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Abstract. Since the 1970s, nature inspired meta-heuristic algorithms have be-

come increasingly popular. These algorithms include a set of algorithmic con-

cepts that can be used to identify heuristic methods that are used for a wide range 

of different tasks. The use of meta-heuristics greatly increases the possibility of 

finding a qualitative solution for complex, combinatorial optimization problems 

in a reasonable time. The most popular nature inspired meta-heuristics are those 

methods representing successful animal and micro-organism swarm behaviors. 

Firefly Algorithm (FA) is a recent one of such meta-heuristic algorithms It is 

based on a swarm intelligence and inspired by the social behaviors of fireflies. In 

this paper, we adapt the neighborhood method to FA and propose an improved 

firefly algorithm (IFA) to solve a well-known engineering problem, the so-called 

Tension/Compression Spring Design. We test the proposed IFA on this problem 

and compare the results with those obtained by some other meta-heuristics. The 

experimental modeling shows that the proposed IFA is competitive and improves 

the quality of solutions for the aforementioned engineering design problem. 
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1 Introduction 

The goal of heuristic or metaheuristic algorithms for solving combinatorial optimiza-

tion problems is to find an optimal value under specified constraints. A few general 

approaches to optimization are available; analytical methods, numerical methods, heu-

ristic methods. Numerical optimization methods rely on computation of gradients in 

determine the solution with maximum fitness. The standard assumptions in optimiza-

tion is a multimodal search space by specific techniques that have additional constraints 

imposed on the search space such as linearity of constraints and objective function in 

linear programming and assumption of discrete variables in combinatorial optimization 

[1]. If the search space is non-convex, then an optimal solution cannot be guaranteed. 

The problem with numerical optimization technique is the locality of optima i.e. the 

solution depends on the starting solution wherein the gradients force the optimum to a 

local optimum even though a better solution would exist elsewhere in the search space. 

Stochastic optimization techniques rely on random perturbations to the solution space 

and are more adept at preventing a solution from being trapped in a local optimum for 



non-convex problems [2]. The obvious problem with stochastic optimization tech-

niques is that on an average it requires a lot more computations of alternate solutions 

compared to gradient-based techniques. Many practical problems of importance are not 

convex and difficult to solve in reasonable amount of time; consequently, heuristics are 

deployed to make the solution feasible in a reasonable amount of time. Heuristics is a 

way of approximation of solution by trading optimality for speed. Meta-heuristic algo-

rithms are generic algorithmic frameworks that are often rooted in natural processes, 

such as simulated annealing, genetic algorithm and behavior of insects. Meta-heuristic 

algorithms cannot guarantee a global optimum however they are able to provide good 

solutions in reasonable timeframe and are typically able to avoid local optima [3]. 

The work is organized as follows. We first give in Section 2 the formulation of the 

tension/compression spring design problem. In Section 3,  we review firefly algorithm 

and propose an improved firefly algorithm. We present in Section 4 some computa-

tional results for the problem and finally, give some concluding remarks in Section 5. 

1 The Tension/Compression Spring Design 

The Tension/Compression Spring Design problem (TCSD) illustrated in Fig 1 is a con-

tinuous constrained problem. The problem is to minimize the volume V of a coil spring 

under a constant tension/compression load.  The problem consists of three design vari-

ables. These are: 

 the number of spring's active coils 𝑃 =  𝑥1  ∈ [2, 15]; 
 the diameter of the winding 𝐷 =  𝑥2  ∈ [0.25, 1.3]; 
 the diameter of the wire 𝑑 =  𝑥3  ∈ [0.05, 2].  

The mathematical formulation of  the TCSD problem is as follows: [4] 
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The design problem upper and lower  bounds variables are 

                                                    (3) 

This is a convex optimization problem and the closed form optimum solution of the 

problem is f(X) =0.0126652327883 for X = [x1, x2, x3] = [0.051689156131, 

0.356720026419, 11.288831695483]. 

 

Fig 1.  Schematic of tension/compression spring design problem [5]. 

4 Firefly Optimization Algorithm 

Firefly algorithm (FA) is a recent nature inspired approach based on swarm intelligence 

and inspired  by the social behaviors of fireflies in tropical zones for solving optimiza-

tion problems developed by Yang in 2008 [2]. This algorithm is based on the phenom-

enon of bioluminescence. The light produced by the special photogenic bodies acts as 

a communication channel. The main task of flashing light is to attract a partner. 

The mathematical form of the algorithm is based on the following assumptions. First 

of all, all fireflies are unisex and therefore can communicate with anyone else [4]. The 

attractiveness, in this case, is determined by the level of brightness of the individual. 

Brighter light attracts the others. [5]. This is performed for any binary combination of 

fireflies in the population, on every algorithm’s iteration. The brightness of a firefly is 

determined by the objective function of the problem [6]. 

Optimization algorithms typically employ either global or local search methods. 

Global search methods aim to find the best solution in the entire search space often by 

seeding multiple initial solutions in the search space and randomly perturbing the solu-

tion. Local search methods typically start from a single initial solution and improve the 

results of a global search by computing gradients in the local search space to reach a 

local minima/maxima [7]. Classical firefly algorithm aims to find an optimal solution. 

In this paper, we introduce local search methods with the best global solution to im-

prove the results of the classical firefly algorithm. By deploying local search methods, 

we borrow a random element from the best global solution and process it with some 



random variables to see if the global solution can be enhanced any further as described 

in equation (4) below: 

 

     

                     (4) 

          

where  m is the dimension of the solution for each firefly, a value in the current solution 

set (population) is defined by xi ; j denotes the randomly selected item from the solution 

set. The best solution (global minimum) is represented by b.. The main feature of xij, is 

that, the bi is multiplied by a random value α in [0,1].  The improvement of the algo-

rithm is that the obtained result is added to the overall solution. The pseudo code of the 

proposed method is given as Algorithm 1.  

Algorithm 1: The Improved Firefly Algorithm  

 

4 Computational Results 

The experimental test is carried out with the following parameters for both classi-

cal FA and the proposed IFA.  

 Number of iterations = 20.000 

 Number of fireflies = 20 

 Randomness factor, α = 0.5 



 

 Attractiveness of a firefly, 𝛽 = 0.2 

 Absorption coefficient, Ω = 1 

The worst ,best and also the average results by the parameters obtained in the com-

putational tests to solve  TCSD problem are shown in Table 1. Moreover, the number 

of fireflies, the worst, best, average results and standard deviations obtained by Firefly 

Algorithm in literature as well as firefly algorithm and improved firefly algorithm al-

gorithms used in this paper are presented in Table 2.  

Table 1. Comparison of computational tests between  classical FA and improved FA 

Algorithm d(x1) D(x2)  P(x3) Cost F(x) Error Rate% 

FA 

Best 0.051622816 0.355101557 11.38560208 0.012667003 0.014 

Mean - - - 0.012811505 1.155 

Worst 0.062460428 0.675464982 3.545398454 0.014613206 15.380 

IFA 

Best 0.051604177 0.354674682 11.41061417 0.012666265 0.008 

Mean - - - 0.012755131 0.710 

Worst 0.058164347 0.533417917 5.414915162 0.013380967 5.651 

Table 2. Comparison of computational tests between  FAs  

Researcher Algorithm Best Mean Worst SD 
No. 

fireflies 

Parsi [4] MFA 0.01269 0.01513 0.02320 0.00147 15 

Present Work FA 0.01269251 0.01281114 0.014613206 0.0002348 40 

Present Work IFA 0.01266626 0.01275513 0.013380967 0.0001205 40 

 
Tables 1 and 2 demonstrate that IFA yields better results in terms of all indicators. 

In addition, an experimental comparison of the work of an improved IFA algorithm 

with fifteen existing ones was carried out. The results of this comparison are given in 

Table 3.   

Table 3. Comparison of computational tests between  several FAs 

Researcher(s) Algorithm d(x1) D(x2)  P(x3) Cost F(x) 

Coello 2000 [5] GA 0.05148 0.351661 11.632201 0.01270478 

Ray and Liew 2003 [6]   - 0.05216022 0.3681587 10.648442 0.012669249 

Raj et al.  2005 [7] ADE 0.053862 0.41128365 8.6843798 0.0127484 

Hedar et al 2006 [8] FSA 0.0517425 0.35800478 11.213907 0.012665285 

He and Wang 2007 [9] CPSO 0.051728 0.357644 11.244543 0.0126747 

Zhang et al. 2008  [10] 
DSS-

MDE 
0.05168906 0.35671775 11.288965 0.012665233 

Montes et al. 2008 [11] ES 0.051643 0.35536 11.397926 0.012698 

Shen et al. 2009 [12] iGSO 0.05169 0.35677 11.28617 0.01267 

Omran et al. 2009 [13] CODEQ 0.05168375 0.35658984 11.296471 0.012665238 

Coelho 2010 [14] QPSO 0.051515 0.352529 11.538862 0.012665 

Gandomi et al. 2013 [15] BAT 0.05169 0.35673 11.2885 0.01267 



Akay and Karaboga 2012 

[16]  

ABC 
0.051749 0.358179 11.203763 0.012665 

Garg 2014 [17]    ABC 0.05168916 0.35672003 11.288831 0.012665233 

Modified FA [4] MFA 0.05173 0.3577 11.2595 0.01269 

Present work, IFA  IFA 0.05160418 0.35467468 11.410614 0.012666265 

      

 

As it can be seen from Table 3, proposed IFA finds better results than eight out of 8 

existing ones algorithms in comparison and gives worse results than the rest.  

5 Discussion & Conclusion 

At the present time, optimization algorithms are ubiquitously used to solve problems in 

many domains, many engineering finance and operations research. Heuristic and meta-

heuristic optimization algorithms are commonly used where the search space is com-

plex. Meta-heuristics can be a general algorithmic wrapper that can be applied to solv-

ing various optimization tasks with a relatively small number of modifications to make 

it adapted to a particular problem. Its application greatly enhances the possibility of 

finding a qualitative solution for complex, topical combinatorial optimization problems 

in a reasonable time. Firefly algorithm is a recent swarm intelligence meta-heuristic 

algorithm. In this paper, a neighborhood method is integrated to the current FA and the 

new algorithm IFA is proposed. IFA integrates the stochastic randomness of the classi-

cal FA with the local search to maximize the outcome. To compare the performance of  

FA and IFA, we tested them on two well-known engineering design problem with a 

closed form solution.  

A direct comparison of FA and IFA shows that IFA performs better than FA. We 

also compared IFA with the results of other optimization algorithms. Compression/Ten-

sion Spring Design problem is compared with 15 existing optimization algorithm. IFA 

is worse than seven and better than eight algorithms. Often multiple algorithms need to 

be tried to get the most optimum value for a solution and we believe that IFA would be 

a good algorithm in the mix for maximizing the returns.  
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