

Modeling Information Systems
as Systems of Systems

Paolo Salvaneschi
University of Bergamo, Dep. of
Management, Information and
Production Engineering and

Salvaneschi & Partners
Bergamo, Italy

paolo.salvaneschi@unibg.it

Abstract—Large industrial information systems are
composed of dozens of inter-operating software applications.
Each of them implements a relatively independent set of
functions but also participates to business processes involving
more applications. Applications may be COTS acquired from
different vendors or custom-developed. The network of them
evolves and grows in time. Many development groups/vendors
manage the network. All these characteristics support the idea
that large information systems may be interpreted as Systems of
Systems (SoS) and that this view may provide value to IT
managers. In the paper, we present an experience report of SoS
concepts application to the information system of a large retail
company. In this System of Systems, a critical problem is the
absence of documents providing SoS views of the whole
information system: the set of applications, their relationships
and the impact of business processes on the network of
applications. To mitigate the problem, we developed a set of
models using the minimalist approach (the selection of the
minimal set of documents based on a cost/benefit analysis) and
the ArchiMate modeling standard and tools. A static view
(software applications and relations) and dynamic views
(business processes and their interaction with software
applications) model each business area. We discuss the current
use and benefits of the models and the forecast improvements.

Keywords—Information System, System of Systems, ADLs,
Archimate

I. INTRODUCTION
Large industrial information systems are composed of

dozens of inter-operating software applications. The
applications may be custom-developed or COTS components
acquired from the market and, if needed, adapted. Each
application delivers functions implementing a specific set of
business activities, but the business processes flow through
more applications. The set of applications evolves and grows
in time and usually different development groups or vendors
drive the evolution process, each working on parts of the
whole system.

We suggest that the application of concepts of Systems of
systems (SoS) may be useful to the management of such type
of systems.

Systems of systems are described as a collection of
relatively independent but interconnected systems [1] where
a strong central control of evolution may not exist and the
global behaviors (both desirable and undesirable) emerge
from the interaction between the composing systems.

In this paper, we describe an industrial experience where
we apply the concepts of SoS to the management of the
information system of a large retail company.

The application of SoS concepts has been mainly in other
areas [2] than industrial information systems, even if e-
commerce applications (part of the information system of our
case study) are considered a typical example of SoS [3].

Section 2 discusses how information systems share the
characteristics of SoSs to be considered as SoSs. We contend
that the SoS view may advance the state-of-the-art of
information systems management.

Section 3 presents the information system that is subject
of the study.

In section 4 we define the research question this work
answers: how to develop and maintain a knowledge base of
the most important aspects of the whole information system
at the abstraction level of a SoS. To this aim, we developed a
model of the information system.

Sections 5 and 6 define the modeling technique and tool,
exemplify the content of the model and discuss how the
model was developed.

Section 7 describes how different stakeholders used and
get benefits of the model.

Section 8 concludes, discusses the scope of the industrial
experience and the possible improvements. Finally, Section 9
provides an overview of related work.

II. INFORMATION SYSTEMS AS SOS
Information systems share the characteristics of SoSs ?

Nielsen [3] claims that a SoS is characterized by the
following dimensions:

₋ Autonomy of constituents: a constituent system’s
behavior is governed by its own rules while also
participating in the SoS.

₋ Independence: the capacity of constituent systems to
operate when detached from the rest of the SoS.

₋ Distribution: constituent systems are dispersed so that
some form of connectivity enables communication or
information sharing.

₋ Evolution: SoSs are long lasting and subject to change,
whether in the functionality, the quality of that

Copyright © held by the author

functionality, or in the structure and composition of
constituent systems.

₋ Dynamic Reconfiguration: the capacity of an SoS to
undertake changes to its structure and composition,
typically without planned intervention.

₋ Emergence of Behavior: emergence refers to the
behaviors that arise as a result of the interaction of
constituents.

₋ Inter-dependence: refers to the mutual dependency that
arises from the constituent systems having to rely on
each other in order to fulfill the common goal of the
SoS.

₋ Inter-operability: refers to the ability of the SoS to
incorporate a range of heterogeneous constituent
systems.

A large information system is composed of many
software applications (custom, COTS, adapted). We may
interpret each application as a “component” of a system
architecture (according to the paradigm of components and
connectors description of a software architecture) at a larger
scale than the architecture of a single application. Various
servers host the applications and the information system may
cooperate with others information systems (for instance
suppliers and clients). All these servers are typically
geographically distributed (Distribution).

From the functional point of view, applications are
relatively independent functional entities (Autonomy of
constituents and Independence) but inter-operate with other
relatively independent applications (Inter-dependence and
Inter-operability). Business processes may be orthogonal to
many software applications. Each software application may
implement a set of functions and share part of them with
various business processes.

Information systems are subject to an evolutionary
process (Evolution). Evolution projects (for example the
evolution required by a change in a business process or a
new process) may involve many applications. In this case,
the specification and design documents of the project define
a set of local changes generating a global desired behavior
(Emergence of desired behaviors). Consequently, designing
and implementing changes require the understanding of
many existing applications and their relations. The
evolutionary process, composed by a sequence of local
changes, may also produce global undesired changes like the
“architectural erosion” [4] or undesired behaviors (another
type of Emergence).

If we consider the management aspect, projects may
involve more development teams or COTS providers.
Projects run concurrently and are managed in a relatively
independent way. Each project team follows a “local
optimum” goal with limited interactions with the remaining
parts of the system not included in the project. Therefore, it
is difficult for the IT management to have a global control of
evolution.

From a cognitive point of view, each development team
or provider has a local knowledge related to a subset of
applications. Consequently, none of the teams has a
reasonably complete knowledge of the whole information
system. Even if the specification and design documentation
of each application is of sufficient quality, it does not offer a

useful knowledge supporting global understanding of
applications relations and behaviors. This causes extra costs
in the specification phase of an evolution project due to the
effort required to collect knowledge from people and
available documents. This also causes costs due to reworks
caused by the delivery of changes not completely and
correctly analyzed during the specification phase.

The above considerations show that large industrial
information systems may share a large part of the properties
stated by Nielsen [3] for SoSs.

We support the idea that a SoS view of industrial
information systems has value for the information systems
managers, business analysts, architects, developers and
testers. Therefore, is not enough to apply software
engineering concepts, practices and tools to single
applications and systems. We need to apply an engineering
approach at the larger scale of the whole information system
as a System of Systems.

In the following case study, we apply these ideas to a
specific information system.

The case study deals with the problem of maintaining a
documented knowledge of the information system at the SoS
level of abstraction. At this level, the system is viewed as a
network of software applications and systems and business
processes emerge because of relations between these
systems.

The aim of the study is not only to present a specific case
but also to show how this approach may improve the
management practice of information systems.

Lack of documented knowledge is a common practice in
information systems, but the problem is typically considered
at the level of single applications or projects [5].

We show that this knowledge level does not consider
critical aspects that are arising from the complexities of
modern information systems. Therefore, the explicit
consideration and modeling of the SoS level mitigate critical
problems of information system evolution and may advance
the state-of-the-art of information systems management.

III. CASE STUDY
The case study concerns the information system of a

large Italian retail company. The company manages about
100 physical stores and an e-commerce store. The
information system is composed of about 70 applications and
2 large databases. About one-half of applications is custom-
developed (about 1.500.000 LOC of Java-JSP and RPG
code). Software products acquired from vendors and
adapted/integrated compose the remaining half.

Examples of the constituent software
applications/systems: selling in a physical store, manage e-
commerce orders, transport management, warehouse
management.

During the years, the amount of COTS/adapted
applications increased and the global landscape of the
architecture moved from a shape similar to repository-style
(databases and a cloud of applications working on the
databases) to a shape more similar to a network.

Consequently, the number of business processes
involving more applications and the number of projects with

more than one development team or vendor increased.
During the last year, out of 54 evolutionary projects, 21 were
composed of more than two different organizations, with the
maximum of 7.

This evolutionary process increased the problems caused
by the lack of a global view of the information system (a SoS
view). Projects requiring the implementation or change of
business processes need the cooperation of different teams.
Each development/vendor team has a local knowledge (a
specific application or a limited set of applications), but is
difficult for each team to have a deep understanding of the
interactions implementing the business processes. Business
process analysts have difficulties to specify the required
changes, because the global model of business processes and
their interaction with the information system components is
fragmented into many documents and oral tradition. Testers
have the same problems.

The IT organization established an “Architecture office”
whose aim is to develop feasibility studies, design the
changes and deliver architectural and technical standards for
each development team or vendor. This office too needs a
global view of the information system.

The management of the information system evaluated
that the priority to mitigate these problems was the
availability of documented knowledge concerning the set of
applications, their relationships and the impact of business
processes on the network of software applications (a model
of the whole information system at SoS level). The aim is
that the organizations running the projects will share this
knowledge and the different stakeholders involved in the
information system evolution will use it as reference.

IV. THE GOAL
The information system maintains a wiki-based

documentation system storing the most important knowledge
for each application and the data models, but the
documentation models each application as a relatively
independent system and the interaction with other systems is
limited to definition of interfaces.

We focused our work to add a new layer of
documentation based on a model of the most important
aspects of the whole information systems architecture at the
abstraction level of SoS.

The model will support each project with global views of
the whole set of components and behaviors implementing the
information system.

Different group of users can benefit of it:

₋ Business process analysts

₋ Information system architects

₋ Development teams

₋ Testers

Business process analysts and information system architects
will use the model to understand the existing business
processes and their implementation in the various systems
composing the whole information system. The model will
support the feasibility studies to evaluate the effort required
for implementing a new or changed business process. It will
also support the impact assessment of technological changes

(for example porting an application on a new software
infrastructure requires the understanding of the interacting
applications) or the design of the architectural solution to
implement a business process change.

The development team will use the model to understand the
high-level view of structure and behaviors of the systems to
modify. The testing team will also use the model to
implement the testing scenarios.

V. THE MODEL
In this section, we describe the characteristics of the

implemented model.

A. Minimalist documentation
IT organization developed the documentation system

using a minimalist approach [6] and the method defined in
our previous work [8]. The method select a minimal set of
documents that can support the information system actors
during the evolution process.

The basic idea of the minimalist documentation is that
knowledge is a property emerging from a system where
people and documents interact. Documents do not require
being “complete” (rich of details in each part), it is sufficient
that they be “good enough” [7]. For example, developers use
an architectural document as a “landscape” for understanding
where to read the details in the code.

During the evolution phase, we must update each
document and this need generates a cost. Even the lack of a
document may generate a cost: the effort of software
understanding during the evolution. A minimal set is a set of
documents showing the most efficient cost-benefit ratio of
the maintenance cost of the documents and the costs that can
be generated if the documents are not available. Details of
the cost-benefit selection rules may be found in [8].
Therefore, we select and maintain only this set of documents
during the evolution.

For example, an architectural model (a document with a
low number of pages) has a limited cost of maintenance
(measured in number of pages) whereas the lack of this
model may generate a high cost required to extract the
architectural knowledge from code. Consequently, we should
maintain this document during the evolution.

On the contrary, for example, a detailed specification of
interactive screens (many pages) has a high cost of
maintenance whereas his absence generates a low cost (the
programmer may understand the specification observing the
behaviors of the implemented software product). Therefore,
we should not maintain this document during the evolution.

To select the SoS models, we followed the same
minimalist approach used for the existing documentation.

The selection was decided during the meetings with
people of the “Architecture office”. They decided that the
most important documents at SoS level (using the
cost/benefit criteria previously considered) were the SoS
architecture and the relation between the main business
processes and the architecture. They judged the cost of
developing and maintaining these documents significantly
less than the costs caused by the need to recover the
necessary knowledge and the extra costs caused by poor
knowledge during each evolution projects.

The first step was to list the more important business
areas. Examples of business areas are:

₋ Selling in the physical store;

₋ Selling in the e-commerce store;

₋ Supply chain;

₋ Manage product data and prices.

For each business area, we developed:

₋ A static model describing the software applications used
inside the business area (components) and the relations
between the applications (connectors). The modeled
relations are data flows between components (only the
flows of the specific business area).

₋ Dynamic models describing how the set of components
and connectors implement the main business processes
of the area (activities of components and flows of data
between activities).

Fig. 1. Static model of the business area “Selling in the e-commerce store”

Fig. 2. Static model of the business area “Selling in the e-commerce store” - detail

For example, fig 1 shows the static model of the business
area “Selling in the e-commerce store”. Boxes are software
applications (components) and arrows are connectors. The
label of each connector is the name of the data flow. The
business area includes 28 software applications. 13 of them
(boxes with white background) are external to the
organization.

Fig 2 shows a detail of the model. In this fragment, four
systems (1 ‒ order management system, 2 ‒ transport

management system, 3 ‒ warehouse management system and
4 ‒ operational database) collaborate exchanging the data
flows described by oriented arcs. The remaining two systems
(5 ‒ technical assistance for the sold products and 6 ‒ courier
service) are part of other information systems.

Each system is a relatively independent component and
has its own functions and role in the organization, but the e-
commerce business processes emerge from the interaction of
the constituent systems.

Fig. 3. Dynamic model: “Buy with the e_commerce site, pick and pay in the physical store”

Fig. 4. Dynamic model: “Buy with the e_commerce site, pick and pay in the physical store” - detail

During the evolution, both the functions of single
systems and the business processes emerging from the
interaction of more systems may evolve.

For this static model, we developed 41 dynamic models
describing the most important business processes
implemented by part of components and connectors of the
static model.

Figure 3 and 4 show one of the dynamic models “Buy in
the e_commerce site, pick and pay in the physical store” and
a detail of the model. The model represents one of the
behaviors emerging from the interaction among the set of
constituent systems of the SoS. Considering all the
application of fig.1, eleven of them cooperates for this
business process.

Each swim lane is associated to the component on top of
the diagram (a subset of the static model). Rounded boxes
describe activities of the business process. Some activities
are labeled with the activity content, while some others are
not specifically identified. Labelled arrows are data flows.
Additional icons add information about the control flow (for
example interactive activity ‒ the “OP” icon or periodically
scheduled ‒ the “T” icon). The model describes a partial
ordering (from top to bottom, from left to right) of the
application data flows. The ordering is partial due to the icon
“T” that identifies a timed schedule with the time constraint
not defined by the model. According to the minimalist
approach the model is not complete at a defined level of

abstraction but is “good enough” to help people
understanding the business process.

B. Tool
We implemented the model with the tool Archi [10]. The

tool allows defining a database of model elements (for
example components and relations) and apply different
views to the database. Fig 5 is the global static view. This
view includes all the components of the different business
areas with their data flows. We may query and navigate the
model to explore the model elements, relations and attributes
(name-value pairs) associated to them.

VI. MODEL DEVELOPMENT
We developed the model with the “Architecture office”,

a team of three people, the most experienced professionals of
the information system with the widest available knowledge
on the existing systems and business processes. The
development also involved three experienced people of the
testing team that accumulated, during the testing projects, a
significant knowledge of systems and business processes.
Another important source of knowledge was the
documentation system that maintains the basic knowledge
for each application composing the information system. This
was specifically useful to define the interfaces of each
application.

Fig. 5. Static view of the whole information system

The development required about 60 days distributed in
a period of about six months.

A significant problem we found during the
construction of models was that, due to the fragmentation
of knowledge, even the architecture office people and the
testers had problems in defining precisely all the business
processes and the interactions between systems.
Consequently, in many cases, we designed a draft of the
model and verified/improved it with the help of project
leaders knowing specific parts of the information system.
Therefore, the development required many review cycles
to verify and refine the models.

The result was a body of knowledge previously not
available. No single development team or expert had these
integrated views of applications and business processes.

VII. LESSONS LEARNED
Are there real evidences that the models delivered

significant benefits to the management of the information
system?

The model in now used by the “Architecture office” for
the feasibility studies. The office interacts with business
people requiring business processes changes, new
functionalities or new processes.

The model allows the understanding of the existing
business processes and the implementation of them into the
systems and is the basis to design the changes and evaluate
the impact. A more detailed knowledge related to each
system may be found in the pre-existing documentation
system.

Previously, the analysis required a costly and risky
work of collecting fragments of knowledge from different
people to reconstruct the set of involved systems and their
interactions.

 The development teams had benefit of the model. It is
now the basic documentation to understand the systems
and the required changes. The IT organization also used
the model for training new development teams (for
example in the e-commerce business area). The inclusion
in complex projects of a new working group was difficult.
New people slowly accumulated a more global knowledge
from the experience of implementing changes of SoS parts.
Now a new team is trained through the explanation and
discussion of the SoS models. This decision mitigated the
difficulties, increased the new team’s efficiency and
reduced the risk of code defects caused by poor knowledge
of the whole context.

The testing team also used the process models. For
example, the models of the business area “Selling in the e-
commerce store” were the reference to develop a set of
about 100 automatic non-regression scenario-based tests.
A set of test cases verifies each modeled process (the test
procedures run each of the 41 dynamic models with some
variations of input data). Each test case follows the process
through all the involved systems, from an initial set of
input data (for instance an order from a customer) to the
complete interaction (and intermediate verifications) with
all the systems.

Were these models enough to represent the studied
SoS?

The static and dynamic models were judged, during the
development phase, the priority knowledge of the SoS.

Obviously, the idea of maintaining only a minimal set
of documents has its own assumptions and limitations.
These limitations come from the decision to select the
modeled knowledge according to cost-benefit criteria and
reduce the maintenance effort of the model during the SoS
evolution.

For example, static models only define data flows and
lack of views for technical information (the
implementation views of connectors). Consequently, for
example, the model does not provide the information if a
flow of data is implemented by a simple invocation with
parameters or the execution of a complex publish-
subscribe pattern delivered by the enterprise bus.

VIII. CONCLUSION
In the paper, we presented the development of models

of an information system based on the view of Systems of
Systems. In our experience, this type of models showed
significant benefits for the management of the information
system evolution.

We developed the first version of the model with a
limited cost and we estimate that the periodical updating of
the model will require relatively moderate costs.

On the contrary, we estimate that the availability of the
model saved significant extra costs of many projects due to
the lack of this knowledge.

Furthermore, a significant question is the scope of our
experience. We studied a single information system of a
specific industrial sector. Beside direct experience, we base
our confidence that the presented results can generalize to
other information systems on the following considerations.

The experience concerns a large information system
that is representative of many others. It includes many
software applications, large databases and a growing set of
COTS-based components. In this context is usual the
cooperation of different teams internal to the IT
organization, outsourced to external software houses or
coming from product vendors.

The difficulty of maintaining a useful documentation of
the information system and the knowledge fragmentation
is a widespread and recognized problem by the IT
managers. Consequently, the SoS-based explicit
knowledge we presented may mitigate a common problem
in industrial information systems.

Furthermore, we think that the real problem for a
widespread use of these approaches based on the SoS point
of view is not the cost. The cost of developing and
maintaining the models is low if compared to the extra
costs caused by the lack of this knowledge (costs of
understanding the existing software, costs caused by poor
quality of the developed solutions and need of reworking).
The key point is the management culture and the need to
introduce more mature management approaches based on

sound software engineering practices and cost/benefit
evaluations.

A future improvement could be the use of models and
tool to control the growing complexity of the information
system structure. One of the aims of the architecture office
is to publish the design rules of the information system
architecture and to enforce their adoption. Therefore, the
office can use the models and the tool to control the
architectural erosion during the evolution process.

For example, we can navigate the structural models to
measure the coupling between components. We also may
add technical attributes to the data flow oriented arcs. A
useful information may be the type of connectors. This can
allow controlling the design rules for the choice of
connectors, discovering violations and refactoring the
architecture.

Clearly, this is not an easy task. If we examine figure 5,
in this architecture, even if the local systems are carefully
designed, the resulting SoS does not support none of the
basic good design principles (for example cohesion and
coupling rules) we teach in university courses of software
engineering.

IX. RELATED WORK
Software engineering architectures developed a rich set

of concepts, practices and tools [11]. SoS research
extended these concepts to environments where the
delivered functionalities and processes result from the
composition and interaction of many relatively
independent systems [12].

In software intensive SoSs, that is SoSs in which
software plays an essential role in design, development,
and evolution, it is recognized that an adequate
representation of SoS software architectures is important
[12]. In this context, different architecture description
languages (ADLs) have been proposed like UML or
SysML [13]. The definition of the most suitable ADLs for
SoS is still a research subject [12].

In the area of enterprise information systems
architectural frameworks, as for example TOGAF [14],
were developed enterprise models considering various
aspects of the enterprise: business functions and processes,
data, software applications and the underlying technical
infrastructure. Archimate [9] is a standard modeling
language to support the description, analysis and
visualization of enterprise architectures, taking into
account multiple aspects of architectural frameworks. In
our industrial application, we used this modeling language
to apply the concepts of SoS to the considered information
system. The reason of the choice was that the language is a
recognised standard in the information systems community
and has expressive power to model different aspects like
business processes and software architectures. These
aspects are important for the different users of the models:
business analysts, information systems analysts, architects,
developers and testers.

Application of SoS, originally identified in the defense
environment, is now much broader and still expanding
[15]. The relevance of SoS concepts for any organization,
public or private, seeking to attain competitive advantage

through leveraging of information technology systems has
been early recognized [16]. In spite of that, as far as we
know, the application in the context of industrial
information system is not a common practice.

What is significant in our experience report is not the
use of novel concepts, methods or tools, but the example of
application of SoS to a field that can strongly benefit. Our
experience report is specific, but the structure of the
information system and the management problems coming
from the complexities of many interacting and relatively
independent software applications are common to many IT
departments of other industrial sectors.

REFERENCES
[1] J. Boardman and B. Sauser, “System of systems - the meaning of

of”. In Proceedings of IEEE/SMC Int. Conf. on System of Systems
Engineering, pp. 118-123, 2006.

[2] I. G. Vargas, T. Gottardi, and R. T. Vaccare Braga, “Approaches
for integration in system of systems: a systematic review”.
In Proceedings of the 4th International Workshop on Software
Engineering for Systems-of-Systems (SESoS '16). ACM, pp. 32-
38, 2016.

[3] C. B. Nielsen, P. G. Larsen, J. Fitzgerald, J. Woodcock, J. Peleska,
“Systems of Systems Engineering: Basic Concepts, Model-Based
Techniques, and Research Directions”. In ACM Comput. Surv. 48,
2, pp. 1-41, 2015.

[4] B. Merkle, “Stop the software architecture erosion”. In Proceedings
of the ACM International Conference Companion on Object
Oriented Programming Systems Languages and Applications
Companion, OOPSLA ’10, ACM, pp 295–297, 2010.

[5] D. Oprea, G. Mesnita, The Information Systems Documentation -
Another Problem for Project Management. Managing Information
in the Digital Economy: Issues and Solutions. In Proceedings of the
6th Ibima Conf., Khalid S. Soliman, ed., pp. 332-338, IBIMA, 2006

[6] J. M. Carroll, “The Nurnberg Funnel: Designing Minimalist
Instruction for Practical Computer Skill”. MIT Press, Cambridge,
MA, USA, 1990.

[7] A. Rüping, “Agile Documentation - A Pattern Guide to Producing
Lightweight Documents for Software Projects”, John Wiley &
Sons, 2003.

[8] P. Salvaneschi, “The evolution of Information Systems a case
study on document management”. In Proceedings of IEEE 27th
International Conference on Software Maintenance, ICSM,
Williamsburg, VA, USA, pp 428 - 437, 2011.

[9] ArchiMate® 2.1 Specification 2012-2013 The Open Group.
http://www.opengroup.org.

[10] https://www.archimatetool.com/
[11] P. Kruchten, H. Obbink and J. Stafford, “The Past, Present, and

Future for Software Architecture”, IEEE Software, Vol. 23, Issue
2, pp. 22-30 , March-April 2006.

[12] F. Oquendo, “Software Architecture Challenges and Emerging
Research in Software-Intensive Systems-of-Systems”, Proceedings
of Software Architecture 10th European Conference, ECSA, pp. 3-
21, 2016.

[13] M. Guessi, E. Cavalcante, L. B. R. Oliveira, “Characterizing
Architecture Description Languages for Software-Intensive
Systems-of-Systems”. In Proceedings of IEEE/ACM 3rd
International Workshop on Software Engineering for Systems-of-
Systems SESoS '15, pp 12-18 2015.

[14] TOGAF® Version 9.1, http://www.opengroup.org
[15] FP7 CSA Road2SoS (Roadmaps to Systems-of-Systems

Engineering): Survey on Industrial Needs and Benefits of SoS in
Different SoS Domains: Multi-site Industrial Production
Manufacturing, Multi-modal Traffic Control, Emergency and Crisis
Management, Distributed Energy Generation and Smart Grids.
http://road2sos-project.eu/

[16] P.G. Carlock, R.E. Fenton, “System-of-Systems (SoS) Enterprise
Systems for Information-Intensive Organizations,” Systems
Engineering, Vol. 4, No. 4, pp. 242-261, 2001

