
Evolutionary Algorithms with Neural Networks
to optimize Big Data Cache

Tracolli Mirco

Ph.D. student in MATHEMATICS, COMPUTER SCIENCE, STATISTICS
at University of Florence and University of Perugia

Tutors: Marco Baioletti, Valentina Poggioni

Research grant holder at INFN section of Perugia
Tutor: Daniele Spiga

Abstract. With this project I want to develop an Artificial Intelligence
(AI) for smart data cache orchestrator. This AI will be used to optimize
the access to scientific experiment data. These Big Data will be stored
in a data-lake environment and they have to be available for different
type of tasks. I want to explore the use of Neural Networks (NNs) to
optimize the cache, also using the Evolutionary Algorithms. The NNs
with memory such as Long Short-Term Memory Networks are the best
technique to approach these kinds of data (time series). Another possi-
bility is a Generative Adversarial Network, that could benefit from the
features of evolutionary strategies during the learning phase. Reinforce-
ment learning could be exploited to have a real-time agent for the smart
cache management. Furthermore, I want to use Coevolution approach
on these networks, including the possibility to deploy the algorithm in a
distributed system. These techniques will be disclosed and analyzed to
improve the performance both in computational time and in the accuracy
of the model.

Keywords: Neuroevolution · Coevolution · Evolutionary Algorithms
· Recurrent Neural Networks · Long Short Term Memory Networks ·
Generative Adversarial Network · Reinforcement Learning · data-lake ·
Cache.

Introduction

Big Data changed the way we store, access and process information. We are dis-
tributing data in multiple sources and we still want to use them as a centralized
management. This method can raise problems due to the infrastructure network
and computational resources, e.g. denial of service problems or timeout issues,
more in general latency related issues. Among various techniques and solution,
data cache system allows mitigating problems above mentioned.

A geo-distributed cache system could be a possible solution to serve users,
particularly When computational resources are dynamically created as in the
case of opportunistic computing.

Cache systems could be created manually and configured with preplaced
data, but the best solution is an automatic environment that do all that work in



2 Tracolli Mirco

a transparent way for the end users. In this context something that auto-adapt
and reacts in the base of the actual state is necessary. For these reasons, Neural
Networks (NNs) are one of the main targets of interest.

Furthermore, an approach with Evolutionary algorithms could also be no-
table. These algorithms that are inspired by biological evolution and solve prob-
lems using a metaheuristic approach. They are usually used to find a global
optimization to a problem with several constraints.

Such algorithms operate on a population that is evolved with processes like
reproduction, mutation, recombination, selection and more, in a way similar to
what we see in Nature.

These strategies are also applied in Neuroevolution (NE) field to train Arti-
ficial Neural Networks (ANNs). Neuroevolution techniques are suitable methods
in research fields like artificial life and evolutionary robotics, especially because
they are not only bound to supervised learning algorithms. By searching the
space of solutions directly, NE can be applied to reinforcement learning prob-
lems, where neural network controllers map observations from the environment
directly to actions.

Motivation

Data management in the next few years will be a critic domain because of the
increasing size of the data. Several technical solutions already enable transparent
data access, however, processing efficiency seems a common issues. Moreover, this
effect can only increase as computing power increases. A key to minimize I/O
inefficiency would be a highly effective dynamic cache management.

A system of caches can mitigate this problem and get easier the access to
data, but it has to be also smarter than a normal cache system. Manage a dis-
tributed and on-demand group of cache requires an object that can also overcome
unpredictable events without human intervention. Neural Networks (NNs) with
memory suit this kind of problem and could be applied for a prototype of smart
cache manager.

Special classes of NNs that allow information to persist is necessary. We can
find such kind of feature in Recurrent Neural Networks (RNNs). They are born
to elaborate sequences (or stream) of data.

Another useful type of RNN are the Long Short-Term Memory networks
(LSTM)[6]. These networks are capable of learning long-term dependencies be-
cause they are explicitly designed to remember information for long periods of
time.

Using NE to evolve an ANN it could be useful to overcome to some stochastic
gradient descent limits (SGD). E.g. NE avoids the problem of vanishing error
gradients[5] that affect recurrent network learning algorithms.

Besides the most used supervised learning techniques, two different approaches
could be used: Generative adversarial networks (GANs) and Reinforcement learn-
ing (RL). The first ones are a class of generative models in which a generator is
trained to optimize a cost function that is being simultaneously learned. They



EAs with NNs to optimize Big Data Cache 3

belong to unsupervised machine learning and they are capable to generate new
data after learning from a training set. These networks could be used to forecast
cache states or to create new tests for a simulation.

Reinforcement learning (RL) research has seen a number of significant ad-
vances over the past few years. These advances have allowed agents to explore
several domains, such as in robotics, and not only virtual worlds like games[8].
This technique could be useful to create a reactive cache that evolves during the
time and changing in the base of the user requests.

Among Evolutionary Algorithms, there is a special class of Genetic Algo-
rithms (GAs) that uses a different strategy to evolve: Coevolution. There are
principally two different kinds of Coevolution, the cooperative one and the com-
petitive. This method is similar to a natural ecosystem where organisms struggle
for resources and survival and, e.g. it is used to face complex behaviors in GAs.

State of the Art

Optimize the content delivery with Artificial Intelligence is not a well defined
field but still there are several companies that already do that. Amazon uses AI
for Redshift service self-healing; Netflix uses an AI to improve and manage the
stream quality; Algorithmia uses a layer of AI to account resources.

A formal model have to be investigated and the classical algorithms such
Least Recently Used (LRU), Most Recently Used (MRU), Adaptive Replacement
Cache (ARC), can not forecast or guess the user requests. This kind of approach
is better suited to Neural Networks and Evolutionary Algorithms.

Regarding the Reinforcement Learning and the new type of networks avail-
able we can see in [10] that an evolutionary approach, against all expectations,
performs better on some domains and worse on others, but turn out to be a
competitive algorithm for RL.

Problem Statement and Contributions

In my master degree thesis work, I used a specific evolutionary algorithm: the
Differential Evolution (DE). The work was a part of a larger project named
DENN: an experimentation of the DE as an alternative of the Gradient Descent
to train Neural Networks in a supervised environment. The project involves
more parts and is still in progress[1]. In my thesis, I investigated some boosting
techniques used to enhance the training phase of the network. With that work,
I could experiment the behavior of such algorithm using real problems, e.g. the
handwritten digits recognition, marketing campaigns of a Portuguese banking
institution[7], biodegradation of chemicals[7] and gamma telescope images[7].

The results obtained[1] stimulated me to continue in this field, trying to
resolve the common problems I found like (i) computational time, (ii) solution
exploitation and (iii) algorithm parameters optimization.

Recently, I’m involved in the Worldwide LHC Computing Grid (WLCG)
environment because of INFN (National Institute for Nuclear Physics) related



4 Tracolli Mirco

projects. WLCG target is to access data as a data-lake[2][9] to overcome the
next storage requirements.

In fact, the amount of data will be too big that it needs to decouple data and
CPUs management. Often, the amount of data is too big that the computing
centers do not have enough space to contain all experiment data [4][3]. This
means that it’s necessary to change the paradigm and split the resources: data
will be stored on a few (highly controlled) sites and CPUs will be found elsewhere.
This type of organization, named data-lake, uses the internet as a low latency
bus to connect the computational resources with the data.

This kind of model proposed in WLCG project allows facing the increasing
resource request with the current funding used to maintain the platform. Of
course, it’s needed to manage how the data flows through the computational
clusters and for this problem caches come to support the environment. A good
managed cache layer allows to reduce the load of main data centers (avoid ”De-
nial of Service”), plus we can apply a predictive provisioning load of data and
move hot data close to the users. The AI has to be as independent as possible
to not require human intervention.

Research Methodology and Approach

The research project is divided into several phases: analysis, experiment, test
and apply. Each phase produces a piece of the final target, but they are not
fully sequential. The first steps will be used to study the main use case and to
formalize the problem. For this target, I will request access to CMS (Compact
Muon Solenoid) experiment environment at LHC (Large Hadron Collider) at
CERN. Their log data of the past years would be a good base for the analysis and
the model creation. Also, I would ask to have access to INFN national distributed
cache data, and other scenario related to the opportunistic computing.

With a proper model, I will generate a prototype to experiment and simulate
the smart cache management. I will compare the results with the log data that
I already requested and measure the performances. After that, a testbed will be
used as platform before the real application in a working environment with real
tasks.

All the phases could be iterate more than one time to adapt the model to
the desired target. The model will be as much as possible independent of the
original data used for the training. There will be created meta-features to give
as input to the artificial intelligence. The output will have the same treatment
because we want to describe the possible action that this smart cache can do
and they have to be personalized in the base of the technology implemented with
the cache and not related to a specific software.

Evaluation Plan

Cache access data are strongly time dependent. You have to treat them as a
time series. For such kind of input is needed a Neural Network with memory
such RNNs and LSTMs.



EAs with NNs to optimize Big Data Cache 5

In my research project, I would explore the use of memory within the Evo-
lutionary Algorithms. The use of GANs could be helpful to generate a correct
configuration of data cache and also to simulate future sessions.

The Neural Network model created will be compared with the current al-
gorithms used for cache management and also with the software used in the
scientific environment such CMS to manage content delivery.

The first prototype could not have directly an evolutionary approach because
I want also verify if cache management could benefit of the most recent AI
techniques.

Conclusions

Analyze and manage Big Data is not trivial and a cache system can alleviate
the effort to maintain a local storage for the data. A smart orchestration of a
distributed cache system allows users to access data more efficiently without
taking care of the opportunistic management of the resources.

Furthermore, with modern techniques, it could be possible to create adapt-
able cache according to the situation, without the human intervention.

References

1. Baioletti, M., Di Bari, G., Poggioni, V., Tracolli, M.: Can differential evolution be
an efficient engine to optimize neural networks? In proc. MOD (2017)

2. Bird, I.: Computing for the large hadron collider. Annual Review of Nuclear and
Particle Science 61, 99–118 (2011)

3. Boccali, T., Donvito, G., Diacono, D., Marzulli, G., Pompili, A., Della Ricca, G.,
Mazzoni, E., Argiro, S., Gregori, D., Grandi, C., et al.: An xrootd italian federation.
In: Journal of Physics: Conference Series. vol. 513, p. 042013. IOP Publishing
(2014)

4. Gardner, R., Hanushevsky, A., Vukotic, I., Yang, W.: Caching servers for atlas. In:
Journal of Physics: Conference Series. vol. 898, p. 062017. IOP Publishing (2017)

5. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J., et al.: Gradient flow in
recurrent nets: the difficulty of learning long-term dependencies (2001)

6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
9(8), 1735–1780 (1997)

7. Lichman, M.: UCI machine learning repository (2013), website:
http://archive.ics.uci.edu/ml

8. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level
control through deep reinforcement learning. Nature 518(7540), 529 (2015)

9. Robertson, L.: Computing services for lhc: from clusters to grids. In: From the web
to the grid and beyond, pp. 69–89. Springer (2011)

10. Such, F.P., Madhavan, V., Conti, E., Lehman, J., Stanley, K.O., Clune, J.: Deep
neuroevolution: genetic algorithms are a competitive alternative for training deep
neural networks for reinforcement learning. arXiv preprint arXiv:1712.06567 (2017)


