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Abstract. Statistical Relational Learning (SRL) deals with relational
domains, where the samples are neither independent nor uniformly dis-
tributed. Moreover, central to SRL is the integration of logical knowledge
in the learning framework. The main tasks in SRL are Collective Classi-
fication, Entity Resolution, Link Prediction and Knowledge Graph Com-
pletion. In this extended abstract we propose a new supervised learning
task called Scenarios Interpretation (SI) where a sample is a Scenario,
i.e. a set of (typically few) objects where each object and pair of objects
have its own features. The goal is to classify objects and relationships.
We propose NIoS (Neural Interpeter of Scenarios), a method for solv-
ing SI that is able to inject Prior Knowledge expressed in First Order
Logic (FOL) into a neural network model. We implemented a first ver-
sion and tested it on Visual Relationship Detection task (VRD) showing
that NIoS outperformed state of the art systems.

1 Introduction

SRL focus on exploiting relationships between different entities and it is charac-
terized by the presence of given constraints that are often expressed as a logical
knowledge base. Generally in SRL tasks a graph or a subset of it is given and the
focal point is finding a classification for the graph itself or for nodes or edges.

We define Scenarios Interpretation (SI), a new SRL task where a Scenario
is given (i.e. a set of features for objects and pairs) and the aim is to find an
Interpretation, i.e. a labeled directed graph with objects as nodes where labels
represent classes and relations. On the best of our knowledge this is the first
SRL task where the prediction is an entire graph. For instance, in Collective
Classification [6] the aim is to find a classification for the nodes (with relations
given) while in Link Prediction [4] the focus is on finding missing relations. SI
can be seen as a generalization of both tasks, considering that we aim at finding
both classes and relations at the same time.

SI could have many applications in different fields, like Image Processing,
NLP, Bioinformatics. In this extended abstract we will focus on VRD (Visual
Relationship Detection) [3, 5, 13] where an image can be seen as a Scenario with
bounding boxes as objects3. We are interested in finding triplets of the form
3 A similar task is the Scene Graph Generation [11], that can also be seen as a specific

instance of SI
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〈subj, rel, obj〉. Together with visual data we have some prior knowledge ex-
pressed as logic formulas (e.g. Wear(x, y)→ Person(x)).

Among the SRL approaches that exploit logical knowledge, there are Logic
Tensor Network (LTN) [8], Semantic Based Regularization (SBR) [2] and Markov
Logic Network (MLN) [7]. We propose NIoS, a method for injecting FOL clauses
inside a neural network model that can deal with the graph structure of scenarios.
The main difference with its major competitors is on the way logic formulas are
used: in NIoS they become part of the predictors instead of being used during
training. In particular, methods like LTN or SBR force the constraint satisfaction
during training making the assumption that the knowledge is in general correct.
Instead, we assume there is a relationship between clauses and correct results,
but this relationship is not known. The logical constraint are seen as a Prior
Belief rather than Prior Knowledge. More in details, NIoS has internal learnable
parameters associated to the logic formulas. In this extent, the most similar
approaches to ours are probably (Hybrid) Markov Logic Networks [10, 7] and
Probabilistic Soft Logic (PSL) [1] where the formulas weights are learned.

We tested NIoS for the Predicate Detection subtask of VRD on the Visual
Relationship Dataset [5] (VRD Dataset) where we outperformed state of the art
results, in particular on the Zero Shot Learning evaluation.

2 Scenarios Interpretation task

A scenario S ∈ S is a triple composed of a set of objects O and two functions
u : O → Rk and b : O × O → Rl. An interpretation of a scenario S is a pair
I = 〈lo, lr〉

lo : O × C → [0, 1] lr : O ×R×O → [0, 1]
where C and R are two disjoint sets of symbols for classes and relations respec-
tively. The set of all interpretation is I, the set of interpretations of a particular
scenario S is IS . A constraint is a clause in First Order Logic where unary
predicates are in C and binary predicates are in R.

Let I∗ : S→ I be a function that returns a correct interpretation of a scenario
(I∗(S) ∈ IS). Given a training set composed of scenarios and corresponding
correct interpretation

(
S(i), I∗(S(i))

)n

i=1 and a tuple of clauses K = 〈c1, . . . , cm〉
representing the Prior Knowledge, the SI task is the problem of finding a function
that predicts correct interpretations of unseen scenarios. In particular, we want
to find a function ĨK parametrized by weights of clauses in K, that given a
Scenario returns an interpretation that minimize the error in the training set:

ĨK = argmin
IK

n∑
i=1
L(IK(S(i)), I∗(S(i))) (1)

where L : IS × IS → R+ is a function that returns a similarity score of two
Interpretations. In our first implementation we used the L2 loss function:

L(Ip, It) =
∑
o∈O
c∈C

(lpo(o)− lto(o))2 +
∑

(o1,o2)∈O2

r∈R

(lpr(o1, r, o2)− ltr(o1, r, o2))2
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where It and Ip are the true and predicted interpretations.

3 NIoS: overview of the model

NIoS (Neural Interpreter of Scenarios) is a method for injecting logical knowledge
into a Neural Network (NN). The original NN takes a Scenario as input and
returns an initial Interpretation that is changed by a function, called Global
Enhancer (GE), that modifies the initial predictions by enforcing the satisfaction
of the logical constraints. The function must be differentiable and it can be
seen as a new final layer for the original neural network. The entire network is
still differentiable end-to-end, making it possible to train the model with back-
propagation algorithm. GE contains additional parameters that can be learned
as well. In particular clause weights determine the strength of each clause.
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Fig. 1: NIoS model: an example with four predicates and two clauses. Figure (a): Global
Enhancer ; Figure (b): Clause Enhancer.

Fig. 1(a) show GE implementation: it takes as input the preactivations z of
the original neural network and produces the final activations y.

The GE contains a Clause Enhancer (CE) for each clause c ∈ K which returns
δc

z, an adjustment to apply on preactivations to enforce c satisfaction. The CEs
outputs are then combined linearly using clauses weights and summed to the
initial preactivations. Lastly, the final predictions are calculated by applying the
logistic function:

y = σ
(
z +

∑
c∈K

wc · δc
z

)
where wc is the weight associated to clause c. Notice that setting wc to zero
make clause c irrelevant for the final predictions.

Fig. 1(b) shows current implementation of the CE. It is composed of a pre-
elaboration step that select literals which appear in the clause (i.e. remove the
absent predicates and change the sign of the negated ones). The next step applies
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the softmax function to the literals values. Intuitively, the idea is that, in order
to satisfy a clause, at least one of its literal must be true. The softmax function
act as a selector for the most promising true literal, that is the one with higher
supporting evidences (biggest preactivation). Finally there is a post-elaboration
step that works in reverse of the pre-elaboration (it sets the absent predicates
adjustments to zero and change the sign of the negated ones).

4 Experimental evaluation

Visual Relationship Detection (VRD) is the task of finding objects in an image
and capture their interactions [3, 5, 13]. It is composed of three subtask: Re-
lationship Detection, Phrase Detection and Predicate Detection [5]. The VRD
Dataset contains 100 classes for objects and 70 types of relations. It is composed
of 4000 images for training and 1000 for testing with a total of 6672 triplets
types. Among them 1877 can be find only in the Test Set and predicting them is
the goal of the Zero Shot Learning variant of the task. For evaluating the results
we used the Recall@n (n ∈ {50, 100}) metric proposed by Lu et al. [5] that is
the percentage of times a correct relationship is found on the n predictions with
highest score.

We evaluated NIoS on the Predicate Detection task using the knowledge
base of [3]. We implemented NIoS using TensorFlow. As original NN we used a
neural network with zero hidden layers and trained the entire network (original
NN + GE) end-to-end using RMSProp [9]. Results are shown in Table 1.

Standard L. Zero Shot L.
R@50 R@100 R@50 R@100

Lu et al.[5] 47.87 47.87 8.45 8.45
LTN[3] 78.63 91.88 46.28 70.15
Yu et al.[12] 85.64 94.65 54.20 74.65
NIoS 86.02 91.91 68.95 83.83

Table 1: Results on VRD Predicate Detection task

NIoS outperformed other methods on all the metrics except for Recall@100
where it is surpassed by Yu et Al. [12]. The best results can be seen on the
Zero Shot Learning task, where the difference between NIoS and the second best
system is more than 10%. In Zero Shot Learning the aim is to predict previously
unseen triplets, therefore it is rather difficult to learn to predict them from the
Training Set. This confirms the ability of NIoS to use the Knowledge Base.

Another interesting result is the value obtained by NIoS compared to LTN[3].
In particular considering that the two works used the same Prior Knowledge.
A possible explanation is given by the ability of NIoS to learn clause weights.
Indeed, many weights results to be zero after learning. An example of a zero
weighted clause is: ¬Ride(x, y) ∨On(x, y).

Although the rule seems correct it is not in general satisfied on training and
test set. This is because labels have been added manually, therefore there are
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plenty of missing relations. The hypothesis is that people have a tendency to
add the most informative labels making some of the clauses unsatisfied.

5 Conclusions

We proposed SI, a new SRL task where the goal is to predict an entire graph,
and we developed NIoS, a method for solving SI that can deal with learning
in presence of a FOL Prior Knowledge. We reframed the VRD task as a SI
instance and evaluated NIoS on it. With its results on VRD, NIoS showed to
be competitive against other approaches, in particular tanks to its ability to
effectively learn clauses weights.
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