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Abstract. In the paper a method of intelligent image processing have been de-

veloped. This method based on a three channel purely convolutional neural 

network. The method consists of neural network model, a criterion to evaluate 

the effectiveness of the proposed model, a method for neural network learning 

in batch mode and a corresponding learning algorithm. This algorithm is in-

tended for implementation on GPU by means of CUDA technology. The creat-

ed model of neural network does not require the determination of the number of 

planes in hidden layers. This feature of the model simplifies its parametric iden-

tification "in large" and provides the use of three planes in the input layer. This 

simplifies the work with RGB images. The proposed method of intelligent im-

age processing can be used in various intelligent systems of medical diagnos-

tics. 

Keywords: three-channel purely convolutional neural network, image recogni-

tion, batch learning mode, medical diagnostics, CUDA technologies. 

1 Introduction 

Currently, methods of automatic detection of mammary gland microcalcifications [1-

2], nodes in the lungs [3]; polyps [4], pulmonary embolism [5]; brain tumors [6], etc., 

which are based on the approaches of artificial intelligence and are applied to digital 

images, are widely disseminated. 

For image recognition, such approaches as [7]: 

─ metric [8, 9], which uses the metric to match the recognized and reference images; 

─ Bayesian [10], which uses a posteriori probability to match the recognized and 

reference images; 

─ generative [11-13], which uses a combination of a state machine and dynamic pro-

gramming; 
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─ neural [14-16], which uses an artificial neural network, are commonly used. 

The highest probability of image recognition is achieved by means of deep neural 

networks. 

Currently, the following deep neural networks are commonly used for image 

recognition: 

─ convolutional neural network (CNN) [17-18], which is a dynamic network; 

─ deep Boltzmann machine (DBM) [19-20], which is a recurrent network; 

─ deep autocoder [21], which is a static network; 

─ neocognitron [22], which is a dynamic network. 

Compared with other deep neural networks, CNN has two advantages at the same 

time – the possibility of a batch learning mode and the highest probability of recogni-

tion. 

The disadvantages of traditional CNN include the lack of binding of its learning 

procedure to a parallel architecture, the lack of automatic determination of the number 

of planes in its hidden layers, the consideration of its learning procedure for only one 

plane of the input layer. In this regard, it is relevant to create a modified CNN, which 

will eliminate these drawbacks. 

The goal of the work is to create a method of intelligent image processing based on 

three-channel purely convolutional neural network. To achieve the goal, the following 

tasks have been set and solved: 

1. to create a model of three-channel purely convolutional neural network;  

2. to choose a criterion for evaluating the effectiveness of the proposed model;  

 to develop a method for learning a three-channel purely convolutional neural net-

work in batch mode;  

3. to create a learning algorithm for three-channel purely convolutional neural net-

work in batch mode, designed for implementation on GPU by means of CUDA 

technology;  

4. to conduct a numerical study. 

2 The creation of a model of three-channel purely convolutional 

neural network 

In this paper a modification of CNN – three-channel purely convolutional neural net-

work (3PCNN) – is offered. An example of 3PCNN for a feature matrix of 29x29 in 

size for three color components is shown in Fig. 1. Geometrically, communication 

area for the input, first, and second convolutional layers is a 3x3 square.  

Unlike usual CNN, the proposed 3PCNN has the following features: 

─ there are three consecutive convolutional layers;  

─ the third convolutional layer replaces subsampling layer (communication area is 

shifted not by 1, but by q);  

─ the number of planes for the input and convolutional layers is three;  



 

─ each plane of the input layer is associated with only one plane of the first convolu-

tional layer;  

─ each plane of the first convolutional layer is associated with only one plane of the 

second convolutional layer;  

─ each plane of the second convolutional layer is associated with only one plane of 

the third convolutional layer. 
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Fig. 1. Three-channel purely convolutional neural network (3PCNN). 

The 3PCNN model is presented as follows: 

 (0) ( , ) ( , )u m k x m k , 2{1,..., / 2}m N , 1,3k , 

 (1) (1) (1)( , ) ( ( , ))u m k f h m k , (1) 2{1,..., }m N , 1,3k , 

 (1) (1) (1) (0)( , ) ( ) ( , , ) ( , )
v

h m k b k w k k u m k    , (0)

mv V , 

 (2) (2) (2)( , ) ( ( , ))u m k f h m k , (2) 2{1,..., }m N , 1,3k , 

 (2) (2) (2) (1)( , ) ( ) ( , , ) ( , )
v

h m k b k w k k u m k    , (1)

mv V , 

 (3) (3) (3)( , ) ( ( , ))u m k f h m k , (3) 2{1,..., }m N , 1,3k , 

 (3) (3) (3) (3)( , ) ( ) ( , , ) ( (1 , 1 ), )h m k b k w k k u qm q q k


       , (2)

mv V , 

 (4) (4) (4)( ) ( ( ))u i f h i , (4)1,i K , 

 
3

(4) (4) (4) (3)

1

( ) ( ) ( , , ) ( , )
k m

h i b i w m k i u m k


  , (3) 2{1,..., }m N , 

where i  – the number of the plane of output layer cells, 



k  – the number of the plane of convolutional layer cells 
1C , 

2C , 
3C , 

q  – subsampling coefficient, which is a natural number, 

  – position in communication area, ( , )x y   , 

( )l

mV  – communication area of the l th layer for the neuron in m  position of the 

1l  st layer, 
(4)K  – the number of cell planes in the output layer, 

(1) ( )b k  – threshold values for the neuron in m  position of the k th plane of 
1C  layer, 

(2) ( )b k  – threshold values for the neuron in m  position of the k th plane of 
2C  layer, 

(3) ( )b k  – threshold values for the neuron in m  position of the k th plane of 
3C  layer, 

(4) ( )b i  – threshold values for the neuron of the i th plane of the output layer, 

(1) ( , , )w k k  – connection weight from the neuron in m   position of the k th 

plane of the input layer to the neuron in m  position of the k th plane of 
1C  layer, 

(2) ( , , )w k k  – connection weight from the neuron in m   position of the k th 

plane of 
1C  layer to the neuron in m  position of the k th plane of 

2C  layer, 

(3) ( , , )w k k  – connection weight from the neuron in (1 ,1 )qm q q     position 

of the k th plane of 
2C  layer to the neuron in m  position of the k th plane of 

3C  layer, 

(4) ( , , )w m k i  – connection weight from the neuron in m  position of the k th plane 

of 
3C  layer to the neuron of the i th plane of the output layer, 

(1) ( , )u m k  – neuron yield in m  position of the k th plane of 
1C  layer, 

(2) ( , )u m k  –neuron yield in m  position of the k th plane of 
2C  layer, 

(3) ( , )u m k  – neuron yield in m  position of the k th plane of 
3C  layer, 

(4) ( )u i  – neuron yield of the i th plane of the output layer, 

(1)f  – the ReLU function of neurons activation in 
1C  layer, 

(2)f  – the ReLU function of neurons activation in 
2C  layer, 

(3)f  – the ReLU function of neurons activation in 
3C  layer, 

(4)f  – the logistic function of neurons activation in the output layer. 

3 The choice of the criterion for evaluation of the proposed 

model effectiveness 

In the work, for 3PCNN model learning the goal function is chosen, that means the 

choice of such parameter values, which deliver the minimum of root-mean-square 

error (the difference of model output and test output): 



 

 

( 4)

(4) 2

(4)
1 1

1
( ( ) ) min

P K

i
W

i

F u i d
PK

 
 

     (1) 

where (4) (4) (4) (4)( (1),..., ( ))u u u K    – the  th model output signal, 

(4)1( ,..., )
K

d d d  
  – the  th test output signal, 

P  – test set power,  

W  – 3PCNN parameters,  (1) (2) (3)( , , ), ( , , ), ( , ),W w k k w k k w k k  (4) ( , , )w m k i . 

4 The development of learning method for three-channel purely 

convolutional neural network in batch mode 

In this paper, for 3PCNN an error correction learning (teacher learning), using the 

back propagation method (BP), is used. This is an iterative gradient learning method 

which minimizes root-mean-square error. In this paper, batch learning mode for paral-

lel computing is offered. 

The structure of the method for 3PCNN learning in batch mode is presented in 

Fig. 2. 

The method for 3PCNN learning in batch mode consists of the following blocks. 

Block 1 – initialize 3PCNN parameters 

Set the number of the current learning era n  by one. 

 (1) ( , ) ()b n k rand , 1,3k , 

 (1) ( , , , ) ()w n k k rand  , (0)v V , 1,3k , 

 (2) ( , ) ()b n k rand , 1,3k , 

 (2) ( , , , ) ()w n k k rand  , (1)v V , 1,3k , 

 (3) ( , ) ()b n k rand , 1,3k , 

 (3) ( , , , ) ()w n k k rand  , (2)v V , 1,3k , 

 (4) ( , ) ()b n i rand , (4)1,i K , 

 (4) ( , , , ) ()w n m k i rand , (3) 2{1,..., }m N , 1,3k , (4)1,i K , 

where ( )lV  – communication area in the l th layer. 



Block 2 – Specify the learning set 

 
( 4 )( /2) ( /2){( , ) | , {0,1} }N N KR   

 x d x d , 1, P , 

where x  – the  th learning input matrix of features,  

d  – the  th learning output vector,  

P  – learning set power. 
 

1. Initialize parameters 3PCNN 

2. Set the training set 

3. Set the output signal of each cell of each plane of the input 

layer 

– + 

4. Calculate the output signal of each cell of each plane of 

the first convolutional layer over the entire training set 

5. Calculate the output signal of each cell of each plane of 

the second convolutional layer over the entire training set 

10. Break condition 

7. Calculate the output signal of a single cell of each plane of 

the output layer over the entire training set 

8. Calculate the 3PCNN error energy across the entire 

training set 

9. Adjust synaptic weights throughout the training set. 

6. Calculate the output signal of each cell of each plane of 

the third convolutional layer over the entire training set 

 

Fig. 2. The structure of the method for 3PCNN learning in batch mode. 

Block 3 – Set the output signal of each cell of each plane of the input layer 

 (0) ( , , ) ( , )u n m k x m k  , 2{1,..., / 2}m N , 1,3k , 1, P . 



 

Block 4 – Calculate the output signal of each cell of each plane of the first convo-

lutional layer over the entire learning set 

 (1) (1) (1)( , , ) ( ( , , ))u n m k f h n m k  , (1) 2{1,..., }m N , 1,3k , 1, P , 

 (1) (1) (1) (0)( , , ) ( , ) ( , , , ) ( , , )
v

h n m k b n k w n k k u n m k     , (0)

mv V . 

Block 5 – Calculate the output signal of each cell of each plane of the second con-

volutional layer over the entire learning set 

 (2) (2) (2)( , , ) ( ( , , ))u n m k f h n m k  , (2) 2{1,..., }m N , 1,3k , 1, P , 

 (2) (2) (2) (1)( , , ) ( , ) ( , , , ) ( , , )
v

h n m k b n k w n k k u n m k     , (1)

mv V . 

Block 6 – Calculate the output signal of each cell of each plane of the third con-

volutional layer over the entire learning set 

 (3) (3) (3)( , , ) ( ( , , ))u n m k f h n m k  , (3) 2{1,..., }m N , 1,3k , 1, P , 

(3) (3) (3) (2)( , , ) ( , ) ( , , , ) ( , (1 ,1 ), )h n m k b n k w n k k u n qm q q k


       , (2)

mv V . 

Block 7 – Calculate the output signal of a single cell of each plane of the output 

layer over the entire learning set 

 (4) (4) (4)( , ) ( ( , ))u n i f h n i  , 
(4)1,i K , 1, P , 

 
3

(4) (4) (4) (3)

1

( , ) ( , ) ( , , , ) ( , , )
k m

h n i b n i w n m k i u n m k 


  , (3) 2{1,..., }m N . 

Block 8 – Calculate the energy of 3PCNN error over the entire learning set  

 

( 4)

2

1 1

1
( ) ( )

2

P K

i
i

E n e n
P


 

   , (4)( ) ( , )i ie n u n i d    . 

Block 9 – Adjust synaptic weights based on generalized delta rule over the entire 

learning set 

 
(4) (4)

(4)

( )
( 1, ) ( , ) ( )

( , )

E n
b n i b n i n

b n i



  


, 

(4)1,i K , 



(4) (4)

(4)

( )
( 1, , , ) ( , , , ) ( )

( , , , )

E n
w n m k i w n m k i n

w n m k i



  


, (3) 2{1,..., }m N , 1,3k , (4)1,i K , 

 
(3) (3)

(3)

( )
( 1, ) ( , ) ( )

( , )

E n
b n k b n k n

b n k



  


, 1,3k , 

 (3) (3)

(3)

( )
( 1, , , ) ( , , , ) ( )

( , , , )

E n
w n k k w n k k n

w n k k
  




  


, (2)v V , 1,3k , 

 
(2) (2)

(2)

( )
( 1, ) ( , ) ( )

( , )

E n
b n k b n k n

b n k



  


, 1,3k , 

 (2) (2)

(2)

( )
( 1, , , ) ( , , , ) ( )

( , , , )

E n
w n k k w n k k n

w n k k
  




  


, (1)v V , 1,3k , 

 
(1) (1)

(1)

( )
( 1, ) ( , ) ( )

( , )

E n
b n k b n k n

b n k



  


, 1,3k , 

 
(1) (1)

(1)

( )
( 1, , , ) ( , , , ) ( )

( , , , )

E n
w n k k w n k k n

w n k k
  




  


, (0)v V , 1,3k , 

 
(4)

(4)
1

( ) 1
( , )

( , )

PE n
g n i

Pb n i








 , 

 
(3) (4)

(4)
1

( ) 1
( , , ) ( , )

( , , , )

PE n
u n m k g n i

Pw n m k i
 







 , 

 
(3)

(3
1

( ) 1
( , , )

( , )

P

m

E n
g n m k

Pb n k








 , (2) 2{1,..., }m N , 

(2) (3)

(3)
1

( ) 1
( , (1 ,1 ), ) ( , , )

( , , , )

P

m

E n
u n qm q q k g n m k

Pw n k k
 




 


    


 , (2) 2{1,..., }m N , 

 
(2)

(2)
1

( ) 1
( , , )

( , )

P

m

E n
g n m k

Pb n k








 , (1) 2{1,..., }m N , 

 
(1) (2)

(2)
1

( ) 1
( , , ) ( , , )

( , , , )

P

m

E n
u n m k g n m k

Pw n k k
 




 


 


 , (1) 2{1,..., }m N , 

 
(1)

(1)
1

( ) 1
( , , )

( , )

P

m

E n
g n m k

Pb n k








 , 2{1,..., / 2}m N , 



 

 
(0) (1)

(1)
1

( ) 1
( , , ) ( , , )

( , , , )

P

m

E n
u n m k g n m k

Pw n k k
 




 


 


 , 2{1,..., / 2}m N , 

 (4) (4) (4)( , ) ( ) ( ( , ))ig n i e n f h n i  
 , 

 

( 4)

(3) (3) (3) (4) (4)

1

( , , ) ( ( , , )) ( , , , ) ( , )
K

i

g n m k f h n m k w n m k i g n i  


  , 

 (2) (2) (2)( , , ) ( ( , , ))g n m k f h n m k 
   

 (3) (3) (1,1)
( , , , ) , (1,1),

v

m v
w n k k g n k

q

   

   
  

 , (3)

mv D , 

 (1) (1) (1) (2) (2)( , , ) ( ( , , )) ( , , , ) ( , , )g n m k f h n m k w n k k g n m k  


   , (2)

mv D , 

where ( )l

mD  – communication area of the l th layer for the neuron in m  position of the 

1l  th layer, 

( )n  – parameter that determines the learning rate in accordance with the rule of 

exponential decay, 

 _( ) (0) decay rate tn e    ; _ 0decay rate  , 

where (0)  – initial learning rate, (0) 0  . 

Block 10 – Check termination condition. 

If ( )E n  , then increase the number of the era n  by one and go to block 2. 

5 The creation of learning algorithm of three-channel purely 

convolutional neural network in batch mode 

The algorithm for 3PCNN learning in batch mode, designed for implementation on 

GPU by means of CUDA technology, is shown in Fig. 3. This block diagram func-

tions as follows. 

Step 1 – Download the initial values of 3PCNN parameters into GPU global 

memory. 

Step 2 – Download the learning set into GPU global memory. 

Step 3 – Download the output signal of each cell of each plane of the input layer 

into GPU global memory. 

Step 4 – Calculate the output signal of each cell of each plane of the first convolu-

tional layer 
(1) ( , , )u n m k  over the entire learning set using (1) 23 ( )P N  threads which 



are grouped into  (1) 23 ( ) sP N N  blocks, where sN  – the number of threads in the 

block. Each thread computes 

 (1) (1) (1)( , , ) ( ( , , ))u n m k f h n m k  , 

 (1) (1) (1) (0)( , , ) ( , ) ( , , , ) ( , , )
v

h n m k b n k w n k k u n m k     , (0)

mv V . 

Step 5 – Calculate the output signal of each cell of each plane of the second convolu-

tional layer 
(2) ( , , )u n m k  over the entire learning set using (2) 23 ( )P N  threads which 

are grouped into  (2) 23 ( ) sP N N  blocks. Each thread computes 

 (2) (2) (2)( , , ) ( ( , , ))u n m k f h n m k  , 

 (2) (2) (2) (1)( , , ) ( , ) ( , , , ) ( , , )
v

h n m k b n k w n k k u n m k     , (0)

mv V . 
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Fig. 3. Block diagram of the algorithm for 3PCNN learning in batch mode. 

Step 6 – Calculate the output signal of each cell of each plane of the third convolu-

tional layer 
(3) ( , , )u n m k  over the entire learning set using (2) 23 ( )P N  threads which 

are grouped into  (2) 23 ( ) sP N N  blocks. Each thread computes 

 (3) (3) (3)( , , ) ( ( , , ))u n m k f h n m k  , 

(3) (3) (3) (2)( , , ) ( , ) ( , , , ) ( , (1 ,1 ), )h n m k b n k w n k k u n qm q q k


       , (2)

mv V . 



 

Step 7 – Calculate the ( , )s n i  sum over the entire learning set using 

(3) 2 (4)3 ( )P N K  threads which are grouped into 
  4(3) 23 ( ) sP N K N  blocks. In each 

block, based on the reduction, a partial sum from sN  elements of the 
(4) (3)( , , , ) ( , , )w n m k i u n m k  form is calculated. Partial sums, received in each block, are 

added up, based on the reduction.  

Step 8 – Calculate the output signal of a single cell of each plane of the output 
(4) ( , )u n i  layer over the entire learning set using (4)PK  threads which are grouped 

into 
  4 sPK N  blocks. Each thread computes 

 (4) (4) (4)( , ) ( ( , ))u n i f h n i  , 

 (4) (4)( , ) ( , ) ( , )h n i b n i s n i   . 

Step 9 – Calculate the energy of error ( )E n  over the entire learning set using 

(4)PK  threads which are grouped into 
  4 sPK N  blocks. In each block, based on 

the reduction, a partial sum from sN  elements of the 
(4) ( , ) iu n i d   form is calculat-

ed. Partial sums, received in each block, are added, based on the reduction, and the 

result is divided by 2P . 

Step 10 – Calculate the partial derivative 
(4)

( )

( , )

E n

b n i




 over the entire learning set us-

ing (4)PK  threads which are grouped into 
  4 sPK N  blocks. In each block, based 

on the reduction, a partial sum from sN  elements of the 
(4) (4) (4)( , ) ( ) ( ( , ))ig n i e n f h n i  

  form is calculated. Partial sums, received in each 

block, are added, based on the reduction, and the result is divided by P . 

Step 11 – Calculate the threshold value (4) ( 1, )b n i  using (4)K  threads which are 

grouped into one block. Each thread computes 

 
(4) (4)

(4)

( )
( 1, ) ( , ) ( )

( , )

E n
b n i b n i n

b n i



  


. 

Step 12 – Calculate the partial derivative 
(4)

( )

( , , , )

E n

w n m k i




 over the entire learning 

set using (3) 2 (4)3 ( )P N K  threads which are grouped into  (3) 2 (4)3 ( ) sP N K N  blocks. 

In each block, based on the reduction, a partial sum from sN  elements of the 
(3) (4)( , , ) ( , )u n m k g n i   form is calculated. Partial sums, received in each block, are 

added, based on the reduction, and the result is divided by P . 



Step 13 – Calculate synaptic weight (4) ( 1, , , )w n m k i  using (3) 2 (4)3( )N K  threads 

which are grouped into 
  4(3) 23( ) sN K N  blocks. Each thread computes 

 
(4) (4)

(4)

( )
( 1, , , ) ( , , , ) ( )

( , , , )

E n
w n m k i w n m k i n

w n m k i



  


. 

Step 14 – Calculate the partial derivative 
(3)

( )

( , )

E n

b n k




 over the entire learning set 

using (2) 23 ( )P N  threads which are grouped into  (2) 23 ( ) sP N N  blocks. In each 

block, based on the reduction, a partial sum from sN  elements of the 
( 4)

(3) (3) (3) (4) (4)

1

( , , ) ( ( , , )) ( , , , ) ( , )
K

i

g n m k f h n m k w n m k i g n i  


   form is calculated. Partial 

sums, received in each block, are added, based on the reduction, and the result is di-

vided by P . 

Step 15 – Calculate the threshold value (3) ( 1, )b n k  using three threads, which are 

grouped into one block. Each thread computes 

 
(3) (3)

(3)

( )
( 1, ) ( , ) ( )

( , )

E n
b n k b n k n

b n k



  


. 

Step 16 – Calculate the partial derivative 
(3)

( )

( , , , )

E n

w n k k




 over the entire learning 

set using (2) 2 (2)3 ( ) | |P N V  threads which are grouped into 
(2) 2 (2)3 ( ) | |

s

P N V

N
 blocks. 

In each block, based on the reduction, a partial sum from sN  elements of the 
(2) (3)( , (1 ,1 ), ) ( , , )u n qm q q k g n m k      form is calculated. Partial sums, received 

in each block, are added, based on the reduction, and the result is divided by P . 

Step 17 – Calculate synaptic weight (3) ( 1, , , )w n k k  using (2)3 | |V  threads 

which are grouped into one block. Each thread computes 

 
(3) (3)

(3)

( )
( 1, , , ) ( , , , ) ( )

( , , , )

E n
w n k k w n k k n

w n k k
  




  


. 

Step 18 – Calculate the partial derivative 
(2)

( )

( , )

E n

b n k




 over the entire learning set 

using (1) 23 ( )P N  threads which are grouped into  (1) 23 ( ) sP N N  blocks. In each 

block, based on the reduction, a partial sum from sN  elements of the 



 

(2) (2) (2)( , , ) ( ( , , ))g n m k f h n m k 
 

(3) (3) (1,1)
( , , , ) , (1,1),

v

m v
w n k k g n k

q

   

  
  

  

form is calculated. Partial sums, received in each block, are added, based on the re-

duction, and the result is divided by P . 

Step 19 – Calculate the threshold value (2) ( 1, )b n k  using three threads, which are 

grouped into one block. Each thread computes 

 
(2) (2)

(2)

( )
( 1, ) ( , ) ( )

( , )

E n
b n k b n k n

b n k



  


. 

Step 20 – Calculate the partial derivative 
(2)

( )

( , , , )

E n

w n k k




 over the entire learning 

set using (1) 2 (1)3 ( ) | |P N V  threads which are grouped into 
(1) 2 (1)3 ( ) | |

s

P N V

N
 blocks. In 

each block, based on the reduction, a partial sum from sN  elements of the 
(1) (2)( , , ) ( , , )u n m k g n m k   form is calculated. Partial sums, received in each block, 

are added, based on the reduction, and the result is divided by P . 

Step 21 – Calculate synaptic weight (2) ( 1, , , )w n k k  using (1)3 | |V  threads which 

are grouped into one block. Each thread computes 

 
(2) (2)

(2)

( )
( 1, , , ) ( , , , ) ( )

( , , , )

E n
w n k k w n k k n

w n k k
  




  


. 

Step 22 – Calculate the partial derivative 
(1)

( )

( , )

E n

b n k




 over the entire learning set 

using 23 ( / 2)P N  threads which are grouped into  23 ( / 2) sP N N  blocks. In each 

block, based on the reduction, a partial sum from sN  elements of the 
(1) (1) (1) (2) (2)( , , ) ( ( , , )) ( , , , ) ( , , )g n m k f h n m k w n k k g n m k  



    form is calculated. 

Partial sums, received in each block, are added, based on the reduction, and the result 

is divided by P . 

Step 23 – Calculate the threshold value (1) ( 1, )b n k  using three threads which are 

grouped into one block. Each thread computes 

 
(1) (1)

(1)

( )
( 1, ) ( , ) ( )

( , )

E n
b n k b n k n

b n k



  


. 



Step 24 – Calculate the partial derivative 
(1)

( )

( , , , )

E n

w n k k




 over the entire learning 

set using 2 (0)3 ( / 2) | |P N V  threads which are grouped into 
2 (0)3 ( / 2) | |

s

P N V

N
 blocks. 

In each block, based on the reduction, a partial sum from sN  elements of the 
(0) (1)( , , ) ( , , )u n m k g n m k   form is calculated. Partial sums, received in each block, 

are added, based on the reduction, and the result is divided by P . 

Step 25 – Calculate synaptic weight (1) ( 1, , , )w n k k  using (0)3 | |V  threads which 

are grouped into one block. Each thread computes 

 
(1) (1)

(1)

( )
( 1, , , ) ( , , , ) ( )

( , , , )

E n
w n k k w n k k n

w n k k
  




  


. 

Step 26 – Calculate learning speed 

 _( ) (0) decay rate tn e    ; _ 0decay rate  . 

Step 27 – Check termination condition. 

If ( )E n  , then increase the number of era n  by one and go to step 2.  

6 Numerical research 

Recognition probabilities, obtained on the basis of CIFAR-10 based on traditional 

CNN and the proposed 3PCNN, are presented in Table 1. At the same time, tradition-

al CNN had three stages (each consisted of a convolutional and subsampling layer 

with 5x5 and 2x2 communication areas, respectively), the first stage had four planes 

for each layer, the second stage had 16 planes for each layer, the third stage had 64 

planes for each layer. The tests were carried out on GeForce 920M video card with 

the number of threads in the block 1024sN  . 

According to Table 1, 3PCNN with image preprocessing gives the best results. 

Table 1. Image recognition probability. 

Neural networks Recognition probability 

CNN 0.97 

3PCNN 0.98 

Conclusions 

1. To solve the problem of improving the quality of intelligent medical image pro-

cessing, appropriate methods for image recognition have been investigated. These 



 

studies have shown that the use of convolutional neural networks is currently the 

most effective. 

2. The created model of three-channel purely convolutional neural network does not 

require the determination of the number of planes in hidden layers, that simplifies 

its parametric identification “in large” and ensures the use of three planes in the in-

put layer, which simplifies the work with RGB images. 

3. The created algorithm for learning a three-channel purely convolutional neural 

network is designed for software implementation on GPU by means of CUDA 

technology. 

4. The proposed method of intelligent image processing, based on three-channel pure 

convolutional neural network, can be used in various intelligent systems of medical 

diagnostics. 
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