inputs in case a change arrives only on one of these inputs. In the
current implementation it is not possible to detect situations where it can be
proven that notifications will always arrive in pair (e.g., Figure 1). Notifications
are said to arrive in pair if a change in a source box leads to two changes in the
sources of a zip or zipWith operation, and if both changes of the pair always
have the same index (e.g., both add an element at index 3). In this case, the
operation does not need to keep a cache of its inputs because all information

needed to compute the resulting output change is known to be available after
both inputs have been notified.

6 Discussion

In the previous section we presented several possible analyses offered by the pro-
cess algebra formula generated by our approach. In this section we discuss about
other usages of the formula not directly related to propagation optimization.

In Section 3.5 we presented a small subset of process algebra. This subset
is sufficient to express formulas corresponding to current propagation graphs.
However, there are many extensions and features that could be used to describe
currently forbidden propagation graphs, such as propagation graphs contain-
ing cycles. In the current implementation, propagation graphs containing cycles
are not allowed. With a depth-first propagation, such graphs can lead to infi-
nite propagation. Nevertheless, process algebra does support recursive formula.
Process algebra could thus provide an appropriate representation for such prop-
agation graphs. However this does not solve the termination problem of such
propagation. In order to solve this issue, it would be necessary to add a mecha-
nism to detect when the propagation should be ended (such as reaching a fixed
point). This mechanism may be usable to represent transformations combining
classical transformations with constraints solving [8].

Another interesting point we did not investigate is the relationship between
the source propagation graph and the generated formulas. During processing of
the sub-propagation graph, after a synchronization operation is split, the rest
of the propagation is attached to only one of the newly created synchronization
operations. Each choice leads to a different formula. We believe that these pos-
sible formulas are equivalent and result in similar execution orders. This might
be provable by showing that all possible formulas are bisimilar.

Moreover, due to the transformation process of the propagation graph, we
believe that there is a possibility to rebuild a propagation graph from a given
ACP formula. This would enable rewriting of the formula to be forwarded back
to the propagation graph. The optimizations applied on the formula could be
visualized on the propagation graph.

7 Conclusion

This paper is a follow-up to [7], which presented alignment issues appearing in
implicit propagation graphs. This previous work suggested the use of explicit
propagation graphs to solve alignments issues. In this paper, we kept the idea
of explicit propagation graph and developed another analysis method. This new
method is based on a new relational notation for propagation graph and on
a transformation from this new notation to process algebra formulas. These
formulas can be used to derive operation execution orders. By correctly building
these formulas, it is possible to prevent alignment issues.

On top of correct ordering, process algebra comes with many interesting
properties for propagation. One of them is the possibility to safely parallelize
sections of the propagation.

Acknowledgments

Work partially founded by Angers Loire Métrople and RFI Atlanstic 2020.

References

1. Beaudoux, O., Blouin, A., Barais, O., Jézéquel, J.: Active operations on col-
lections. In: Model Driven Engineering Languages and Systems - 13th Interna-
tional Conference, MODELS 2010, Oslo, Norway, October 3-8, 2010, Proceed-
ings, Part I. Lecture Notes in Computer Science, vol. 6394, pp. 91–105. Springer
(2010). https://doi.org/10.1007/978-3-642-16145-2 7, https://doi.org/10.1007/
978-3-642-16145-2_7

2. Bergstra, J., Klop, J.: Process algebra for synchronous com-
munication. Information and Control 60(1), 109 – 137 (1984).
https://doi.org/https://doi.org/10.1016/S0019-9958(84)80025-X, http:

//www.sciencedirect.com/science/article/pii/S001999588480025X

3. Bergstra, J.A., Ponse, A., Smolka, S.A.: Handbook of process algebra. Elsevier,
Amsterdam (2001)

4. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8),
666–677 (1978). https://doi.org/10.1145/359576.359585, http://doi.acm.org/

10.1145/359576.359585

5. Jouault, F., Beaudoux, O.: On the use of active operations for incremental bidirec-
tional evaluation of OCL. In: Proceedings of the 15th International Workshop
on OCL and Textual Modeling co-located with 18th International Conference
on Model Driven Engineering Languages and Systems (MoDELS 2015), Ottawa,
Canada, September 28, 2015. CEUR Workshop Proceedings, vol. 1512, pp. 35–45.
CEUR-WS.org (2015), http://ceur-ws.org/Vol-1512/paper03.pdf

6. Jouault, F., Beaudoux, O.: Efficient ocl-based incremental transformations. In:
OCL@ MoDELS. pp. 121–136 (2016)

7. Jouault, F., Beaudoux, O., Brun, M., Chhel, F., Clavreul, M.: Improving incre-
mental and bidirectional evaluation with an explicit propagation graph. In: Seidl,
M., Zschaler, S. (eds.) Software Technologies: Applications and Foundations. pp.
302–316. Springer International Publishing, Cham (2018)

8. Le Calvar, T., Chhel, F., Jouault, F., Saubion, F., Groupe, E.A.: Transformation
de modèles et contraintes pour l’ingénierie dirigée par les modèles. In: Journées
Francophones de Programmation par Contraintes 2018. p. 93 (Jun 2018)

9. Milner, R.: A Calculus of Communicating Systems, Lecture Notes in Computer
Science, vol. 92. Springer (1980). https://doi.org/10.1007/3-540-10235-3, https:
//doi.org/10.1007/3-540-10235-3

10. da Silva, A.R.: Model-driven engineering: A survey supported by the uni-
fied conceptual model. Computer Languages, Systems & Structures 43, 139 –
155 (2015). https://doi.org/https://doi.org/10.1016/j.cl.2015.06.001, http://www.
sciencedirect.com/science/article/pii/S1477842415000408

https://doi.org/10.1007/978-3-642-16145-2_7
https://doi.org/10.1007/978-3-642-16145-2_7
https://doi.org/10.1007/978-3-642-16145-2_7
https://doi.org/https://doi.org/10.1016/S0019-9958(84)80025-X
http://www.sciencedirect.com/science/article/pii/S001999588480025X
http://www.sciencedirect.com/science/article/pii/S001999588480025X
https://doi.org/10.1145/359576.359585
http://doi.acm.org/10.1145/359576.359585
http://doi.acm.org/10.1145/359576.359585
http://ceur-ws.org/Vol-1512/paper03.pdf
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/3-540-10235-3
https://doi.org/https://doi.org/10.1016/j.cl.2015.06.001
http://www.sciencedirect.com/science/article/pii/S1477842415000408
http://www.sciencedirect.com/science/article/pii/S1477842415000408

	Using process algebra to statically analyze incremental propagation graphs

