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Abstract. This paper is devoted to the complex problem of synthesis of artifi-

cial neural networks. Firstly, the existing methods, recommendations and solu-

tions of the problem  are consider. As a new solution, the mechanism of using 

the modification of the genetic algorithm to determine the weights of the hidden 

and output layers (network training) is proposed. Testing and comparison of the 

results with the results of the existing methods were carried out for the correct 

evaluation of the method.  

Keywords: artificial neural networks, synthesis, network training, recurrent 
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1 Introduction 

In modern medicine, the main task for the use of information technology is to signifi-

cantly improve the quality indicators in the diagnosis and therapy of various diseases. 

The existing methods and algorithms of modeling nonlinear systems are faced with 

problems of high dimensionality of tasks, the requirements of high accuracy and gen-

eralizing ability of the obtained models. These problems can be solved with the help 

of per-boron and iterative methods, which are based on the principles of selection, 

evolution and adaptation, which are methods of heuristic self-organization. At the 

same time, in real life it is quite difficult to create an adequate model of a complex 

object using only one method of inductive modeling. Usually it is required to combine 

modern methods and technologies of heuristic self-organization, to apply multilevel 

modeling, to develop hybrid algorithms. 

Insufficiency or overabundance of data are frequent problems in solving tasks: 

there is not enough experiments (in the modeling of physical objects), not enough or 

difficult to allocate informative data on patients (to build a prediction of health). It is 

necessary to determine the parameters of the new element, to predict the outcome of 

the disease, to recommend treatment. Often artificial neural networks (ANNs) are 

used to solve such problems. 
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In a number of works [1-3] is noted are successfully applied of ANNs in various ar-

eas, including medicine, where the solution of problems of prediction, classification 

and management is required. It can be explained in way that ANNs have the possibil-

ity of nonlinear modeling in combination with a relatively simple implementation and 

this makes them indispensable in solving complex multidimensional problems. 

However, despite all the advantages of ANN, there is a large number of difficulties 

in their implementation in medicine. Creation of ANNs is reduced to performance of 

the main steps: 

 the choice of the structure of ANN; 

 set weights of all neurons of the ANN (training of ANN) [4,5]. 

At the present to implement these tasks are not the rigorous methods of solution, there 

are only common recommendations. The proposed methods are aimed at solving local 

problems, which often leads to an unsatisfactory structure of ANNs and a significant 

training time.  

In this paper, the authors propose a method of using a genetic algorithm for the 

synthesis of ANNs – creation of the structure and configuration of the network 

weights (learning with the teacher). 

2 Review of the literature 

The basis of ANNs are neurons with a structure similar to biological analogues. Each 

neuron can be represented as a microprocessor with several inputs and one output. 

When neurons are joined together, a structure is formed, which calls a neural network. 

Vertically aligned neurons form layers: input, hidden and output. The number of lay-

ers determines the complexity and, at the same time, the functionality of the network, 

which is not fully investigated. 

For researchers, the first stage of creating a network is the most difficult task. The 

following recommendations are given in the literature [4–6]. 

1. The number of neurons in the hidden layer is determined empirically, but in most 

cases the rule is used oih NNN  , where hN
 
is the number of neurons in the 

hidden layer, iN
 
in the input and oN  output layers. 

2. Increasing the number of inputs and outputs of the network leads to the need to in-

crease the number of neurons in the hidden layer. 

3. For the ANNs modeling multistage processes required additional hidden layer, but, 

on the other hand, the addition of hidden layers may lead to overwriting and the 

wrong decision at the output of the network. 

Based on these recommendations, the number of layers and the number of neurons in 

the hidden layers is chosen by the researcher, based on his personal experience. 

In a number of works [6–16] was presented different algorithms to perform the 

ANNs training stage. The most common the Backpropagation method (BP), which 

allows you to adjust the weight of multi-layer complex ANNs using training sets. On 



the recommendation of E. Baum and D. Hassler [7, 8], the volume of the training set is 

directly proportional to the number of all ANN weights and inversely proportional to 

the proportion of erroneous decisions in the operation of the trained network [9, 10]. 

It should be noted that the BP method was one of the first methods for ANNs train-

ing. Most of all brings trouble indefinitely long learning process. In complex tasks, it 

can take days or even weeks to train a network, and it may not train at all. The cause 

may be one of the following [6, 11, 12]. 

1. Network paralysis. During network training, the weights can become very large as 

a result of the correction. This can cause all or most neurons to function at very 

high OUT values, in an area where the derivative of the compression function is 

very small. Since the error sent back in the learning process is proportional to this 

derivative, the learning process can practically freeze.  

2. Local minimum. The network can hit a local when there are much deeper lows 

nearby. At the point of the local minimum, all directions lead up, and the network 

is unable to get out of it. Statistical training techniques can help avoid this trap, but 

they are slow. 

3. Step size. The step size should be taken as final. If the step size is fixed and very 

small, the convergence is too slow, if it is fixed and too large, paralysis or constant 

instability may occur. 

It should also be noted the possibility of retraining the network, which is rather the 

result of erroneous design of its topology. With too many neurons, the property of the 

network to generalize information is lost. The training set will be examined by the 

network, but any other sets, even very similar ones, may be misclassified. 

The Backpropagation through time (BPTT) method has become a continuation, 

which is why it is faster. Moreover, it solves some of the problems of its predecessor. 

However, the BPTT experiences difficulties with local optima. In recurrent neural 

networks (RNN), the local optimum is a much more significant problem than in feed-

forward neural networks. Recurrent connections in such ANNs tends to create chaotic 

reactions in the error surface, resulting in local optima appearing frequently. Also in 

the blocks of RNN, when the error value propagates back from the output, the error is 

trapped in the part of the block. This is referred to as the “error carousel”, which con-

stantly feeds the error back to each of the valves until they become trained to cut off 

this value. Thus, regular back propagation is effective when training an RNN unit to 

memorize values for very long durations [13, 14]. 

The Hebb method does not guarantee the convergence of the learning process, i.e. 

the error of approximation of the function by the neural network may exceed the per-

missible value. The main disadvantage of the using Hebb method is that the conver-

gence of the algorithm decreases with increasing dimension n of the input vector. For 

n > 5, it is difficult to guarantee convergence. This method is usually used as some 

element in other learning algorithms. The most preferable is the use of the Hebb rule 

in unsupervised learning algorithms [6, 15]. 

For the training by connectionist temporal classification (CTC) [16] it should be 

noted the main problem of reinforcement learning: random re-training to do in such 

conditions one and the same action. Sometimes it is possible to mistakenly associate 



the reaction of the environment with the action that immediately preceded this reac-

tion. This effect was later called “superstition” in the pigeon [17]. The above problem 

is the so-called dilemma of “exploitation vs exploration”, that is, on the one hand, you 

need to explore new opportunities, to study the environment so that it is something 

interesting to find. On the other hand, at some point you can decide that everything is 

investigated and move on – there is no need. 

The above problems explain the urgency of developing a new approach to the syn-

thesis of ANNs. The main purpose of the authors is to research and test a new method 

to solve the second problem, namely, training ANNs, which will be based on the use 

of genetic algorithms, as a means of determining the weights of the hidden and output 

layers. 

3 Materials and methods 

In the method, which is proposed to find a solution using a population of neural net-

works, that is, each individual is a separate ANN [18–20]. During population initiali-

zation, one half of the individuals is randomly assigned. Genes of the second half of 

the population are defined as the inversion of genes of the first half of individuals. 

This allows the “1” and “0” bits to be evenly distributed in the population to minimize 

the likelihood of early convergence of the algorithm. 

After initial initialization, all individuals have coded networks in their genes with-

out hidden neurons, and all input neurons are connected to each output neuron. That 

is, at first, all the presented ANNs differ only in the weights of the interneuron bonds. 

In the process of evaluation, based on the genetic information of the individual under 

consideration, a neural network is first built, and then its performance is checked, 

which determines the fitness of the individual. After evaluation, all individuals are 

sorted in order of reduced fitness, and a more successful half of the sorted population 

is allowed to cross, with the best individual immediately moving to the next genera-

tion. In the process of reproduction, each individual is crossed with a randomly se-

lected individual from among those selected for crossing. The resulting two descend-

ants are added to the new generation. Once a new generation is formed the mutation 

operator starts working. However, it is important to note that the selection of the trun-

cation significantly reduces the diversity within the population, leading to an early 

convergence of the algorithm, so the probability of mutation is chosen to be rather 

large, about 15-25% [21]. 

If the best individual in the population does not change for more than 7 genera-

tions, the algorithm is restarted. During the restart, the entire population is reinitial-

ized and the solution search process starts from scratch. This makes it possible to 

realize the exit from the areas of local minima due to the relief of the objective func-

tion, as well as a large degree of convergence of individuals in one generation. 



3.1 Using of genetic operators 

It is obvious that the chosen method requires special genetic operators that implement 

crossover and mutation. 

At crossover two parental individuals which produce two descendants are used. 

Common neurons and connections are inherited by both offspring, and the value of 

connections in the networks of descendants are formed by a two-point crossover. 

Elements of ANN, of distinct “played out” between generations. 

An important feature is that neurons with the same indices are considered identical, 

despite the different number of connections and position in the network, as well as the 

fact that one of these neurons could have a different index, which changed as a result 

of correction of indices after mutation. For this purpose, two coefficients were intro-

duced that regulate the size and direction of the network. 

The first of them characterizes the degree of “connectedness” of neurons in the 

network and is calculated by the formula: 
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where cN  is the number of connections in the network, iN , oN , sN  are respective-

ly, the number of input, output neurons and the total number of neurons in the net-

work, FB  is a variable indicating the permitted occurrence of feedbacks ( FB  =1) or 

not ( FB =0). It is worth noting that connections from hidden neurons to the output 

can appear in any case. Thus, the smaller cf  the more likely a new relationship will 

be added as a result of the mutation. There are 4 possible uses cf : 

 calculated by the formula; 

 squared; 

 multiplied by some factor; 

 squared and multiplied by some factor. 

The use of the second coefficient is based on the assumption that the more elements in 

the sum of the input and output vectors of the training choice (the greater the total 

number of input and output neurons), which is probably a more complex network is 

necessary to solve the problem. The second coefficient is calculated by the formula: 
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That is, the more neurons in the network, the less will be nf  and the less likely will 

be selected mutation that adds a new hidden neuron. As well as cf  there are possible 

4 use cases nf : 

 calculated by the formula; 



 squared; 

 multiplied by some factor; 

 squared and multiplied by some factor. 

For any of the described cases, the algorithm uses a ligament cn ff  , because for use 

it is necessary to take into account the degree of connectivity of already existing neu-

rons. 

Thus, using mutations can be “pointwise” to change the parameters of the structure 

of the ins. 

Chaotic the addition (removal) of neurons and connections can lead to situations 

where, for example, in a network of many neurons and few connections. It would be 

more logical to apply different types of mutations depending on the features of the 

network architecture represented by the mutating individual.  

Removing links ins gives a side effect: there may be “hanging” neurons that have 

no incoming connections, as well as dead-end neurons, that is, without output connec-

tions. In cases where the function of neuronal activation is such that at zero weighted 

sum of inputs its value is not equal to zero, the presence of “hanging” neurons makes 

it possible to adjust the neural displacement. It is worth noting that, on the other hand, 

the removal of links may contribute to the removal of some uninformative and unin-

formative input features. 

3.2 Choosing the mutation type 

Consider the dependence of the type of mutation on the values cf  and nf . Adaptive 

mutation mechanism is one of the key features of the proposed method. 

The choice of mutation type is determined based on the values of cf  and cn ff  . 

This approach, on the one hand, does not limit the number of hidden neurons “from 

above”, on the other hand, it prevents the immeasurable increase of the network, be-

cause the addition of each new neuron to the network will be less likely. The mutation 

of the weight of a random existing bond occurs for all mutating individuals with a 

probability of 0.5. 

Let us consider in more detail how to choose the type of mutation. Fig. 1 shows the 

block diagram of the selection of the type of mutation. Here RV is a random variable,  

hN  is the number of hidden neurons in the mutating network. For short the selection 

and calculation cf  and nf , and mutation of the weight by accident you select the 

relationship in the schema is not specified. 

Conventionally, the entire algorithm can be divided into two “branches” on the 

first conditional transition: 

1. branch increase cf  is carried out for the fulfilment of the conditions of transition;  

2. branch reduction cf , performed if the transition condition is not met.  



 

Fig. 1. The diagram of the selection of the type of mutation 

Since the removal of a neuron can lead to both reduction and increase depending on 

the number of connections of the neuron, this option is present in both branches. 

Thus, the main factor for the regulation of the structure of the obtained ANN is the 

degree of their “connectivity”. In other words, how fully the possible network connec-

tions are implemented. 

Multiplication nf  by cf  is necessary in order to change the number of neurons 

adequately network topology, because the addition (removal) of neurons need infor-

mation about the feasibility of changes. This information can be obtained indirectly 

from the value of the characteristic. 

3.3 The calculation of the output layer of  ANN 

The value of the mean square error is replaced by the criterion of maximum separa-

tion of support vectors. In this case, the optimal linear weights can be estimated using 

quadratic programming, as in the traditional support vector machine. 

One of the problems of neuroevolutionary method realization is the algorithm of 

ANN output calculation with arbitrary topology. 



ANN can be represented as a directed planar graph. Based on the fact that the net-

work structure can be any, loops and cycles containing any nodes are allowed in the 

graph, except for the nodes of the corresponding input neurons. Let denote the set of 

nodes of the graph by   1;0|  vi NivV , and a set of arcs through 

  1;0|  ej NjeE , where vN  and eN  are accordingly, the number of nodes and 

arcs in the graph, and sv NN  , and ce NN  . The arc, which goes from node k to 

node 1 denote by an ordered pair  lklk vve ,,  , the weight of the corresponding link 

will be denoted by lkw , . 

Give the index to the nodes of the graph as neurons, that is, the nodes that are the 

input neurons, called input. have an index out of range  1;0 lN . By analogy, the 

indexes of outgoing nodes belong to the interval  1;  oll NNN , and indexes for 

hidden nodes will be set in the interval  1;  vol NNN . 

Let introduce an additional characteristic for all nodes of the graph equal to the 

minimum length of the chain to any of the input nodes and denote it il . Let's call il  

the layer to which the ith node belongs. Thus, all input nodes belong to the 0th layer, 

not all input nodes that have input arcs from the input belong to the 1st layer, all other 

nodes with input arcs from nodes of the 1st layer will belong to the layer with index 2, 

etc .in this case, there may be situations when the node does not have input arcs, we 

will call it a hanging node with the layer number 1il . 

For arcs, we also introduce an additional characteristic lkb ,  for the arc lke , , which 

is necessary to determine whether the arc corresponds to forward or reverse. It will be 

calculated as follows: 
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That is, if the index of the layer of the end node of the arc is greater than the index of 

the layer of the beginning node, then we will consider such an arc as a straight line, 

otherwise we will consider the arc as an inverse. 

Since each node of the graph represents a neuron, we denote by isum the value of 

the weighted sum of inputs, and through io  is the value of the output (the value of the 

activation function of the ith neuron-node). Then,  ii sumfo   where f is the function 

of neuron activation. 

Let's divide the whole process of signal propagation from the input nodes into 

stages, and during one such stage the signals “manage” to pass only one arc. The 

number of the stage is denoted by s. For the very first stage s=1. For short assumed 

that all arcs have the same length, and the signals are sewn on them instantly. We 

denote the feature that the output of node i was updated at this stage through ia , that 



is, if 1ia , then the output of the node at stage s is calculated, otherwise, if 1ia  – 

not. 

Let's introduce one more designation   1;0|  li NixX  it is vector of input 

signals. Then the algorithm for calculating the ANN output is as follows: 

1. ii xo  , 1ia , for all  1;0  lNi ; 

2. 0io , for all  1;  sl NNi ; 

3. s=1; 

4. 0isum , 1ia , for all  1;  sl NNi ; 

5. if 1s , than go to the step number 7; 

6. calcultion of the feedback network. For all input reverse arcs kje ,  node kv , where 

  jkksl osumsumNNk  :1; , if sl j  ; 

7. if 0ia , than )(ifn  for all  1;  sl NNi ; 

8. if the stop criterion is not met, than s=s+1 and go to the step number 4. 

Here )(ifn  is a recursive function that calculates the output of the 1st node taking into 

account all straight arcs. Works on the following algorithm: 

1. if 0il , than go to the step nuber 3;  

2. for all input arcs lke ,  node iv : if 1ka , than kii osumsum  , else )(kfn ; 

3.  ii sumfo  ; 

4. exit. 

The stopping criterion of the ANN output calculation algorithm can be one of the 

following: 

 stabilization of values at the output of ANN; 

 s exceeds the set value. 

It is more reliable to calculate the output until the values at the output of ANN do 

not change, but for the case when the network contains cycles and/or loops, its output 

may never become stable. Therefore, the required additional stopping criteria limiting 

the maximum number of stages of calculation of network output. For networks with 

no feedback ( FB =0) in many cases, allow the   1max il  
phases. 

4 Experiments 

For a full assessment, we will conduct a series of experiments. A sample of data on 

patients diagnosed with Mesothelioma will be used as data. The sample is publicly 

available [22] and provided by Dicle University Faculty of Medicine in Turkey. The 

main characteristics of the sample are given in Table 1. 

 



Table 1. Characteristics of the sample data 

Criterion Characteristic Criterion Characteristic 

Data Set Characteristics  Multivariate Number of Instances 324 

Attribute Characteristics Real Number of Attributes 34 

For the correct evaluation of the experimental results, will be compared the developed 

method with the BP method and BPTT method. It should be taken into account that 

the inverse distribution of the error will be compared under the condition FB=0, and 

the distribution in time with the condition FB=1. This is due to the fact that each of 

the methods is used for the synthesis of different types of ANNs (with and without 

recurrent connections). 

Mesothelioma is a rare, aggressive form of cancer that develops in the lining of the 

lungs, abdomen, or heart. Caused by asbestos, mesothelioma has no known cure and 

has a very poor prognosis [23]. 

5 The results analysis 

During the experiments, the special attention was paid to the main characteristics of 

the methods, namely: the time spent, the boundary values of the error, the mean value 

of the error and the average error of final network. The results are shown in table 2. 

Table 2. Experimental result 

 Time Emin Emax E Average 

Error of 

Final Net-

work 

BP 468.013s 0.1699 1.9398 0.4639 0.4402 

Modified GA (FB=0) 335.843s 0.3417 0.3846 0.35 0.2488 

BPTT 9389.55s 0.2992 0.3212 0.3046 0.3067 

Modified GA (FB=1) 631.373s 0.3058 0.3054 0.3102 0.2962 

As experiments have shown, in all cases, the modified genetic method showed better 

results than existing methods. On the other hand, it should be noted that the difference 

in the mean error of the finite network in the second group of experiments (when 

comparing the back propagation in time and the modified genetic algorithm) is not so 

great. To improve the operation of the proposed method in the case of recurrent ins, it 

is possible to resort to the strategy of using support vector machine (SVM) to clarify 

the weights of the output layer, as proposed in [24, 25]. 

Fig. 2 shows the distribution of iterations during the experiments. 



 

Fig. 2. The diagram of distribution of number of iterations 

As can be seen from the diagram, the modified genetic method was more highly itera-

tive than the existing methods, but the time spent on the iteration was less. That is, we 

can conclude that the iterations are not complex and to reduce them we can resort to 

parallelization [26–29]. 

6 Conclusion 

The problem of finding the optimal method of synthesis of ANN requires a compre-

hensive approach. Existing methods of ANNs training are well tested, but they have a 

number of nuances and disadvantages. The paper proposes a mechanism for the use a 

modified genetic algorithm for its subsequent application in the synthesis of ANNs. 

Based on the analysis of the experimental results, it can be argued about the good 

work of the proposed method. However, to reduce iterativity and improve accuracy, it 

should be continued to work towards parallelization of calculations and the using of 

SVM. 
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