
AUTOMS: Automated Ontology Mapping through
Synthesis of methods

Konstantinos Kotis, Alexandros Valarakos, George Vouros

AI Lab, Information and Communication Systems Eng. Department, University of the Aegean,

Samos, 83 200, Greece
kkot@aegean.gr, alexv@aegean.gr, georgev@aegean.gr

Abstract. AUTOMS is a tool for the automatic alignment of domain
ontologies. To ensure high precision and recall with the minimum human
involvement, AUTOMS integrates several matching methods. This paper
presents the tool and the results obtained for the ontologies within the
framework of the OAEI 2006 contest. Particularly, the synthesis of lexical,
semantic and structural matching methods, together with the exploitation of
concept instances resulted in a rather high recall with space of improvement,
and a quite high precision that shows the accuracy of the individual methods, as
well as of their synthesis.

1 Presentation of the system

1.1 State, purpose, general statement

In this paper we present the AUTOMS tool for the automatic alignment of ontologies.
The proposed tool exploits the HCONE-merge [1] ontology mapping method, which
is based on “uncovering” the informal intended meaning of concepts by mapping
them to WordNet senses. Furthermore, AUTOMS integrates the HCONE-merge
method with an innovative lexical matcher named COCLU (COmpression-based
CLUstering) [2], as well as with matching heuristics that exploit structural features of
the source ontologies. The synthesis of these methods contributes towards automating
the mapping process of concepts and properties of OWL ontologies, by exploiting
different features of them: lexical, structural and semantic features.

The WordNet lexicon and concept instances provide additional information
towards unveiling mappings in cases where features such as labels and comments are
missing or in cases where names are replaced by random strings. Structure matching
heuristic rules are exploited to discover mappings in situations where lexical and
semantic methods do not have enough information to proceed.

AUTOMS provides mappings between concept/property pairs with high precision.
However, it must be stated that it does not achieve a satisfactory recall for the
experiments contacted. This suggests that further improvements are necessary both to
the individual methods as well as to the sophistication of the synthesis of results.

Since the execution times for obtaining these results using OAEI contest’s benchmark
ontologies were quite high, a trade-off between lower time and better results was to be
made.

Finally, it must be stated that AUTOMS has been improved much due to the
experience gained within the OAEI contest.

1.2 Specific techniques used

The methods integrated within AUTOMS run in a particular sequence: Mappings
computed by a method are being exploited by subsequent methods so as new
mappings to be produced. The following paragraphs present the individual methods in
the sequence of their execution.

AUTOMS is mainly based on its lexical matching method, which is applied first in
the sequence of the methods employed. COCLU exploits lexical information
concerning names, labels and comments of ontologies’ concepts and properties, in
order to compute their similarity. Although labels are considered the most important,
comments and names are also examined. COCLU was originally proposed as a
method for discovering typographic similarities between strings, sequences of
characters over an alphabet (ASCII or UTF character set), with the aim to reveal the
similarity of concepts instances’ lexicalizations during ontology population [2]. It is a
partition-based clustering algorithm which divides data into clusters and searches the
space of possible clusters using a greedy heuristic. Each cluster is represented by a
model, rather than by the collection of data assigned to it. The cluster model is
realized by a corresponding Huffman tree which is incrementally constructed as the
algorithm dynamically generates and updates the clusters by processing one string
(instance’s surface appearance) at a time. The use of a model classifies the algorithm
to the conceptual or model based learning algorithms. To decide whether a new string
should be added in a cluster (and therefore, that it lexicalizes the same class/property
as the other strings in the cluster do) the algorithm employs a score function that
measures the compactness and homogeneity of a cluster. This score function, Cluster
Code Difference (CCDiff), is defined as the difference of the summed length of the
coded string tokens that are members of the cluster, and the length of the cluster when
it is updated with the candidate string. This score function groups together strings that
contain the same set of frequent characters according to the model of a cluster (e.g.
Pentium III and PIII). A string that lexicalizes an OWL class or property belongs in a
particular cluster when its CCDiff is below a specific threshold and it is the smallest
between the CCDiff’s of the given string and all existing clusters. Based on our
experience with COCLU, the similarity threshold (ranging in [0,1]) was set to 0.986.
A new cluster is created if the candidate string cannot be assigned to any of the
existing clusters. As a result, it is possible to use the algorithm even when no initial
clusters are available.

Next to the computation of the lexically matching pairs is the computation of the
semantic morphism (s-morphism) which is the core technique behind the HCONE-
merge method. Given two ontologies, the algorithm computes a morphism between
each of these two ontologies and a “hidden intermediate” ontology. This morphism is
computed by the Latent Semantic Indexing (LSI) method and associates ontology

concepts with WordNet senses. Latent Semantic Indexing (LSI) [4] is a vector space
technique originally proposed for information retrieval and indexing. It assumes that
there is an underlying latent semantic space that it estimates by means of statistical
techniques using an association matrix (n×m) of term-document data (WordNet
senses in our case). It must be emphasized that although LSI exploits structural
information of ontologies and WordNet, it ends up with semantic associations
between terms. As it is specified in the HCONE-merge approach, WordNet is not
considered to include any intermediate ontology, as this would be very restrictive for
the specification of the original ontologies (i.e. the method would work only for those
ontologies that preserve the inclusion relations among WordNet senses). Actually, it
is assumed that the intermediate ontology is “hidden” and the method constructs this
ontology while mapping concepts to the WordNet senses. We have used WordNet
since it is a well-thought and widely available lexical resource with a large number of
entries and semantic relations.

The mappings computed by the lexical and semantic matching methods are then
used as input to a simple structural matching algorithm which exploits similarities in
the vicinities of concepts/properties. Here, the vicinity of a concept/property includes
only the subsumers and subsumees. The matching method has been implemented to
improve the performance of the lexical and semantic matching methods by exploiting
simple structural features. Consider the matching between two concepts c1 and c2 of
source ontologies O1 and O2, respectively. The heuristic is: “if at least two neighbor
concepts of c1 have already been (lexically or semantically) mapped to two neighbor
concepts of c2 such that the mappings respect the ontology axioms of inclusion and
equivalence, i.e. a sub-concept of c1 has been mapped to a sub-concept of c2, then c1
and c2 are consider to structurally match”. The threshold of two (2) neighbor concepts
has been considered after conducting several experiments. It should be noticed that
further in the alignment process, AUTOMS uses an enhanced structure matching
method that runs iteratively using the mappings of all the methods. This method
expands the vicinity of concepts to include object properties as well.

The fourth method in sequence utilizes concept instances (individuals).
Particularly, for the concepts that have not been determined to be similar to any other
concept, AUTOMS compares their individuals, if any. For those concept pairs that
have at least one matching instance, AUTOMS discovers a possible mapping. The
matching of concept instances is currently based on the similarity of their local
names, which is their Uniform Resource Identifier (URI).

The fifth method utilizes information about properties. For the concepts that have
not been determined to be similar to any other concept, AUTOMS compares their
properties, if any. For those concept pairs that have at least two matching properties,
AUTOMS identifies a possible mapping. The matching of object properties is based
on the similarity of their property names, as well as on the similarities of their domain
and range.

The final step in the alignment process is the execution of an enhanced iterative
structure matching method. This method uses the proposed matching pairs from all
the previous methods in order to compute mappings based on concepts’ enhanced
vicinity: The enhanced vicinity of the concept includes all the concepts related to it.
This method runs iteratively for 2 times, updating the list of proposed matching pairs
with the pairs discovered in each iteration. It has been observed during the specific

benchmark experiments that although new mappings are discovered in each iteration,
there is no change to the set of mappings after the second execution. Further
experimentation and investigation is needed for improving this method.

1.3 Adaptations made for the evaluation

AUTOMS is an evolving tool that integrates new methods, which are being tested in
new cases. The OAEI contest provides challenging cases that require the exploitation
of special features for AUTOMS (and any other tool) to perform efficiently and
effectively.

Specific adaptations have been made with respect to the utilization of ‘comments’,
to the existence of the ‘lang’ property, and to the use of ‘random strings’ for
concept/property names.

Implementation adjustments have also been made in order to be able to run large
sets of ontologies in short time. Furthermore, AUTOMS has been modified in order to
be able to produce alignments in the form that OAEI contest requires. The evaluation
of the results however has been performed using organizers’ Alignment API (version
2.4)

It must be noticed that for the purposes of the contest the alignment output files
for ontologies 302 and 303 need to be manually fixed: The <onto2> entry (the
ontology file location) value must be replaced with
http://oaei.ontologymatching.org/2006/benchmarks/302/onto.rdf and
http://oaei.ontologymatching.org/2006/benchmarks/303/onto.rdf, respectively.

1.4 Link to the system and parameters file

http://www.icsd.aegean.gr/incosys_old/Projects/AUTOMS/OAEI/system/automs.zip

1.5 Link to the set of provided alignments (in align format)

http://www.icsd.aegean.gr/incosys_old/Projects/AUTOMS/OAEI/results/automs.zip

2 Results

Results produced with AUTOMS for the 2006 OAEI contest are grouped and
discussed below. These results were produced with a stand-alone Java version of
AUTOMS on a standard Windows-based PC (2.4 GHz processor). Resulted
alignments are sets of pairs of mappings, i.e. of equivalent (symb. =)
concepts/properties.

2.1 Benchmark

2.1.1 Tests 101 to 104

Although these ontologies have no special features or difficulties for aligning them,
AUTOMS looses in precision due to its lexical method. This is because COCLU
compares first the labels of concepts/properties for their similarity, and finds 3
mappings: “number = numberOrVolume”, “collection = book”, “name = shortName”.
As already pointed, although labels are considered the most important for COCLU,
comments and names are also compared if labels’ similarity value is less than the
specified threshold.

The semantic and structure matching methods return pairs that have already being
computed by the lexical matching method, with no problems in precision. Instance
and property matching methods do not contribute any mapping.

Language generalization and restriction features (103, and 104 ontologies) do not
affect the results.

2.1.2 Test 201 to 210

Each case of this group of tests should be presented separately in order to thoroughly
discuss the importance of each of the methods that AUTOMS integrates. We will
point here to the most important issues and briefly comment each of them.

Ontologies with no names, which is the case where names have been replaced by
random strings or synonyms or naming conventions or even foreign names, but with
comments in place (ontologies 201, 204, 205, 206 and 207) do not cause serious
problems in AUTOMS. In fact, the exploitation of the comments and the utilization of
instances, as well as the mappings computed by the semantic and structure methods,
result in recall that ranges from 0.66 to 1.00 and in precision that ranges from 0.94 to
0.97.

The alignment of ontologies with the above features and with no comments
(ontologies 202, 209 and 210) resulted to low recall ranging from 0.10 to 0.33. The
mappings were mainly contributed by the lexical method (ontologies 202, 209, and
210) and the instance matching method (ontology 202), and less by the semantic
matching (ontology 209) and the enhanced structure matching method (ontology 209).
Although we expected the semantic method with the use of WordNet 2.0 lexicon to
unveil more mappings, it identified the pairs “Booklet = Brochure” and “Monograph
= Monography”. This can be explained by the nature of most of the concept/property
names (i.e. the use of compound terms or naming conventions), and by the
amount/quality of information included in the vicinity of each concept/property.

Alignments of ontologies 203 and 208 have been easily produced by AUTOMS:
the lack of comments did not affect much the performance. The use of labels and
names, even with conventions, resulted to high precision and recall (1.00) for the
ontology 203 and to precision 1.00 and recall 0.73 for the ontology 208. The

exploitation of instances and the enhanced structure matching method have revealed
the mappings produced for the ontology 208.

2.1.3 Test 221 to 247

Names, labels, and comments in these ontologies have no special features that may
distract the alignment: These ontologies resulted from modifications in structure and
the addition of instances or/and properties. That is why the recall in all test cases is
1.00. Precision is influenced by some mistakenly returned (false positive) mappings.
However it does not fall under 0.87 (247 ontology), with a maximum of 1.00 in some
cases (228, 233, 236 and 241 ontologies). The worst case (247 ontology) is due to
false positives returned from the lexical matching algorithm and the pair “Conference
= Workshop” produced by the instance matching method.

2.1.4 Test 248 to 266

These are the most difficult tests for AUTOMS since names, labels, and comments
have been removed or replaced by random strings. The lexical matching method
contributed only one mapping, i.e. the “lastName = lastName”. Since only the
instance matching method contributed in this set of alignments, the recall measure
ranges from 0.10 to 0.31. The structure matching method did no contribute any
mapping. The precision however is far more satisfactory, ranging from 0.82 to 1.00.

2.1.5 Test 301 to 304

Apart from ontology 304, for which the structure matching method contributed a
significant number of mappings, all the mappings for these tests were computed by
the lexical matching method. This fact has a negative impact to the recall measure;
however precision was kept again above 0.86. The absence of concept instances,
together with the fact that no semantic mappings have been computed, played a major
role in the low recall measure.

2.2 Anatomy

We were not able to run this test due to the large size of ontology files.

2.4 Directory

We were able to run tests with the directory ontologies since they were given in OWL
and they had a manageable size. For running this test we had to split the given
ontology set in smaller sets since me experienced problems with the heap in Java
(although we had used the Xmx1000M parameter). Minor adjustments to the code of
AUTOMS had to be done since COCLU could not handle concept names of length 1

(e.g. ‘A’ or ‘B’) and names with numbers (e.g. ‘1990s’). The tool computed mappings
between concept/property pairs, but since we had no expert mappings to evaluate our
results, we can only wait for OAEI 2006 organizers’ comments.

Our observations concerning the alignments computed by AUTOMS (randomly
browsing some of the 4.639) are limited to the fact that these were mainly based on
the lexical matching method, secondly on the semantic matching method (e.g. “
Economics = Political_Economy ”, “ Arts = Humanities ”) and less to the structure
matching method (e.g. “Regional = By_region”). Since this test was mainly addressed
to discover mappings by exploiting subsumption relations, AUTOMS should have
integrated a more elaborated structure matching method. Furthermore, since
ontologies have no concept instances and properties, the related methods returned no
mappings.

2.5 Food

We were not able to run this test due to the large size of the ontology file, as well as
due to the inability of AUTOMS to import ontologies in the SKOL language.

2.6 Conference

For the purpose of this test, we run 3 separate tests, aligning the three larger
ontologies (Ekaw, Iasted and OpenConf) to each of the set. Equivalences between
concepts/properties were identified. The instances matching method of AUTOMS did
not return any mappings, since ontologies were not populated with concept instances.

The three different sets of outputs (total of 30 alignment files in OAEI format)
were used to drawn the following points:

1. A high number of mappings (14) were identified between Ekaw.owl and
Conference.owl. Special features such as inverse compound names of
concepts (e.g. PC_Member = Member_PC) have been tackled by the lexical
matching method. Mappings such as “Document = Conference_Document”
has been identified by the enhanced structure matching method. Pairs such as
“Person = Human” and “Document = Article” between the Ekaw.owl and
Confious.owl ontologies have been identified due to the semantic and
enhanced structure matching methods, respectively. Incorrect mappings are
also identified mainly due to the structure matching method (e.g. “Paper =
review”) when the Ekaw.owl ontology is mapped to itself.

2. Also 14 mappings were identified between iasted.owl and sigkdd.owl
ontologies. The “Delegate=Conference_Participant” mappings is identified
by the enhanced structure method for the ontologies iasted.owl and
Ekaw.owl. Apart from this, the rest of the mappings identified were of no
particular difficulty.

3. For the openConf.owl ontology and the rest of the ontologies, the mappings
that AUTOMS computed, apart from the “surname = last_name” in
Confious.owl, had no specific difficulty.

4. Although several alignments have been identified between the ontologies, it
seems that OAEI participants will need to spend some time prior reaching a
consensus on these alignments. More important, to be able to produce an
alignment between all these ontologies and finally get the reference ontology
(as a result of merging them) certainly needs more time and effort. It seems
that although the domain of conferencing is a generally agreed and well
understood context, the different types of conferences’ organizers,
participants, subjects, and reviewing systems drive quite divergent ontology
specifications.

Since this test is a blind test, we expect organizers’ feedback.

3 General comments

The participation in the OAEI contest has been rather valuable for improving our tool.
Several minor code adjustments/improvements and other methodological amendments
were made in order to be able to deliver the presented precision and recall in the
OAEI 2006 tests. The experience gained from the contest is keeping AUTOMS in a
continuous process of improvement. In future versions of AUTOMS several
problematic cases that have been discussed in this paper will be addressed.

3.1 Comments on the results

As already mentioned and also implied by the results described in this paper,
AUTOMS is mainly based on the lexical matching method. The synthesized methods’
performance is rather satisfactory for ontologies that use labels and comments to the
specification of concepts/properties. The approach works well with naming
conventions and language variations (tested for English and French). The weakness to
work with concept/property names that start with numbers (‘1990s’) or have length of
one letter (‘A’) has been identified and tackled. AUTOMS results are significantly
based on the exploitation of concept instances (in cases where this applies). The use
of structural and semantic information did not contributed as much as it was expected
in the final results. However the synthesis of all these matching methods has
improved the overall recall and the precision of the results.

We have collected a large set of results that AUTOMS produced for the several
OAEI experiments, using variations of the individual methods and of their synthesis.
AUTOMS in its simple initial version returned for the benchmark ontologies an H-
mean of 0.93 and 0.63 of precision and recall, respectively. During the enrichment of
AUTOMS with new and/or more advanced methods, we managed to reach the h-
mean of 0.97 for precision and 0.64 of recall. The final submitted results of 0.94
(precision) and 0.67 (recall) show a good tradeoff between precision and recall that
our tool can deliver for the particular benchmark ontologies.

Running AUTOMS with last year’s benchmark ontologies and the Alignment API
2.4, one can observe that our tool performs better from the rest of the tools as far as

the precision (0.94) is concerned, while the recall is not much lower from this of
others’ (0.71).

3.2 Discussions on the way to improve the proposed system

In future versions of our tool we should be experimenting with more advanced
structure matching and with advanced semantic matching methods that already
presented in other lines of related research [5].

Things need to be done also with the ability of AUTOMS to read and align large
ontologies.

3.4 Comments on the OAEI 2006 test cases

This year OAEI contest has provided participants with harder tests and with more real
ontologies. This is a good improvement on the test cases themselves. However, we
think that more improvements are needed so as to avoid (at least in some of the cases)
simplistic methods to dominate to more sophisticated ones: For instance, the heuristic
of having only a common instance for a pair of concepts to match it seems too
simplistic for contributing to the increase of methods’ precision.

Furthermore, it would be more helpful to provide participants also with the
reference alignments of the directory and conference tests so as to be possible for
them to examine their tools, provide helpful insights to the research community and
draw conclusions on real case ontologies.

3.5 Comments on the OAEI 2006 measures

Since there will always be a tradeoff between precision and recall, h-mean and/or
ROC curves is a good alternative for giving participants a better view of their tool’s
performance. H-mean and/or ROC curves should be produced at least for each group
separately since groups of tests have quite different design motivation. Also, it would
be interesting to agree on the importance of precision against recall (or in the reverse
order) for particular types of alignments depending on the context that they are
performed. For instance, we can argue that there exist some alignments between real
ontologies that are critical to being correct rather than being complete.

4 Conclusion

Our participation in the OAEI 2006 contest with the AUTOMS tool has been a
significant experience. We have actually been able to identify cons and prons of our
tool, and improve some points in its implementation. The organizers’ feedback and
the comparison with the other tools will also contribute to future improvements of the
tool and of the approach in general

References

1. Kotis K., Vouros G., Stergiou K.: Towards Automatic Merging of Domain
Ontologies: The HCONE-merge approach. Elsevier's Journal of Web Semantics
(JWS), vol. 4:1, (2006) pp. 60-79

2. Valarakos A., Paliouras A., Karkaletsis G., Vouros G.: A name-Matching
Algorithm for supporting Ontology Enrichment. In Proceedings of SETN’04, 3rd
Hellenic Conference on Artificial Intelligence, Samos, Greece (2004)

3. Miller G., Beckwith R., Fellbaum D., et al.: Five papers on WordNet. CSL
Report 43, Cognitive Science Laboratory, Princeton University (1995)

4. Deerwester S., Dumais S. T., Furnas G. W., Landauer T. K., Harshman R.:
Indexing by Latent Semantic Analysis. Journal of the American Society of
Information Science (1990

5. Vouros A. and Kotis K.: Extending HCONE-merge by approximating the
intended interpretations of concepts iteratively. 2nd European Semantic Web
Conference, Heraklion, Crete May 29 – June 1, 2005. Proceedings, Series:
Lecture Notes in Computer Science, vol. 3532, Asunción Gómez-Pérez, Jérôme
Euzenat (Eds.), Springer-Verlag

Appendix: Raw results

Matrix of results

Name Prec. Rec. Time (sec)
101 Reference alignment 0.94 1.00 93
102 Irrelevat ontology - - -
103 Language generalization 0.94 1.00 87
104 Language restriction 0.94 1.00 86
201 No names 0.94 0.95 86
202 No names, no comments 1.00 0.10 79
203 No comments 1.00 1.00 88
204 Naming conventions 0.94 1.00 89
205 Synonyms 0.94 0.99 89
206 Translation 0.97 0.66 84
207 0.97 0.66 84
208 1.00 0.73 82
209 1.00 0.33 81
210 1.00 0.28 78
221 No specialisation 0.94 1.00 71
222 Flatenned hierachy 0.93 1.00 81
223 Expanded hierarchy 0.89 1.00 180
224 No instance 0.94 1.00 92
225 No restrictions 0.94 1.00 64
228 No properties 1.00 1.00 44
230 Flatenned classes 0.89 1.00 80
231 Expanded classes 0.94 1.00 88
232 0.94 1.00 71
233 1.00 1.00 46
236 1.00 1.00 44
237 0.93 1.00 85
238 0.89 1.00 181
239 0.97 1.00 39
240 0.87 1.00 83
241 1.00 1.00 44
246 0.97 1.00 40
247 0.87 1.00 83
248 1.00 0.10 63
249 1.00 0.10 78
250 1.00 0.27 43
251 1.00 0.11 72
252 0.91 0.10 167
253 1.00 0.10 62
254 1.00 0.27 42
257 1.00 0.27 42
258 1.00 0.11 71
259 0.91 0.10 167
260 0.90 0.31 37
261 0.82 0.27 80
262 1.00 0.27 41
265 0.90 0.31 38
266 0.82 0.27 79
301 BibTeX/MIT 0.93 0.46 35
302 BibTeX/UMBC 1.00 0.58 24
303 Karlsruhe 0.93 0.78 141
304 INRIA 0.86 0.92 81
 H-mean 0.94 0.67

