

Capturing Architectural Artefacts in a Configuration

Management tool

Vittorio Torroni

Serco Italia

Frascati, Italy

Copyright © held by the author

Abstract— too many architectural artefacts are lost in the

transition from the Design to the Operations phase. This paper

shows how to extract key architectural information from a

System Model or set of documents and translate them into

artefacts that can be added to a Configuration Management tool

to facilitate change impact analysis.

Keywords—Configuration Management; Transition Stage;

System Modelling; Change Impact Analysis; Service Management

I. INTRODUCTION

The Systems Engineering (SE) good practices described in
the INCOSE SE Handbook [1] focus on the activities
performed in the Concept and Development stages, in order to
avoid discovering costly mistakes later in the Production and
Utilization/Support stages.

Unfortunately, in practical applications, this emphasis on
requirements and design often translates in using the SE
approach and methods in the requirements, architecture and
design definition processes, and abandoning them in the
Operations and Maintenance processes. A typical symptom of
this approach is that important System Model information
(regardless of whether they were defined in a System
Modelling tool or in architectural documents) are not handed
over to the Operations and Maintenance (O&M) teams. For
example, if the Design team used a modelling tool, the O&M
team often does not perceive the value of using it to support
O&M processes.

This approach makes it difficult to perform Change Impact
Analysis as part of the O&M processes. What O&M teams do
always use is a Configuration Management (CM) tool, which
may be integrated with other tools, such as Anomaly
Management, Documentation Management, etc.

This paper presents the results of a case study, performed in
the framework of the Operations and Maintenance of the
CryoSat-2 Payload Data Ground Segment (PDGS), managed
by the European Space Agency (ESA), directorate of Earth
Observation Programmes, Ground Segment Infrastructure and
Operations Management Division.

The paper is organized as follows:

 Section II provides a description of the CryoSat-2
PDGS context, the architectural information
handed over by the Design team, and the main

features of the CM and Service Management tool
used to support the the O&M processes;

 Section III describes the process that was adopted
to translate the need to perform automated and
robust Change Impact Analysis into specific
updates applied to the CM tool;

 Section IV illustrates the lessons learned from this
exercise and provides recommendations on the
choice of tools to facilitate the implementation of
this method in other contexts;

II. CRYOSAT-2 PDGS CONTEXT

ESA’s CryoSat mission is dedicated to measuring the
thickness of polar sea ice and monitoring changes in the ice
sheets that blanket Greenland and Antarctica.

A general description of the mission can be found in [2]
and a description of the PDGS can be found in [3] (this paper
references only information sources that are in the public
domain; references to specific software vendors have also been
omitted).

In summary, the measurements of the radar altimeter on-
board the spacecraft are downloaded to the ground, where
dedicated HW and SW infrastructure archives the raw data,
processes them to create scientific products, and distributes
them to the scientific community. The PDGS also provides the
functionality to decide which measurement type to perform in
which geographical area.

During the Transition stage, a set of documents was handed
over to the O&M team. These documents included the standard
set of technical documents: requirements documents,
architectural design documents, Interface Control Documents
(ICD), format specifications, and list of Configuration Items
(CI).

The entire set of O&M processes is implemented as a
Service, which is managed using an ISO-20000 [4] compliant
Service Management Tool, which implements the Incident
Management, Problem Management, Change Management,
Release Management and Configuration Management
processes.

The tool provides the capability to define a new CI and
assign it to a class, chosen among a set of pre-defined classes.
The tool also allows to define a relationship between two CIs,
where the relationship name and type is chosen among a set of
pre-defined relationships.

The tool does not provide the functionality to define new CI
classes and new relationship types: this constraint represents
the biggest challenge to overcome.

III. DESCRIPTION OF THE PROCESS

Following good SE practices, the process has been broken
down in the following steps:

1. Identify needs;

2. Derive requirements and constraints;

3. Define solution;

4. Test solution;

5. Implement changes;

The main need is to facilitate change impact analysis: when
a change needs to be applied to a CI, it is necessary to assess
the impact that it will have on other CIs. If this analysis is not
performed, deploying the change could break one or more
interfaces.

Without having the support of a SW tool, the change
impact assessment needs to be performed manually, by
collecting all the ICDs where the CI to be modified is involved,
and determine if any other CI requires modification. This
manual assessment is error prone and relies on the
documentation to contain the correct, complete and up-to-date
set of information required, which might not always be the case
if the design documentation is not maintained by the O&M
team.

The requirements derived from the need are:

1. Each component described in the architectural
documentation should correspond to a CI in the
CM database;

2. Each interface described in the architectural
documentation should be implemented as a
relationship between two CIs;

3. The CM tool shall provide the capability of
selecting a CI and displaying all its relationships
with other CIs;

In order to implement the requirement N.1, new CIs have
been created:

 A set of CIs that describe external service
providers (these were originally not present
because their configuration control is performed
by the service providers);

 A set of CIs that describe the fact that different
instances of SW applications might have the same
binary executables but different configurations;

 The CI class that was chosen to represent external
service providers was “Data Center”: this not an
ideal name, but it was the closest match among the
list of possible classes;

In the context of the CryoSat-2 PDGS, all interfaces are
implemented, at SW level, as exchange of files.

In order to implement requirement n.2, it was necessary to take
into account the fact that the CM tool does not allow using the
same relationship name to connect different pairs of CI classes,
so for example the relationship “interfaces with” can only be
established between a pair of CI of class “Application”,
whereas the relationship “Exchange Data with” can only be
established between a CI of type “server” and another CI of
type “server” or “Data Center”.

The CM tool used was already compliant with requirement n.3.

Figure 1 below shows an example of how the CM tool, after
the implementation, allows to display all the interfaces of a
specific CI.

Fig. 1. Displaying the interfaces of a CI.

IV. LESSONS LEARNED AND RECOMMENDATIONS

The successful completion of this exercise has shown that it
is possible to implement a mechanism that facilitates a robust
change impact assessment by using only a CM tool.

In this example, the starting point was a System description
captured in a set of documents, but if a System modelling tool
is used, the model could be exported (e.g. as XMI [5]), or, if
both the System modelling tool and the CM tool support it, an
OSLC service [6] could be implemented that automatically
creates CIs and relationships in the CM tool starting from the
components and interfaces defined in the modelling tool.
Another possible approach is to adopt the approach defined in
the Modelling and Simulation High-Level Architecture (see [7]
and [8]) to ensure interoperability between tools used in the
Design phase and tools used in the Operations and
Maintenance phase.

ACKNOWLEDGMENT

The author would like to thank the ESA staff at the ESRIN
site for authorizing this exercise and provide the necessary
resources to implement the recommended changes to the CM
tool.

REFERENCES

[1] INCOSE, “Systems Engineering Handbook”, INCOSE-TP-2003-002-04

[2] https://www.esa.int/Our_Activities/Observing_the_Earth/CryoSat

[3] https://www.esa.int/Our_Activities/Observing_the_Earth/CryoSat/Data_
flow

[4] ISO/IEC 20000 Information technology - Service management

[5] https://www.omg.org/spec/XMI/2.5.1/

[6] http://open-services.net/

[7] Möller, B., Garro, A., Falcone, A., Crues, E. Z., & Dexter, D. E. (2016,
September). Promoting a-priori interoperability of HLA-based
Simulations in the Space domain: the SISO Space Reference FOM

initiative. In Proceedings of the 20th International Symposium on
Distributed Simulation and Real-Time Applications (pp. 100-107). IEEE
Press.

[8] Möller, B., Garro, A., Falcone, A., Crues, E. Z., & Dexter, D. E. (2017,
October). On the execution control of HLA federations using the SISO
space reference FOM. In Distributed Simulation and Real Time
Applications (DS-RT), 2017 IEEE/ACM 21st International Symposium
on (pp. 1-8). IEEE.

http://open-services.net/

