
Deep Learning for Probabilistic Logic
Programming

Arnaud Nguembang Fadja1

Supervisors: Fabrizio Riguzzi2, Evelina Lamma1

1 Dipartimento di Ingegneria – University of Ferrara
2 Dipartimento di Matematica e Informatica – University of Ferrara

Via Saragat 1, I-44122, Ferrara, Italy
[arnaud.nguembafadja,fabrizio.riguzzi,evelina.lamma]@unife.it

Abstract. Due to its expressiveness and intuitiveness, Probabilistic logic
programming (PLP) is a useful tool for reasoning in relational domains
with uncertainty. However, both inference and learning are expensive
tasks. In this paper we present various approaches for speeding up learn-
ing. We first consider a restriction of PLP called Liftable PLP (LPLP) in
which clauses in the program share the same predicate (the target). Then
we extend this restriction in Hierarchical PLP (HPLP) where predicates
and clauses are hierarchically organized and can be translated into Deep
Neural Networks or Arithmetic Circuits. For LPLP, we propose two pa-
rameter learning algorithms, Expectation Maximization (EM) and Lim-
ited memory BFGS (LBFGS), and a discriminative structure learning.
We also propose and implement an algorithm, called Parameter learning
for HIerarchical probabilistic Logic program (PHIL) 3 that learns the
parameter of HPLP using EM and gradient method.

Keywords: Probabilistic Logic Programming, Hierarchical PLP, Liftable
PLP, Deep Neural Networks, Arithmetic Circuits.

1 Introduction

Probabilistic logic programming (PLP) under the distribution semantics [8] has
been very useful in machine learning. However, inference is expensive so machine
learning algorithms may turn out to be slow. In Logic Programs with Annotated
Disjunctions (LPADs) [9], programs allow alternatives in the head of clauses.
Clauses, Ci, are of the form hi1 : πi1; . . . ;hini : πini :− bi1, . . . , bimi where
hi1, . . . , hini are logical atoms, bi1, . . . , bimi are logical literals and
πi1, . . . , πini

are real numbers in the interval [0, 1] that sum up to 1. In order to
speed up the inference and the learning in PLP, we consider two restrictions of
LPADs: in the first, called Liftable PLP (LPLP), clauses in the program share
the same predicate (the target) and inference is performed by reasoning on a
whole populations of individuals rather than considering each individual sepa-
rately [7]. In the second, called Hierarchical PLP (HPLP), see [3] clauses and

3 The code and the datasets are available at https://github.com/ArnaudFadja/phil.

https://github.com/ArnaudFadja/phil

predicates are hierarchically organized and can be translated into an arithmetic
circuit (AC) or a deep neural network. Inference in this case is done by evaluating
the Network or the Arithmetic circuit. Parameter learning in both approaches
can be done by applying gradient method or Expectation Maximization (EM)
algorithms.

The paper is organized as follows: Sections 2 and 3 present Liftable PLP and
Hierarchical PLP. Section 4 presents parameter learning of LPLP and HPLP
and structure learning for LPLP. Finally Section 5 concludes and presents future
work.

2 Liftable PLP

In order to improve inference in LPADs, we restrict the language of LPADs by
allowing only clauses of the form Ci = hi : Πi :− bi1, . . . , biui

in the program
where all the clauses share the same predicate for the single atom in the head, let
us call this predicate r/a with a the arity. The literals in the body have predicates
other than r/a and are defined by facts and rules that are certain, i.e., they have
a single atom in the head with probability 1. The predicate r/a is called target
and the others input predicates. A program containing n probabilistic clauses of
the form above is called liftable PLP. The probability of a query q being true
can be compute at liftable level with P (q) = 1 −

∏n
i=1(1 −Πi)

mi as described
[4] where n is the number of clauses and mi the number of ground instances of
each clause. Here is an example of LPLP where the objective is to predict the
target predicate “advised by”

advisedby(A,B) : 0.3 :−
student(A), professor(B), project(C,A), project(C,B).

advisedby(A,B) : 0.6 :−
student(A), professor(B), ta(C,A), taughtby(C,B).

3 Hierarchical PLP

HPLP extends LPLP by adding more layers of rules. In fact, a program in
HPLP contains a set of rules that define the target predicate r using a number of
input and hidden predicates. Hidden predicates are disjoint from input and target
predicates. Each rule in the program has a single head atom annotated with a
probability. The program is hierarchically defined so that it can be divided into
layers. Each layer contains a set of hidden predicates that are defined in terms
of predicates of the layer immediately below or in terms of input predicates.

A generic clauses C is of the form

C = p(X) : π :− φ(X,Y), b1(X,Y), . . . , bm(X,Y) (1)

where φ(X,Y) is a conjunction of literals for the input predicates using variables
X,Y . The literals bi(X,Y) for i = 1, . . . ,m are built on a hidden predicate.

2

Y is a possibly empty vector of variables. They are existentially quantified with
scope the body. Only literals for input predicates can introduce new variables
into the clause and all literals for hidden predicates must use the whole set of
variables X,Y . Moreover, we require that the predicate of each bi(X,Y) does
not appear elsewhere in the body of C or in the body of any other clause. We
call hierarchical PLP the language that admits only programs of this form. An
example of HPLP is shown in the following program:

C1 = advisedby(A,B) : 0.3 :−
student(A), professor(B), project(C,A), project(C,B),
r11(A,B,C).

C2 = advisedby(A,B) : 0.6 :−
student(A), professor(B), ta(C,A), taughtby(C,B).

C111 = r11(A,B,C) : 0.2 :−
publication(D,A,C), publication(D,B,C).

where r11/3 is a hidden predicate.

The grounding of an HPLP can be generated and translated into Arithmetic
Circuits (ACs) sharing parameters. In the AC we define 2 operators: the operator
× that computes the joint probability of its arguments (literals in the body of
a clause) and the operator ⊕ that computes the probability of the disjunction
of n independent random variables associated with individual clauses.

4 Parameter and Structure Learning

The parameter learning algorithm can be expressed as follows: Given a LPLP or
an HPLP T with parameters Π, an interpretation I defining input predicates and
a set of positive and negative examples E = {e1, . . . , eM ,not eM+1, . . . ,not eN}
where each ei is a ground atom for the target predicate r, find the values of Π
that maximize the (log) likelihood (LL):

arg max
Π

M∑
i=1

logP (ei) +

N∑
i=M+1

log(1− P (ei)) (2)

or that minimize the sum of cross entropy errors, erri = −yi log(pi) − (1 −
yi) log(1 − pi), for all the examples (the two formulations are equivalent). We
propose an EM and a gradient method algorithm for each language.

EM finds the maximun likelihood estimates of parameters in models with
hidden variables by alternating between an Expectation and a Maximization
step. Gradient method instead computes the partial derivatives of the (log) like-
lihood w.r.t each parameter in order to move the parameters in the direction that
minimize the (log) likelihood. Let Xij be the random variable associated with a
grounding Ciθj of clause Ci. To perform EM we need to compute the distribu-
tion of the hidden variables given the observed ones, that are P (Xij = 1|e) and
P (Xij = 1|¬e). For a single example e, the Expectation step computes E[ci0|e]
and E[ci1|e] for all rules Ci where cix is the number of times a variable Xij takes

3

value x for x ∈ {0, 1} and for all j ∈ g(i) i.e

E[cix|e] =
∑
j∈g(i)

P (Xij = x|e)

where g(i) = {j|θj is a substitution grounding Ci}. These values are aggregated
over all examples obtaining E[ci0] =

∑
e∈E

∑
j∈g(i) P (Xij = 0|e) and E[ci1] =∑

e∈E
∑
j∈g(i) P (Xij = 1|e).

Then the Maximization computes

πi =
E[ci1]

E[ci0] + E[ci1]
(3)

For LPLP, see [4], we have:

P (Xij = 1|e) = Πi

1−
∏n

i=1(1−Πi)mi

P (Xij = 1|¬e) = 0

where mi is the number of instanciation of Ci whose head is e and Πi the
parameter associate with Ci.

In HPLP, P (Xij = 1|e) is computed by performing two steps over the factor
graph associated with the AC as described in [5]

We also propose a gradient method algorithm for LPLP and HPLP.
In LPLP, we present a gradient-based method using LBFGS ([6]), see [4].
For HPLP, the algorithm, called DPHIL [1], starts by building a set of ground

ACs sharing parameters Π. At each iteration, three actions are performed on
each AC: the Forward pass computes the output v(n) of each node n in the
AC, the Backward pass computes the derivative of the error d(n) 4, that is the
gradient, with respect to each parameter

d(n) =

d(pan) v(pan)v(n) if n is a

⊕
node,

d(pan) 1−v(pan)
1−v(n) if n is a × node∑

pan
d(pan).v(pan).(1− πi) if n=σ(Wi)

−d(pan) pan = not(n)

(4)

where pan is the parent of node n and πi = σ(Wi) = 1
1+e−Wi

. Parameters are
updated using Adam the optimizer. These actions are repeatedly performed until
a maximum number of steps is reached or until certain conditions are satisfied.

For LPLP we present a discriminative structure learning called LIFTCOVER
[4] 4 which, from a set of positive and negative examples, a background knowledge
and language bias (defining which predicates can appear in the head/body of a
clause) finds a liftable PLP that maximize the LL of the examples. We solve this
problem by first identifying good clauses guided by the LL. Clauses are found by

4 The code and the datasets are available at https://bitbucket.org/

machinelearningunife/liftcover.

4

https://bitbucket.org/machinelearningunife/liftcover
https://bitbucket.org/machinelearningunife/liftcover

a top-down beam search. The refinement operator adds a literal to the body of
the current clause, the literal is taken from a bottom clause built as in Progol [2].
The set of clauses found in this phase is then considered as a single theory and
parameter learning is performed on it. Then the clauses with a parameter below a
user define threshold are discarded and the theory is returned. We experimented
and compare these algorithms with state-of-the-art learning algorithms and we
obtained similar and often better accuracy in a shorter time.

5 Conclusion and Future Work

In this paper we presented two restrictions of the language of Logic Program
with Annotated Disjunction called Liftable and Hierarchical Probabilistic Logic
Programming (LPLP and HPLP) that allow fast inference. We also presented
an Expectation Maximization and a gradient method algorithm for learning the
parameters of both languages. Finally we presented, LIFTCOVER, an algorithm
for learning the structure of LPLP. In our future work, we plan to design an
implement an algorithm for learning both the parameters and the structure of
HPLP. We also plan to learn programs with continuous random variables for
HPLP in order to deal with continuous data such as images.

References

1. Fadja, A.N., Riguzzi, F., Lamma, E.: Learning the parameters of deep probabilistic
logic programs. In: Bellodi, E., Schrijvers, T. (eds.) Probabilistic Logic Programming
(PLP 2018). CEUR Workshop Proceedings, vol. 2219, pp. 9–14. Sun SITE Central
Europe, Aachen, Germany (2018)

2. Muggleton, S.: Inverse entailment and Progol. New Generat. Comput. 13, 245–286
(1995)

3. Nguembang Fadja, A., Lamma, E., Riguzzi, F.: Deep probabilistic logic program-
ming. CEUR-WS, vol. 1916, pp. 3–14. Sun SITE Central Europe (2017)

4. Nguembang Fadja, A., Riguzzi, F.: Lifted discriminative learning of probabilis-
tic logic programs. Machine Learning (Aug 2018), https://doi.org/10.1007/

s10994-018-5750-0
5. Nguembang Fadja, A., Riguzzi, F., Lamma, E.: Expectation maximization in deep

probabilistic logic programming. In: Ghidini, C., Magnini, B., Passerini, A. (eds.)
Proceedings of the 17th Conference of the Italian Association for Artificial Intelli-
gence (AI*IA2018), Trento, Italy, 20-23 November, 2018. Lecture Notes in Computer
Science, Springer, Heidelberg, Germany (2018), http://mcs.unife.it/~friguzzi/
Papers/NguRigLam-AIXIA18.pdf

6. Nocedal, J.: Updating quasi-newton matrices with limited storage. Math. Comput.
35(151), 773–782 (1980)

7. Poole, D.: First-order probabilistic inference. In: Gottlob, G., Walsh, T. (eds.)
IJCAI-2003. pp. 985–991. Morgan Kaufmann Publishers (2003)

8. Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: Sterling, L. (ed.) ICLP-1995. pp. 715–729. MIT Press (1995)

9. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic Programs With Annotated
Disjunctions. In: ICLP-2004. LNCS, vol. 3132, pp. 431–445. Springer (2004)

5

https://doi.org/10.1007/s10994-018-5750-0
https://doi.org/10.1007/s10994-018-5750-0
http://mcs.unife.it/~friguzzi/Papers/NguRigLam-AIXIA18.pdf
http://mcs.unife.it/~friguzzi/Papers/NguRigLam-AIXIA18.pdf

	Deep Learning for Probabilistic Logic Programming

