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Abstract

Therefore, Parsimony may be applied only when the described lengths
of edges cannot be met in the tree.

1 Introduction

Constructing evolutionary species trees is one of the most interesting problems in biology. It means finding the
relations and mutual ancestors of existing and extinct species and also the time of formation of new species.
Paleontology itself gives very poor information of species trees structure and time lengths of their edges. More
precisely species trees can be built by analysis of genomes of species. One considers the set of species {ai}N1 and
their gene groups {Gj}K1 , where Gj = {Aji}Ni=1 is a set of some functionally relative to each other genes. For
example, one group can be responsible for hemoglobin production, another one can define the eye color and so
on. Let the gene Aji be discovered in the species ai. Then in each j-th functional group one can establish the
relations between the genes in the form of unrooted tree, where the leaves are the set of elements of j-th group.
The structure of such trees for different groups can coincide (i.e. be topologically identical) or do not coincide.
The number of these coincidences defines the frequency of the corresponding gene tree. These frequencies are
the base of pasimony method to constuct evolutionary trees which sometimes gives wrong results.

If it is known that a method being applied to some type of problems may fail, why would anyone still use
it in this area? Well, in phylogenetics most methods give probabilistic answers. Therefore, getting sometimes
wrong answers doesn’t necessarily imply that method is bad. To make a final conclusion about the quality of
the method one could estimate how often the wrong results appear. Then one would compare the obtained
frequency with the frequencies of other methods’ failures. Having this information on the table, a researcher can
decide if the method is acceptable. However, we did better than this. We have found the set of all combinations
of parameters of 5-taxon species tree when Parsimony is guaranteed to fail. Why tree with 5 taxa? It is known
that Parsimony always gives right answers on k-taxon species tree for k = 3, 4. So, considering k = 5 is quite
logical from computational point of view. Also the smaller k when things go bad, the louder the warning.

The phylogenetics society has intuitive tendency to use Parsimony less and less. Nevertheless, many biologists
still do it because of simplicity of the method. They should not be judged for that since simplicity is a strong
argument. The results of this paper will show them the danger of Parsimony. However, forewarned is forearmed.
If a researcher is sure that their resulting species tree doesn’t have the combination of parameters we showed to
be bad, they can safely use fast and simple Parsimony on 5-taxon trees.

For a specific rooted species tree with the known time lengths of the edges, using Coalescence method one
can obtain the probabilities of gene trees. That allows to find analytically the rooted species tree and region of
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lengths of its edges, when parsimony fails.

2 Preliminaries

We consider an evolution tree T (here and after we mean binary tree) of 5 species a, b, c, d and e with some
parameters T1, T2, T3 – time in coalescence units between the branching points (see an example in fig. 1).

Based on the Coalescent model [Rosenberg], [SemSte], [Wakeley], [Baum] the program COAL [DegnanSalter,
WangDegnan] yields the probabilities of all 15 possible unrooted gene trees for 5 genes A, B, C, D, E, such that
A is discovered in species a, B is discovered in the species b and so on.

All these species have related genes A, B, C, D, E, respectively. The genes originated from each other or
from mutual ancestor. The branching in gene and species trees may not coincide. That creates a problem of
inferring species trees from gene trees.

Also, for 5 species there are 15 different unrooted species trees or 105 rooted ones. In each species tree, one can
fit any of 15 different gene trees. However, the amount of mutations needed for this fitting will differ generally
from one gene tree to another. So, for each gene tree from these 15 and each species tree from the same 15
species trees one can correspond some non-negative integer number of mutations (parsimony score). These can
be written in a 15× 15 matrix M , where rows correspond to species trees and columns correspond to gene trees.

If one knows the frequencies of different gene trees P = (p1, ..., p15)T , then the mathematical expectation of
the number of mutations for each of 15 possible species trees can be calculated by multiplying the matrix M by
the vector-column P .

One can assume that the most probable species tree for the given sample of gene trees (or 15 gene trees
with assigned probabilities) corresponds to the minimal expectation of mutations. This is the idea of Parsimony
method [AllmanRhodes], its application to the problem of inferring species trees from gene trees is called Matrix
Representation with Parsimony (MRP) [WangDegnan].

Figure 1: A 5-taxon species tree with caterpillar topology.

Here is the main question: Does the species tree with
the minimal expectation from M ∗P , where P is the
vector of probabilities obtained, for example, from
the Coalescent model [DegnanSalter] with given T1,
T2, T3 for the tree T , present the unrooted version
of the original rooted tree T?
Note that we compare rooted species tree with un-
rooted species tree. It is because the Coalescent
method works with rooted trees while parsimony
gives only unrooted ones.
It appeared in our work that on the sample of gene
trees obtained from a caterpillar species tree with
some parameters T1, T2, T3 by coalescence, the par-
simony method gives an incorrect species tree.

3 Numerical Experiments. Performance of Unrooted MRP for 5-Taxon Species
Tree Iinference.

Any 5 genes can be joined in one unrooted tree in 15 ways as given in the following list:

τ1: ((B,C), A, (D,E)), τ2: ((C,D), A, (B,E)), τ3: ((C,E), A, (B,D)),
τ4: ((A,E), B, (C,D)), τ5: ((A,D), B, (C,E)), τ6: ((A,C), B, (D,E)),
τ7: ((A,B), C, (D,E)), τ8: ((A,D), C, (B,E)), τ9: ((A,E), C, (B,D)),

τ10: ((A,B), D, (C,E)), τ11: ((A,C), D, (B,E)), τ12: ((A,E), D, (B,C)),
τ13: ((A,B), E, (C,D)), τ14: ((A,C), E, (B,D)), τ15: ((A,D), E, (B,C)).

Each unrooted tree may be transformed into a rooted tree by introducing a root to an edge. As a result, we
have 7 rooted versions for each unrooted tree.

Step 1. Compute parsimony scores by Fitch-Hartigan [Hartigan] (Table 1).



Thus, if ~N = (N1, N2, ..., N15)T is the vector of counts of 15 topological trees in the input, M is the matrix of

entries in Table 1 and vector-column ~S = (pars(σ1), pars(σ2), ..., pars(σ15))T then ~S = M ~N . Here (pars(σi) is
parsimony score of species tree on the collection of gene trees τ1, ..., τ15.

Step 2. Pick the smallest entry or entries in ~S to determine the most parsimonious tree(s).

To study the 5-taxon case further we need to use Coalescent Theory. The coalescent model, introduced
by Kingman in [Kingmn], describes the coalescence of lineages as we move backwards in time within a single
species (Note that in biology the understanding of the word ‘species’ may vary. Here we use this word in the
same meaning as ‘population’). By “gluing” together such species or populations to form a tree, one gets the
Multi-species Coalescent Model, which describes the production of gene trees within species trees.

Table 1: The parsimony scores parsτj (σi) ≡ mij for all 15 possible output trees σ with respect to the matrix
representation of all 15 possible input trees τ .

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 τ11 τ12 τ13 τ14 τ15

σ1 2 4 4 4 4 3 3 4 4 4 4 3 4 4 3

σ2 4 2 4 3 4 4 4 3 4 4 3 4 3 4 4

σ3 4 4 2 4 3 4 4 4 3 3 4 4 4 3 4

σ4 4 3 4 2 4 4 4 4 3 4 4 3 3 4 4

σ5 4 4 3 4 2 4 4 3 4 3 4 4 4 4 3

σ6 3 4 4 4 4 2 3 4 4 4 3 4 4 3 4

σ7 3 4 4 4 4 3 2 4 4 3 4 4 3 4 4

σ8 4 3 4 4 3 4 4 2 4 4 3 4 4 4 3

σ9 4 4 3 3 4 4 4 4 2 4 4 3 4 3 4

σ10 4 4 3 4 3 4 3 4 4 2 4 4 3 4 4

σ11 4 3 4 4 4 3 4 3 4 4 2 4 4 3 4

σ12 3 4 4 3 4 4 4 4 3 4 4 2 4 4 3

σ13 4 3 4 3 4 4 3 4 4 3 4 4 2 4 4

σ14 4 4 3 4 4 3 4 4 3 4 3 4 4 2 4

σ15 3 4 4 4 3 4 4 3 4 4 4 3 4 4 2

Definition 1. Let gij(T ) denote the probability that i lineages (genes) since time 0 have coalesced to exactly
j lineages at time T under the coalescent model.

General formulas for the gij(T ) were derived in [Tavaré]:

gij(T ) =

i∑
k=j

e−k(k−1)T/2
(2k − 1)(−1)k−jj(k−1)i[k]

j!(k − j)!i(k)
, (1)

where a(k) = a(a+ 1) · · · (a+k−1) for k ≥ 1 with a(0) = 1 (the partial permutation); and a[k] = a(a−1) · · · (a−
k + 1) for k ≥ 1 with a[0] = 1.

Some of these formulas for small indexes are
g11(T ) = 1, g21(T ) = 1− e−T , g22(T ) = e−T ,
g31(T ) = 1− (3/2)e−T + (1/2)e−3T , g32(T ) = (3/2)e−T − (3/2)e−3T , g33(T ) = e−3T ,
g41(T ) = 1− (9/5)e−T + e−3T − (1/5)e−6T , g42(T ) = (9/5)e−T − 3e−3T + (6/5)e−6T ,
g43(T ) = 2e−3T − 2e−6T , g44(T ) = e−6T

Let 3 rooted species tree be Σ1 := ((((a, b) : T1, c) : T2, d) : T3, e), Σ2 := (((a, b) : T1, (c, d) : T2) : T3, e) and
Σ3 := (((a, b) : T1, c) : T2, (d, e) : T3). They are rooted versions of σ7, σ13 and σ7 again, respectively (see Fig. 2).
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Figure 2: Three rooted 5-taxon species trees Σ1,Σ2 and Σ3.

Up to taxon names, these three are the only possible
species trees. They are usually referred to as the
caterpillar (Σ1), pseudo-caterpillar (Σ2) and pseudo-
balanced (Σ3) species trees.

4 An experiment with caterpillar

Using the program COAL [DegnanSalter, WangDegnan] to get probabilities of rooted gene trees and the formulas
(1) for gij , we calculate the probabilities pi = p(τi|Σ1) for i = 1, 15, which are listed in Table 2 (X := e−T1 , Y :=
e−T2 , Z := e−T3 ,) after simplification in Maple 15.

Table 2: The probabilities pi = p(τi|Σ1) for i = 1, 15, where X = e−T1 , Y = e−T2 , Z = e−T3 .
p1 X/3−XY/3 +XY 3/18 +XY 3Z6/90

p2 XY 3/18 +XY 3Z6/90

p3 XY 3/18 +XY 3Z6/90

p4 XY 3/18 +XY 3Z6/90

p5 XY 3/18 +XY 3Z6/90

p6 X/3−XY/3 +XY 3/18 +XY 3Z6/90

p7 1− 2X/3− 2Y/3 +XY/3 +XY 3/18 +XY 3Z6/90

p8 XY 3/18 +XY 3Z6/90

p9 XY 3/18 +XY 3Z6/90

p10 Y/3−XY/6−XY 3/9 +XY 3Z6/90

p11 XY/6−XY 3/9 +XY 3Z6/90

p12 XY/6−XY 3/9 +XY 3Z6/90

p13 Y/3−XY/6−XY 3/18− 2XY 3Z6/45

p14 XY/6−XY 3/18− 2XY 3Z6/45

p15 XY/6−XY 3/18− 2XY 3Z6/45

Let vector-column p be (p1, p2, · · · , p15)T . We consider the product scat := Mp, where each entry is the
expectation of parsimony score of a possible output tree for MRP.

We discover that in scat some entries are equal. Let’s denote them as following
αcat := scat1 = scat6 = 3−X/3 + 2Y/3 +XY/3−XY 3/18−XY 3Z6/90,
βcat := scat2 = scat3 = scat4 = scat5 = 4− Y/3−XY 3/18−XY 3Z6/90,
γcat := scat7 := 2 + 2X/3 + 2Y/3 +XY/3−XY 3/18−XY 3Z6/90,
δcat := scat8 = scat9 = 4−XY/3−XY 3/18−XY 3Z6/90,
εcat := scat10 := 3 + 2X/3− Y/3 +XY/6 +XY 3/9−XY 3Z6/90,
ζcat := scat11 = scat12 = 4−X/3−XY/6 +XY 3/9−XY 3Z6/90,
ηcat := scat13 := 3 + 2X/3− Y/3 +XY/6 +XY 3/18 + 2XY 3Z6/45,
θcat := scat14 = scat15 = 4−X/3−XY/6 +XY 3/18 + 2XY 3Z6/45.

The analytical comparison of these values we form in the following
Proposition 1.For any X,Y, Z ∈ (0, 1), the following inequalities hold:

γcat < ζcat, ηcat < θcat, γcat < αcat < βcat, γcat < δcat, γcat < εcat.

However, the 3D-graphs on Figures 3 show that the expressions ηcat and γcat can not be put in one order for
all X,Y, Z ∈ (0, 1).



There is a large region were γcat < ηcat but, nevertheless, there is also a region where ηcat < γcat. The
last defines the parameters T1, T2, T3 where MRP will fail to recover the tree topology of the true species tree
producing the gene tree distribution, even when given an arbitrary large sample of gene trees. Figure 3.left shows
that provided Y is not too large, regardless of X,Z, MRP will return the correct species tree.

= e
-T2

e =

-T1

-T3

e =

Figure 3: Left: the surface ηcat(X,Y, Z) = γcat(X,Y, Z). ηcat > γcat on the large region including all those
points, when Y is near 0, while ηcat < γcat on the small region. Right: Different angle on the same surface
ηcat(X,Y, Z) = γcat(X,Y, Z).

To determine this cutoff for Y , we set ηcat(1, Y, 0) = γcat(1, Y, 0) and solve to get Y = 0.935... (the solutions
of (1/3)Y 3 − (7/2)Y + 3 = 0 are Y1,2,3 ≈ 2.670...,−3.605..., 0.935...).

5 An experiment with pseudo-caterpillar

Let the pseudo-caterpillar species tree be Σ2 = (((a, b) : T1, (c, d) : T2) : T3, e). We use COAL, the formulas for
gij and Maple 15 to calculate the probabilities ppci = p(τi|Σ2) for i = 1, 15. Their list is shown in Table 3 after
simplifications.

Table 3: The probabilities ppci = p(τi|Σ2) for i = 1, 15, where X = e−T1 ,.
ppc1 = ppc3 = ppc5 = ppc6 = ppc8 = ppc9 = ppc11 = ppc12 = (1/18)XY +XY Z6/90,
ppc2 = ppc4 = ppc7 = ppc10 = XY Z6/90 + Y/3− (5/18)XY,
ppc13 = 1− (2/45)XY Z6 + (4/9)XY − (2/3)X − (2/3)Y,
ppc14 = ppc15 = −(2/45)XY Z6 +XY/9.

In the table 3: X = e−T1 , Y = e−T2 , Z = e−T3

Now assuming ppc = (ppc1 , p
pc
2 , · · · , p

pc
15)T we see that the product spc := Mppc is the vector of expected

parsimony scores of possible output trees with a pseudo-caterpillar species tree. We discover that in spc some
entries are equal. Let’s denote them as following
αpc := spc1 = spc3 = spc5 = spc6 = 4−XY Z6/90− Y/3−XY/18,
βpc := spc2 = spc4 = 3−XY Z6/90−X/3 + 2Y/3 + 5XY/18,
γpc := spc7 = spc10 = 3−XY Z6/90 + 2X/3− Y/3 + 5XY/18,
δpc := spc8 = spc9 = spc11 = spc12 = 4−XY Z6/90−X/3−XY/18,
ζpc := spc13 = 2 + 2XY Z6/45 + 2X/3 + 2Y/3 + 2XY/9,
ηpc := spc14 = spc15 = 4 + 2XY Z6/45− 4XY/9.

Let’s compare these expressions.
Proposition 2. For any X,Y, Z ∈ (0, 1), the following inequalities hold:

ζpc < αpc, ζpc < βpc, ζpc < γpc, ζpc < δpc, ζpc < ηpc.



This implies that if the true species tree is 5-taxon pseudo-caterpillar, MRP, for a sufficiently large data set,
will give with probability 1 the unrooted species tree topology for all T1, T2, T2 ∈ (0, 1).

6 An experiment with psuedo-balanced

The last tree we need to consider (since all other are just permutations of taxon names) is the pseudo-balanced
species tree Σ3 = (((a, b) : T1, c) : T2, (d, e) : T3). The chain of actions is exactly the same that in previous two
experiments. We omit it here. The result is Parsimony doesn’t fail.

So, if the true species tree is 5-taxon pseudo-balanced Σ3, MRP, for a sufficiently large data set, will give with
probability 1 the correct unrooted species tree topology for all T1, T2, T2 ∈ (0, 1).

7 Generalization of results.

7.1 Caterpillar Subtree.

Definition 2. There is a rooted tree T with number of taxa equal to |T | =: n. Let Tcat(T ) be a caterpillar
subtree of this tree. The number Cat(T ) := max

Tcat(T )⊂T
|Tcat(T )| for a particular tree T is called caterpillar score

for the tree T . The number cat(n) := min
|T |=n

Cat(T ) is called caterpillar measure.

It is clear that cat(n) is an increasing function with respect to n. There are may be a few consecutive numbers
n such that cat(n) = k for some given natural k.

Definition 3. Let’s call number rk := min
cat(n)=k

n the revolution number.

Observe that for the caterpillar lengths 1, 2, 3 their revolution numbers are r1 = 1, r2 = 2, r3 = 3, because
these trees are caterpillar themselves. Note, that the third and the second revolution numbers are connected by

r3 = 2r2 − 1. (2)

Theorem 1. The revolution numbers rk may be calculated recursively rk = 2rk−1 − 1, k = 4, 5....
Proof. Let T be a k-taxon tree. Since T is a binary tree, we can think of T as two subtrees T ′, T ′′ glued

together only by two edges at the root (see Figure 4). Observe that for any caterpillar subtree of T ′ one of these
T ′, T ′′ being transformed properly brings only one edge to the caterpillar.

On the other hand, rk is an increasing function. So, the first bifurcation in the root will be the worst in the
sense of caterpillar score for the tree T when this bifurcation divides the tree into two subtrees T ′ and T ′′ such
that |T ′| = |T ′′| for even |T |, and

∣∣|T ′| − |T ′′|∣∣ = 1 for odd |T |. Further, we use mathematical induction.
The base of induction. It is the formula (2)
The assumption of induction. Let r3, ..., rk calculated recursively be revolution numbers.
The inductive step. We need to prove that rk+1 = 2rk − 1 is the revolution number. Let us take a tree T

with rk+1 taxa and consider the worst bifurcation in its root. As mentioned above, the worst bifurcation in the
root of T forms two subtrees T ′ and T ′′ such that |T ′| = rk − 1, |T ′′| = rk.

T’ T’’

Figure 4:

The induction assumption yields an existence of caterpillar in T ′′

with a length no less than k. One edge in T ′ together with the
caterpillar in T ′′ creates the caterpillar tree C with |C| = k + 1.
So, the revolution number for k + 1 is no greater than 2rk − 1. If
|T | ∈ [rk, 2rk− 1), then the worst bifurcation forms two subtrees T ′

and T ′′ such that |T ′|, |T ′′| < rk. Since rk is a revolution number,
there are T ′ and T ′′ which have only caterpillars C ′, C ′′ and C ′′

with |C ′|, |C ′′| < rk. Therefore, rk+1 is the revolution number.



Theorem 7.1 allows to continue the sequence of the revolution numbers for the caterpillar measures 3, 4, 5, 6, 7, ...
as rk = 3, 5, 9, 17, 33, ..., respectively. For trees with number of taxa in [rk, 2rk − 1], the caterpillar measure is k.

7.2 MRP on trees with the number of taxa greater than 5

Theorem 2. If a true species rooted tree Ĝ contains 5-taxon caterpillar subtree, then MRP may fail to obtain
the unrooted version of Ĝ from the set of gene trees generated by Coalescent model from Ĝ.

Proof. For the number of species greater than 5 and the same number of genes one can make the following
construction.

Take a caterpillar tree Γ of 5 species a, b, c, d, e with T1, T2, T3 and root ρ, such that parsimony fails (fig. 3).
Take an arbitrary tree G, where every edge is very close to 0 (Ti ≈ 0, i > 4). Connect Γ to G through its root ρ
and the edge ε with the length T4. Make T4 big enough so the genes A, B, C, D, E coalesce in ε if they didn’t
in Γ. No matter what is on the upper end of ε, root of entire tree or inner node created by ε on some edge of G .

The numeration of n possible gene trees we do in the following way: First 15 trees will have the same subtree
G and different topology or permutation of A, B, C, D, E. Other n− 16 trees can be numerated in any order,
and we set their probabilities p16, ..., pn equal to zero, since Ti, i ∈ {5, ..., n}, can be taken infinitively small.
Therefore, the set of gene trees is numerated and the probabilities of them are presented by vector-column
p = (p1, ..., p15, p16, ..., pn)T , where all the entries below 15-th equal zero and the first 15 are the same that
obtained ones for 5-taxon experiment. The matrix Mn×n has dimension n× n, but only submatrix Mn×15 does
participate in calculation of expectations of gene mutations due to p16, ..., pn = 0.

Moreover, the parsimony incorrect choice may be shown on submatrix M15×15 in upper corner. Observe that
the elements of M15×15 are the sums of the elements of M obtained earlier in performance of MRP for 5-taxon
trees 1 and some constant number generated by the constant subtree G with coalesced gene A+B+C+D+E.
This means that each of scat1 , scat2 , ... , scat15 from Section 4 must be increased by the constant value V

∑15
1 pi,

to be a new mathematical expectation for the new big tree. So, the minimum among the first 15 rows must be
achieved in the same index. Therefore, being wrong for 5-taxon caterpillar species tree the parsimony becomes
wrong for the constructed tree Ĝ as well.

Corollary 1. MRP on a set of gene trees with 5 taxa or more may yield wrong result. If one applies MRP
on set of gene trees with 9 taxa or more, MRP may fail even more probably, since 9-taxon species tree always
has a caterpillar subtree, which may have unfortunate lengths of inner edges from the small region in Figure 3

We have established what these unfortunate lengths are. But how to find these caterpillar subtrees? One may
use the following

Theorem 3. If a tree has three consecutive inner edges not contaning the root betwen them but perhaps one of
these edges ending on it then the tree has a 5-taxon caterpillar subtree, which contains these three inner edges.

Proof. At Figure 5 we can see three consecutive edges denoted 1,2 and 3 between nodes a,b, c and d, respectively
and the third edge is closest to the root. Since these edges are inner, all the nodes must be bifurcation points
and so each of b, c, d has one more edge running towards a taxon or a clade opposite to the root and a has two
more such edges. Let d be the root then simply contracting each of the mentioned clades to one of its taxa we
get a 5-taxon caterpillar subtree. If d is not the root, throw away one of the edges at d to make d the root of
the 5-taxon caterpillar subtree.

Figure 5: Three consecutive inner edges in some tree.

Corollary 2.It is enough to know that in a species tree with amount of taxa 5 or more there are three
consecutive inner edges not going through the root but perhaps ending on it with lengths T1, T2 and T3 from the
small region of cube in Figure 3 to conclude that Parsimony is guaranteed to fail on this tree.

8 Conclusions and Future work

The fact that Parsimony may fail is not new. However, here we proved that no mater of what topology the true
9-taxon and greater species tree is the only condition to fail Parsimony is to have in this tree three consecutive



inner edges not going through the root but perhaps ending on it with lengths T1, T2, T3 (which are times in
coalescence units between the branching points) of some proportions. Obviously, the probability to meet these
lengths is growing in general with the size of species tree. So, if one wants to safely use MRP on a set of
n-taxon gene trees, it is need to know somehow that the resulting n-taxon species tree cannot have any of “bad”
topologies and edge lengths from “bad” regions. This paper makes it possible for n ≤ 5. Also, one may apply
MRP on a set of 5-taxon gene trees and if the result is the caterpillar tree or topology Σ3 from Fig. 2, it is true.

One may consider 6-taxon species trees the way we did in this paper and check the existence of 6-taxon topology
which forces Parsimony to fail when lengths of inner edges have some proportions. Then prove, perhaps following
our ideas, that every tree with some number of taxa greater than 6 has this 6-taxon topology subgraph. Then
do the same for 7 taxa and so on.

If one studies all “bad” parameters’ regions of all “bad” topologies for all trees with the amount of taxa less
or equal some n, it becomes theoretically possible to check either MRP can be applied for a set of gene trees
of n taxa (if, of course, the researcher knows enough information about possible results). However, taking into
account the factorial growth of the amount of binary trees with respect to the amount of taxa, the problem to
find “safe zone” for MRP becomes extremely hard. Unfortunately, we don’t see any way around besides doing
that scheme for each k < n. So, someone has to be very motivated to use MRP to go through with the research.
Nowadays, there are good coalescence based methods, for example, [YufengWu], [RanYan] and [EmmsKelly]

It could be interesting to study stability questions of the coalescent model with uncertainty in data applying
the thoughts from [Zubov].
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