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Abstract. Constructed are mathematical models of deformation-relaxation 

processes in biophysical materials under conditions of nonisothermic moisture 

transfer, taking into account fractional integro-differential apparatus. A two-

dimensional mathematical model of nonisothermic moisture transfer in bio-

physical materials with fractal structure is synthesized. The relations in the dif-

ferential and integral forms are given to present one-dimensional Maxwell's, 

Kelvin’s and Voigt’s fractional rheological models. The analytical expressions 

for describing the stress component in relation to deformations for fractal mod-

els are found and on the basis of them is generalized a mathematical rheological 

model of two-dimensional visco-elastic deformation Presented are difference 

schemes to obtain numerical results of the study on the processes of visco-

elastic deformation and heat-and-mass transfer. The algorithmic aspects and 

results of the identification of fractal parameters are shown. The results of the 

adapted method for splitting fractional-differential two-dimensional creep ker-

nel are presented. Determined are the patterns of stress, deformation and heat 

exchange processes for different types of biophysical materials with fractal 

structure. 

Keywords: mathematical models, biomaterials, fractal structure, integro-

differentiation of fractional order, memory effects and spatial correlations. 

1 Introduction 

Construction of mathematical models of physical and mechanical behavior of biologi-

cal materials taking into account effects of memory and self-organization allows ob-

taining new data in relation to the state and dynamics of changes of their properties, 

as well as improving the accuracy of diagnostics of the functioning of biophysical 

processes. In recent years, there has been a strong interest in using fractional differen-
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tial equations for simulating biophysical processes. The publications are concerned 

with mathematical issues of the study on differential equations with derivatives of 

fractional order, analytical methods for their solution, the existence of solutions, 

as well as issues related to the geometric and physical interpretations of fractional  

derivatives [1, 2]. In comparison with the traditional topics of research [3], only 

a small number of works are devoted to the problem of synthesis of mathematical 

models of visco-elastic deformation under conditions of nonisothermic moisture 

transfer in biophysical materials with a fractal structure, taking into account non-

locality of processes and multiphase nature of the system. Not entirely solved remains 

the problem of the correct and physically-meaningful formulation of the boundary and 

initial conditions for nonlocal mathematical models of nonequilibrium processes with 

regard to the fractal structure of the medium. 

Typically, to describe nonstationary processes,  the operators of integration and 

differentiation are used which cause the imposition of certain conditions on the pro-

cesses underway and generalize their properties.  The use of the mathematical appa-

ratus of integro-differentiation  of fractional  order makes it possible  to take  into 

account the properties of a material which is characterized by biological variability of 

rheological properties, structural inhomogeneity, the complex nature of spatial corre-

lations, the presence of "memory" effects, self-organization, and deterministic chaos. 

One of the special advantages of using fractal analysis is the possibility to more fully 

describe the processes of the real world. The fractional-differential index indicates the 

share of the system’s states that persist throughout the whole process of its function-

ing. The research is devoted to the construction of mathematical models and software 

of physical and mechanical fields in biophysical materials with fractal structure.  Such 

fractional order models [4, 5] describe the evolution of physical systems with residual 

memory and the self-similarity of a fractal structure that occupy an intermediate posi-

tion between Markov’s systems and systems that are characterized by complete 

memory. 

The fractional integro-differentiation apparatus complicates mathematical models 

and requires the improvement of numerical methods for their implementation, since 

analytical methods are of limited application. This work is concerned with the use of 

finite-difference schemes to find a numerical solution to differential equations with 

fractional order derivatives and the creation of algorithmic support for numerical  

simulation of non-isothermic moisture transfer in biophysical materials with fractal 

structure [6, 7, 8]. 

2 Problem formulation 

A two-dimensional mathematical model of the nonstationary process of heat-and-

moisture transfer in biophysical materials is described by an interconnected system of 

differential equations in partial derivatives with a fractional order in time t and spatial 

coordinates x1 and x2 : 
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with the following initial conditions 
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and boundary conditions of the third kind 
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where        21max21 ,0,0,0,,, llDDxxt   ; UT ,  are required functions, 

where T is temperature, U  is moisture content,  UTc ,  is specific heat capacity, 

  U  is density, 0  is basic density,   is phase transition coefficient, r  is specif-

ic heat of vapour generation., i  UT ,  2,1i  are coefficients of thermal conduc-

tivity, ia  UT ,  2,1i  are coefficients of water conductivity,   UT ,  is ther-

mogradient coefficient, ct  is the ambient temperature value,  ,p cU t   is equilibri-

um moisture content,   is relative moisture content of the drying agent, 
*  ,ct   

is coefficient of heat exchange,   is the speed of the drying agent movement,  
*  , ,ct    is  coefficient of moisture exchange,   is fractional order of derivative 

in time,  10  , ,   are fractional indices of the derivative for spatial coor-

dinates  1 2   ,  10   . 

On the basis of the Volterra hypothesis on the hereditary elastic deformation solid 
and the method of structural modeling, fractional analogues of classical one-
dimensional rheological models (Maxwell’s, Voigt’s, and Kelvin’s models) are con-
structed by replacing the ordinary derivative with the fractional order of the derivative 
in the differential equations. 

Maxwell's fractional-differential model: 
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Voigt’s fractional-differential model: 
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Kelvin’s fractional-differential model: 
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where    is relaxation time, E  is elastic modulus for Maxwell’s and Voigt’s models, 1E is 

elastic modulus of Voigt’s element for Kelvin’s model, 2E  is elastic modulus for 

Kelvin’s model,  t  is stress,  t is deformation, ,
tD  


tD  are fractional deriva-

tives in time with order, respectively, , . 

Two-dimensional fractal rheological models in integral form can be written as fol-

lows: 

Voigt’s fractal model 
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Maxwell’s fractal model 
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Kelvin’s fractal model 
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where  11 22 12, ,T    ,  11 22 12, ,T     is the vector of deformation and 

stress, respectively, whose components depend on time t  and spatial variables x1 and 

2x ,    is Gamma-function, 
tD is integer derivative of the first order in time, 

 TTTTT 321 ,,    is the vector of deformations whose  components are determined 

by temperature change  T  and moisture content U : 

,11111 UTT   ,22222 UTT   ,03 T 22112211 ,,,   are 

coefficients of thermal expansion and drying shrinkage; ijC are components of the 

elasticity tensor of an orthotropic body, and with i=1, then 
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Taking into account the relation for models (9)-(14), the general fractal 

mathematical model of two-dimensional visco-elastic deformation is described by 



means of equilibrium equations with fractional order    10    for spatial 

coordinates  1x  and 2x : 
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where ijR , ijR
~

  , 1, 2,3i j   are the corresponding values of the  integrals:  
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3 Numerical methods of solving mathematical models 

The numerical method for solving the problem (1)-(5) is based on the use of the 

predictor-corrector method which in turn is implemented on the difference 

approximations of fractional derivatives, namely: the difference approximation of the 

fractional derivative a in the time interval  
1,k kt t    , taking into account the 

Riemann-Liouville formula [2], this can be written as follows: 
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Using the Grunwald-Letnikov formula [1], the difference approximation of the 

fractional derivative   for the spatial coordinate 
1x  will be written accordingly: 
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where 
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The difference scheme for the numerical implementation of a system of differential 

equations (1), (2) considering the approximation expressions (17), (18) can be written 

as: 

 
 

 

1

, , 1 11 2
1, , 1

0 01 2

1

, ,

0

2

2

k k n m
n m n m k k

j n j m j n m j

j j

k k

n m n m

T T
с q T q T

h h

U U
r

 

  



  


 




 



   

    
 




  

  




  

 
 (19) 

 
 

1

, , 1 11 2
1, , 1

0 01 2

1 11 2
1, , 1

0 01 2

2

k k n m
n m n m k k

j n j m j n m j

j j

n m
k k

j n j m j n m j

j j

U U a a
q U q U

h h

a a
q T q T

h h

 

  

 

 



 

 



   

    
 

   

    
 


  

  

 

 

 

 (20) 

In the case when 1  , we obtain an explicit finite-difference scheme, and when 

0   - an implicit scheme. 

To determine the stability conditions of the obtained difference equations of the 

connected heat-and-mass transfer, the method of conditional assignment of some 

known functions of the system is used, according to which the following relation is 

found: 
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where     1
03222111 1,;,;,


  rcCaCaС . 

Supposing that fractal parameters ,   take integer values, an analysis and 

comparison have been made, according to which the obtained stability condition (21) 

coincides with the condition of stability for classical equations of thermal 

conductivity. 

The system of equations (15)-(16) will correspond to the following finite-

difference scheme: 
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To the relations (22), (23), the boundary and initial conditions are added in finite-

difference form: 
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4 The results  of splitting two-dimensional fractal creep kernel, 

identification of fractional-differential parameters and results 

of numerical simulation 

Considering the complexity of identification of two-dimensional fractal parameters 

of kernels, we present the results of the adapted method for splitting two-dimensional 

kernel for rheological models taking into account the previously found functions of 

longitudinal and transverse creep. The shear creep kernels for Voigt’s, Kelvin’s, and 

Maxwell’s models, respectively: 
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where  
0 1 2, ,    are Poisson’s ratios  

The function of volumetric creep rate for fractional-differential rheological models 

will take the following form: 
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The use of the iterative method, which is based on the method of least squares and 

coordinate descent, involves two stages. At the first stage, based on the a priori 

knowledge about structural parameters of rheological models, the identification of 

such parameters is made using the creep law for a specified model in its classical 

interpretation. The structural parameters of the models having been identified, the 

next stage is to find the values of fractional-differential parameters which can be ob-

tained by minimizing explicit expressions that describe deformation functions for 



Voigt’s, Kelvin’s, and Maxwell’s models. Maxwell’s one-dimensional fractal model 

can be presented as follows: 
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For both stages of the iterative method of objective function: 
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The refinement of the identified parameters is carried out by means of the coordi-

nate descent method. The results of the identification and their comparison with the 

experimental data [9] for Maxwell’s fractal model at moisture content  30%W   and 

with the elastic modulus  315.3 10 ,M а     are presented in Fig.1. Taking into 

account the statistical criterion that is based on the correlation coefficient, an appro-

priate estimation of the difference of results for the model is found - 

26.15, 0.992.M M    

Taking into consideration rheological and thermophysical characteristics of for   

biophysical material with different conditional densities and their dependence on 

temperature and moisture content, a numerical experiment was carried out to study 

the change in temperature, stress and deformation components with respect to time,   

taking into account the fractal structure and without its consideration. 

 



 

 

Fig. 1. Identification of the fractal parameters for Maxwell’s model 

After analyzing the temperature change  T  for samples of biomaterials with  dif-

ferent densities (ρ1=550 kg/m3, ρ2=500 kg/m3, ρ3=400 kg/m3) in the center and at the 

end of the sample depending on the time t (Fig. 2) with selected fractal model pa-

rameters - 0.3, 1.9, 0,1     ,  the following conclusions can be drawn: at 

any geometric point, the biomaterial samples with ρ=500 kg/m3 heats up faster than 

other one; at the ends of the biomaterial samples the temperature rises faster than in 

the center of both specimens; the temperature rises to a certain level and becomes 

almost constant. 

 

 

Fig. 2. Temperature change at different geometric points of biomaterial samples with different densities, 

taking into account fractal parameters. 



Investigated is the influence of fractal parameters on the dynamics of stress and de-

formation components in the radial-tangent anisotropy direction for the rheological 

Voigt’s model. The differences in the use of fractional and integer differentiations are 

given.  

From the graphic dependencies (Figures 3, 4) it can be noted that with increasing 

time, deformation and stress somewhat decrease, in particular, the greatest values of 

deformation and stress are reached by the specimen with ρ=400 kg/m3, and the  

smallest - another. 

 

 

Fig. 3. Change in the deformation component 12 depending on the type of biomaterial 

Thus, it can be concluded that the fractal structure of the material has a greater im-

pact on the species with a lower density than on the biomaterials with a higher density. 

 

 

Fig. 4. Change in the 
12  stress component depending on the type of biomaterial 



 

5 Conclusions 

A mathematical model of nonisothermic moisture transfer using a fractional in-

tegro-differential apparatus was constructed, which makes it possible to take into 

account the thermophysical characteristics of biophysical materials as anisotropic 

material and, unlike the known ones, extends the set of its realizations by taking into 

account the fractality not only in time α (0<α≤1) , but also for spatial coordinates, the 

order of which in the mathematical model is β (1<β≤2) and in boundary conditions of 

the third kind – γ (0<γ≤1).   Obtained are one - and two-dimensional models of visco-

elastic deformation processes in biophysical materials with fractal structure. The re-

sults of splitting two-dimensional creep kernels for fractional-differential rheological 

models are presented, which allows obtaining the function of rate of volumetric and 

shear creeps. The difference schemes are developed to obtain the numerical results of 

the study on the processes of heat-and-mass transfer and visco-elastic deformation in 

the two-dimensional region, taking into account the fractal structure of the material; 

the stability conditions of the explicit difference schemes are identified. The algo-

rithmic aspects of identification are given and fractional-differential parameters for 

the Maxwell model are determined, which makes it possible to compare the obtained 

results with experimental data and to find an explicit expression that describes the 

fractional-exponential creep kernel.  

 Identified are the patterns of fractal parameters influence on the dynamics of tem-

perature changes, the components of deformation and stress, according to which it is 

possible to draw appropriate conclusions about the impact of the fractal structure of 

the material on different types of biomaterials. 
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