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Abstract. New algorithm for EEG signals classification is proposed in this paper. 

The typical algorithm for signal classification includes two steps: preliminary 

transformation and classification. The preliminary transformation modifies in-

vestigated signals by the procedures of feature extraction and dimension reduc-

tion into data set accepted for the classification. This transformation causes the 

loss of some information that can improve the classification accuracy. New pro-

cedure of fuzzification is added in the preliminary transformation for the pro-

posed algorithm. This procedure allows using the fuzzy classifier at the second 

step. The Fuzzy Random Forest is used for the classification of EEG signals in 

the proposed algorithm. The new procedure (fuzzification) in the preliminary 

transformation and new fuzzy classifier (Fuzzy Random Forest) allows increase 

the classification accuracy of the EEG signals. The efficiency of new algorithm 

is evaluated by two investigations. The first one focuses on epilepsy diagnostics 

and the second one aims at epileptics’ seizure detection. The comparison with 

other studies and shows the increasing of the classification accuracy of EEG sig-

nals by the proposed algorithm. 

Keywords: Electroencephalogram (EEG), Fuzzification, Fuzzy Decision Tree, 

Fuzzy Random Forest. 

1 Introduction 

Epilepsy is considered as one of the most common chronic neurological disorders. Sta-

tistics of World Health Organization shows that approximately 50 million people 

worldwide suffer from epilepsy [1]. The most notable epileptic symptom are recurrent 

unprovoked seizures which usually occurs without warning, and they can affect each 

part of the body [2]. Seizures are caused by the electrical activity of the brain, concretely 

by the unexpected electrical disturbance of brain and excessive neuronal discharge. 

These brain activities can be monitored by the Electroencephalogram (EEG) [3]. 

Ability to measure brain electrical activity makes EEG as one of the most important 

tools in neurology diagnostics [5, 6]. EEG measures electrical brain activity by the elec-

trodes placed on the scalp [1, 2]. Captured measurement are signals. These signals are 

converted into the graphic form represented by curves [4]. The shape and character of 



 

captured curve is strongly affected by current brain activity. Curves of signals obtained 

from EEG can be evaluated visually by specialized doctors who are able to use them in 

neural disorder diagnostic. However, such evaluation might not provide enough infor-

mation for doctors to provide reliable neurological diagnostics. Diagnostic based on 

EEG can be significantly improved by development of algorithms for automatic analy-

sis of EEG signals. Such algorithms must involve automatic extraction and analysis of 

information from the captured signal. According to extracted information, the brain 

state can be predicted or classified. In this paper, the algorithm for EEG signal analysis 

is proposed. This algorithm is demonstrated by the detection of epileptic seizures and 

the diagnostics of epilepsy. 

To develop reliable and credible algorithms for automatic EEG signal analysis can 

be developed based on the real data. There is well-known dataset of EEG signals col-

lected and published by R. G. Andrzejak [6]. This dataset consists of 500 samples of 

EEG signal evenly divided into five disjoint subsets A, B, C, D, and E. Therefore, each 

subset contains 100 samples of EEG signals. Each of these samples represents an EEG 

signal captured during 23.6 seconds of EEG recording. Subset A and B contain meas-

urement recorded from persons who do not suffer from epilepsy. In case of subset A, 

patients had eyes opened during recording while patients in subset B had eyes closed. 

Whether the eyes are open or closed affects the electrical activity of the brain according 

to [6]. Samples in subsets C, D, E was recorded from persons suffered from epilepsy. 

While patients in subsets C and D were investigated during seizure-free intervals, sub-

set E contains samples measured during seizure activity only. Subset C consists of the 

vectors, were obtained from the hippocampal formation of the opposite hemisphere of 

the brain. Data vectors in the subset D were recorded from within the epileptogenic 

zone. Examples of samples from these subsets are shown in Fig. 1.  

 

Fig. 1. Raw signals examples, randomly chosen from dataset [6]  

From Fig. 1 is observable that signals in A and E are different from signals in B, C, 

and D. Nevertheless, only visual inspection can be insufficient to recognize healthy (A, 

B) and epileptics EEG segments (C, D, E). The most significant similarity between this 

group is oblivious in case of samples from B, C, and D. The samples are very similar 



 

to each other and the use only of visual inspection can lead to failure in diagnostic 

(patient suffering from epilepsy diagnosed as healthy). This example was used to shows 

that development of algorithms for automatic EEG signals analysis can be instrumental 

in diagnostics. It allows deciding whether a person has epilepsy without information if 

they have had an epileptic seizure or have not. Another task can be focused on detection 

of seizure activities. Also, development and analysis of these algorithms can enable the 

growth of decision support systems for early diagnosis of epilepsy [3–5]. 

Algorithms for automatized EEG signals analysis has been considered in several 

works. Different classification methods are used in these investigations, for example, 

K-nearest neighbor classifier [7], neural networks [5, 8, 9], support vector classifier 

[10, 11], decision trees [12]. The classification accuracy of EEG signals can be in-

creased by the application of evolution methods [7] and clustering analysis [13]. Anal-

ysis of these investigations shows that one of effective classification methods of EEG 

signal for identification of persons with epilepsy is based on the application of decision 

tree [12] and Fuzzy Decision Tree (FDT) [14, 15]. The approach of EEG signal classi-

fication by FDT is developed in this paper and ordered FDT (oFDT) introduced in [16] 

are used. This tree has a regular structure that contains exactly one attribute at each 

level of the tree [17]. This ability allows parallelization of classification. The evaluation 

of the EEG signals classification in [17] has possible and quite accurate. However, there 

can be possibility for increasing of the classification accuracy that is considered in this 

paper. In particular, the application of Fuzzy Random Forest (FRF) is considered.  

Typical algorithms for EEG signals classification in addition to the classification 

procedure include the signal preliminary transformation into numerical attributes [18, 

19]. For this reason, analyzed signal must be preprocessed to extract useful information 

necessary for creating classification models. Nowadays, we can find many prepro-

cessing schemes in the literature. Basically, most of them consist of two steps: feature 

extraction and dimensional reduction. Feature extraction usually includes wavelet or 

spectral transformation. In [12] discrete wavelet and Discrete Fourier Transformation 

(DFT) was compared. Result of this paper shows better performance of DFT in combi-

nation with method C4.5 for decision tree induction. In [20] and [9] the Welch’s method 

was used. These studies indicate that power spectrum density estimation by Welch’s 

method provides strong attributes which represent EEG signals well. The second typi-

cal step of preprocessing is dimensional reduction. This step is required when feature 

extraction produce data matrix of large dimension. Dimensional reduction usually 

transforms data matrix to matrix of significantly smaller dimension. In [10] three tech-

niques was compared: Principal Components Analysis (PCA), linear discriminant anal-

ysis, and independent component analysis. The used in this paper PCA is recomended 

especially in cases when the number of training samples per class is small [21].  

In comparison with preprocessing of EEG signals mentioned above, the algorithm 

presented by us in [14] and [15] involve fuzzy logic to preliminary data transformation 

as additional step. This step is fuzzification which can significantly reduce possible 

uncertainty in data. This paper shows a detailed investigation of this step with 

combination of different fuzzy classifiers: FDTs and FRF. This analysis allows 

developing of accurate method for EEG signals analysis. 



 

2 Structure of new algorithm for EEG signal classification 

The proposed algorithm for epileptics’ seizure detection from EEG signals includes two 

steps (Fig.2): the preliminary transformation of EEG signal and the classification. The 

differences between traditional algorithms of signal classification and algorithm pro-

posed in this paper are (a) the additional procedure of fuzzification at step of prelimi-

nary transformation and (b) the fuzzy classifier at step of classification. The addition of 

the fuzzification permits to use fuzzy classification and consider the ambiguity of the 

transformed and reduced initial EEG signal.  

In papers [22–24], it has been shown that fuzzy data are useful for representation of 

ambiguous and imprecise data with higher accuracy and the application of fuzzy data 

instead of numerical data allows increasing of the accuracy of classification. The prin-

cipal steps of the proposed algorithm for EEG signal classification are shown in the 

figure bellow. 

Fig. 2. The main steps of the proposed algorithm  

Signal preprocessing and the preliminary signal transformation of EEG signals 

causes the loss of some information of initial signal. This fact implies the classification 

of ambiguous data. Fuzzy classifiers can be used for effective classification in this case 

[25]. The application of these classifiers is possible if the input data for the classifica-

tion is fuzzy. However, data in standard algorithms of EEG signal classification after 

the preliminary transformation is not fuzzy even if procedures of attribute extraction 

and dimension reduction include fuzzy transformation.  For example, in paper [26] pro-

pose the algorithm for EEG signal classification with the application of adaptive neuro-

fuzzy inference system. Other fuzzy techniques are described in [27]. At same time 

classifications in these algorithms are not implemented based on fuzzy classifier. Clas-

sification can be improved by application of a fuzzy classifier that causes the represen-

tation of data for classification after the preliminary transformation as the fuzzy data.  

Moreover, we lose some amount of information during EEG signal preprocessing 

during preliminary data transformation. Therefore, the ambiguity and uncertainty of 

initial data can occur. By applying fuzzification, we can reduce possible ambiguity. 
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Moreover, fuzzy logic is tolerant to imprecise data and deviations during data measure-

ment. Fuzzy logic can also model nonlinear functions of arbitrary complexity [28]. 

These facts allow reducing ambiguity and uncertainty of transformed data. According 

to obtained data after preliminary data transformation, we obtain data which was used 

to create three fuzzy classifiers. In the next sections, the steps of preliminary data trans-

formation are described in detail. 

3 Preliminary Data Transformation 

The preliminary data transformation developed in [14] and [15] was evaluated by clas-

sification of EEG signals from dataset gathered in [6] (Fig. 1). Description of recording 

in [6] tells that during the recording of each EEG signal was used the same 128-chan-

nels amplifier system. Recorded data were converted to digital form by 12 bit analog-

to-digital conversion, and then the data were written continuously onto disk of data 

acquisition computer system at a sampling rate of 173.61 Hz. The frequency of Band-

pass filter was 0.53-40 Hz. Aa was mention in previous section, signal obtained by this 

recording is function of time. Therefore, the preliminary data transformation is neces-

sary to extract useful information, which can be used to build classifiers and classify 

new EEG records.  

3.1 Feature Extraction 

The signal preprocessing which preliminary data transformation do, consist of three 

steps (Fig. 2). At first, feature extraction by Welch method is applied [29].  The method 

is based on the concept of periodogram spectrum estimates, which is the result of signal 

conversion from its time to frequency domain. Periodogram is commonly used for ex-

amining the amplitude vs frequency characteristics of analyzed signal. Time series of a 

signal is split into overlapping segments (Fig. 3) of the predefined length which is equal 

for each preiodogram.  Then the periodgram of each segment is computed and used to 

find important periodic components in the time series. At last step, periodograms are 

averaged. The result of averaged periodograms is known as power spectral density es-

timation of analyzed signal [29]. 

 

 

Fig. 3. Illustration of segmentation by Welch’s method. For each segment, periodogram is 

estimated and obtained periodograms are averaged. 



 

After application of Welch method to EEG signals, we obtain feature matrix of 128 

features. Each row of this matrix represents one EEG signal in frequency domain. Ob-

tained number of features is too big to build reliable classifier (we obtain too many 

features in ratio with number of data instance). To decrease number of features, we 

applied dimensional reduction technique. We use PCA technique, which is commonly 

used in EEG signal analysis [20]. 

3.2 Dimensionality Reduction 

In this paper, we use PCA to reduce dimension of feature matrix obtained by spectral 

transformation. PCA transform a feature matrix described by 𝑛 features 𝑌 = (𝑌1, … , 𝑌𝑛) 
into linearly uncorrelated latent variables called "principal components" [30]. Transfor-

mation is carried out in such a way that the first component has the biggest variance as 

possible. Each succeeding component has the biggest variance too as possible but the 

constraint that it is orthogonal to the preceding components must hold. Bigger variance 

of component indicates bigger variability in the data. Therefore, variance of component 

characterizes its importance. Hence, the first component is considered as the most sig-

nificant component. PCA provides this transformation using eigenvectors  𝑉 =

(𝑣1 𝑣2 ⋯ 𝑣𝑛)  of covariance matrix 𝑴 =
𝑌𝑌T

𝑛−1
. Eigenvector of matrix 𝑴 is defined 

as vector 𝑣𝑖 that  𝑴𝑣𝑖 = 𝜆𝑖𝑣𝑖, where 𝜆𝑖 is a corresponding eigenvalue to the vector 𝑣𝑖 
given by |𝑴 − 𝜆𝐼| = 0, where 𝐼 is the unit matrix. The principal components are com-

puted as 𝑋 = 𝑉T × 𝑌T, 𝑌 = (𝑌1, … , 𝑌𝑛). This transformation forms orthogonal principal 

components. 

 After transformation, it is necessary to choose only several important principal com-

ponents. Nowadays, many criterions exist to solve this problem. One of the most com-

monly used criteria to determine appropriate number of principal components is the 

eigenvalue-one criterion, also known as the Kaiser criterion [31]. This criterion selects 

a principal component as significant if its variance is higher than 1.00.  

As a result of PCA, we obtained 8 principal components, which describe the reduced 

feature matrix of origin EEG signals. Therefore, each signal is described by 8 principal 

components. In text bellow, these principal components are noted as numerical input 

attributes 𝑋𝑖  (𝑖 = 1,… ,8) of EEG signals.  

3.3 Data Fuzzification 

We propose to use fuzzification process as part of preliminary data transformation. This 

process transforms each numeric attribute Xi obtained after dimensionality reduction 

into fuzzy attribute 𝐴𝑖  (𝑖 = 1,… , 𝑛). After this transformation, each fuzzy attribute 𝐴𝑖 
will be composed of mi (mi ≥ 2) linguistic terms. A 𝑗-th linguistic term of attribute 𝐴𝑖  is 

defined by fuzzy set 𝐴𝑖,𝑗  (𝑗 = 1,… ,𝑚𝑖). Fuzzy set 𝐴𝑖,𝑗 with respect to a universe Xi is 

defined by a membership function 𝜇𝐴𝑖,𝑗(𝑥): 𝑋𝑖 → 〈0,1〉. This function defines a mem-

bership degree 𝜇𝐴𝑖,𝑗(𝑥) for each element 𝑥 (𝑥 ∈ 𝑋𝑖), which define how strongly ele-

ment 𝑥 is the member of fuzzy set 𝐴𝑖,𝑗. Formally, fuzzy set 𝐴𝑖,𝑗 is defined as an ordered 



 

set of pairs 𝐴𝑖,𝑗 = {(𝑥, 𝜇𝐴𝑖,𝑗(𝑥)) , 𝑥 ∈ 𝑋𝑖}, where: (a) 𝜇𝐴𝑖,𝑗(𝑥) = 0, if and only if 𝑥 is 

not the member of set 𝐴𝑖,𝑗; (b) 0 < 𝜇𝐴𝑖,𝑗(𝑥) < 1, if and only if 𝑥 is not the full member 

of set 𝐴𝑖,𝑗; and (c) 𝜇𝐴𝑖,𝑗(𝑥) = 1, if and only if 𝑥 is the full member of set 𝐴𝑖,𝑗. 

To perform fuzzification of analyzed data, we used the algorithm proposed in [32]. 

This algorithm is based on the computation of the fuzzy entropy of fuzzy sets. The 

algorithm divides values 𝑥 ∈ 𝑋𝑖 into 𝑚𝑖  intervals. Intervals are defined by points 

𝐶1…𝐶𝑚𝑖
. We find this borders by K-Means algorithm as in [32]. Number 𝑚𝑖  of inter-

vals is determined automatically. This number agrees with the number of linguistic 

terms mi of fuzzy attribute 𝐴𝑖. The algorithm is initially performed with two linguistic 

terms, then the algorithm adds linguistic term to attribute. Adding of linguistics term is 

repeated until the fuzzy entropy of attribute does not raise. The definition of Fuzzy 

entropy, which with the aforementioned algorithm works, is following.  

𝐹𝐸(𝐴𝑖,𝑗) = −∑𝐷𝐴𝑖,𝑗
𝑏 × 𝑙𝑜𝑔2 𝐷𝐴𝑖,𝑗

𝑏

𝑚𝑏

𝑘=1

 

where 𝑚𝑏 is the number of classes defined by output attribute 𝐵. Notation 𝑥∈𝑏 de-

fine, that 𝑥 belongs to class 𝑏. Than, 𝐷𝐴𝑖,𝑗
𝑏  is defined as follow: 

𝐷𝐴𝑖,𝑗
𝑏 =

∑ 𝜇𝐴𝑖,𝑗(𝑥)𝑥∈𝑏

∑ 𝜇𝐴𝑖,𝑗(𝑥)𝑥

 

For each attribute 𝐴𝑖  must hold following constrain where ∑ 𝐴𝑖,𝑗 = 1
𝑚𝑖
𝑗=1 . Then the 

fuzzy entropy of attribute 𝐴 defined as:  

𝐹𝐸(𝐴𝑖) = ∑𝐹𝐸(𝐴𝑖,𝑗)

𝑛

𝑞=1

 

Then the fuzzification process assigns membership degree 𝜇𝐴𝑖,1(𝑥) to each 𝑥 of nu-

meric attribute 𝑋𝑖. This membership degree is obtained by triangular membership func-

tion. The definition of used membership function for first linguistic term 𝐴𝑖,1 of attrib-

ute 𝐴𝑖 is following.  

𝜇𝐴𝑖,1(𝑥) = {

1    𝑥 ≤ 𝐶1
𝐶2 − 𝑥

𝐶2 − 𝐶1
𝐶1 < 𝑥 < 𝐶2

0    𝑥 ≥ 𝐶2

 

Each non-first and non-last linguistics term of 𝐴𝑖  has a membership function  𝜇𝐴𝑖,𝑞  

(𝑞 = 2,3, … ,𝑚𝑖 − 1) defined as follow: 



 

𝜇𝐴𝑖,𝑞(𝑥) =

{
  
 

  
 
0 𝑥 ≤ 𝐶𝑗−1
𝑥 − 𝐶𝑞−1

𝐶𝑞 − 𝐶𝑞−1
𝐶𝑞−1 < 𝑥 ≤ 𝐶𝑞

𝐶𝑗+1 − 𝑥

𝐶𝑗+1 − 𝐶𝑗
𝐶𝑞 < 𝑥 ≤ 𝐶𝑞+1

0 𝑥 ≥ 𝐶𝑞+1

 

Finally, the last term 𝐴𝑖,𝑚𝑖
 of  𝐴𝑖 has the membership function with following math-

ematical form: 

𝜇𝐴𝑖,𝑚𝑖
(𝑥) =

{
 
 

 
 0 𝑥 ≤ 𝐶𝑚𝑖−1

𝑥 − 𝐶𝑘−1
𝐶𝑘 − 𝐶𝑘−1

𝐶𝑚𝑖−1
< 𝑥 ≤ 𝐶𝑚𝑖

1 𝑥 ≥ 𝐶𝑚𝑖

 

Fuzzification is the last step of preliminary data transformation. After fuzzification 

of reduced data matrix, we obtained data represented by 8 fuzzy attributes. This data 

was used to induct fuzzy classifiers and evaluate the performance of proposed algorithm 

for EEG signals analysis.  

4 Classification of Fuzzy Data 

After fuzzification, we obtained data described by 8 fuzzy input attributes 𝐴𝑖 (𝑖 =
1,… ,8) and one output attribute 𝐵. According to this data, we induct three fuzzy clas-

sifiers to evaluate new algorithm for EEG signal analysis. We use oFDT which com-

bines into the FRF.   

4.1 Fuzzy Decision Trees 

Nodes and leaves are the main parts of the Decision trees. Each node is associated with 

one input attribute (splitting attribute). Domain of this input attribute determines out-

coming edges of the node. The domain of attribute defines all its possible values. The 

classification's task solving begins at the root of the tree. If a node is associated with an 

input attribute, then the outcome edge for the classified instance is determined accord-

ing to splitting attribute, and the classification continues using the appropriate sub-tree. 

When classified instance encounters a leaf, encountered leaf give the predicted class as 

classification result. In case of fuzzy decision trees, classified instance usually traverses 

by multiple branches during classification. Therefore, the decision is based on several 

leaves.  

In this paper, we use two type of fuzzy decision trees based on CMI. The first is 

oFDT. This type of tree has nodes on the same level associated with one input attribute. 

This fact allows to performing classification as parallel process. The second type is 

uFDT. uFDT do not require the same splitting attribute on each level of the tree. In 

Table 1 are shown splitting criteria for these FDTs. 



 

Table 1. Splitting criteria based on CMI. 

uFDT oFDT 

𝑖𝑞 = 𝑎𝑟𝑔𝑚𝑎𝑥(
𝐈 (𝐵;𝑈𝑞−1, 𝐴𝑖𝑞)

𝐇 (𝐴𝑖𝑞|𝑈𝑞−1)
) 𝑖𝑞 = 𝑎𝑟𝑔𝑚𝑎𝑥(

𝐈 (𝐵;𝑼𝒒−𝟏, 𝐴𝑖𝑞)

𝐇(𝐴𝑖𝑞|𝑼𝒒−𝟏, )
) 

 

In the Table 1 argmax returns attribute index 𝑖𝑞 with maximal value of CMI, 𝑈𝑞−1 =
{𝐴𝑖1,𝑗1 × …× 𝐴𝑖𝑞−1,𝑗𝑞−1} is the fuzzy set defined by the sequence of fuzzy terms 

𝐴𝑖1,𝑗1 , … , 𝐴𝑖𝑞−1,𝑗𝑞−1  of selected attributes 𝐴𝑖1 , … , 𝐴𝑖𝑞−1  from the root to the 𝑞-th node. 

𝑼𝒒−𝟏 is the sequence of selected attributes {𝐴𝑖1 , … , 𝐴𝑖𝑞−1}. The CMI in output attribute 

B about the attribute 𝐴𝑖𝑞 and the sequence of values 𝑈𝑞−1 been introduced in [33] and 

calculated as: 

𝐈 (𝐵; 𝑈𝑞−1, 𝐴𝑖𝑞) = ∑ ∑𝑀(𝐵𝑗 × 𝑈𝑞−1 × 𝐴𝑖𝑞,𝑗𝑞) ×

𝑚𝑏

𝑗=1

𝑚𝑖𝑞

𝑗𝑞=1

 

× (log2 𝑀 (𝐵𝑗 × 𝑈𝑞−1 × 𝐴𝑖𝑞,𝑗𝑞) + log2 𝑀(𝑈𝑞−1) − log2 𝑀(𝐵𝑗 × 𝑈𝑞−1) − log2 𝑀 (𝑈𝑞−1 × 𝐴𝑖𝑞,𝑗𝑞)), 

where 𝑀(𝐵𝑗 × 𝑈𝑞−1 × 𝐴𝑖𝑞,𝑗𝑞) is measurement of cardinality of fuzzy set 𝐵𝑗 × 𝑈𝑞−1 ×

𝐴𝑖𝑞,𝑗𝑞; The conditional cumulative entropy between fuzzy attribute 𝐴𝑖𝑞 and the se-

quence of selected attribute terms 𝑈𝑞−1 is defined as: 

𝐇 (𝐴𝑖𝑞 |𝑈𝑞−1) =  ∑𝑀 (𝐴𝑖𝑞 ,𝑗 , 𝑈𝑞−1) ×

𝑚𝑖𝑞

𝑗=1

(log2 (𝑀(𝑈𝑞−1)) − log2 𝑀 (𝐴𝑖𝑞,𝑗 × 𝑈𝑞−1)). 

Implemented FDTs solve overfitting problem by pruning technique. Overfitting 

occur leaves covers insuficient number of instances in ratio with input data. To avoid 

overfitting, we use threshold parameters alpha and beta to determine leaf nodes during 

FDT induction. These parameters are described in detail in [15]. 

4.2 Fuzzy Random Forest 

Random forest is classifier, which combines set of individual decision trees into one 

classifier system. Advantage of random forests against individual decision trees is sta-

bility. Decision trees are sensitive to variations in data. Generally, random forests are 

not sensitive to overfitting while decision trees tend to overfit input data [34]. Overfit-

ting occurs when leaves contain a small number of instances in ratio with number of 

input data. Nevertheless, pruning techniques can solve this problem. On the other hand, 

decision trees are well interpretable classifier. In case of random forest, it is hard to 

figure out what hundreds of trees tell. Next advantage of decision trees is classification 



 

performance. Provided classification by many trees is significantly slower then classify 

by one individual decision tree. Nevertheless, many papers shows bigger classification 

accuracy of random forests over individual decision trees, eq. in [35]. 

Random forests are type of ensemble methods. Ensemble methods combines multi-

ple classifiers to obtain better classification accuracy than can acquire any of the con-

stituent classifiers alone [36]. Many methods of ensemble learning based on different 

base of classifiers was developed. One of the first is bagging [37]. Bagging creates new 

dataset from origin dataset for each classifier by sampling with replacement. It means, 

one instance from origin dataset can occur in sampled dataset multiple times. This ap-

proach helps to avoid overfitting. Bagging is often combined with decision trees. In 

[38], bagging is combined extended by random attribute selection. Splitting attribute is 

chosen for each non-leaf node from randomly selected subset of unused attributes in 

analyzed branch according to used splitting criteria. In paper [39], we propose to use 

splitting criterion based on CMI [17, 33] for FRF trees induction.  

FRF consists of defined number of individual FDTs. Each of these FDT provide 

some decision (classification result). To obtain decision of forest, results of individual 

trees must be combined (Fig. 3). The combining of these results was achieved by the 

summation of membership degrees of belonging to each class divided by the number 

of trees. The strategy of classification, which we use, is shown in figure below. 

 

 

Fig. 2. Strategy of classification by FRF 

In case of implemented random forest, the number of decision trees must be 

specified as input parameter. It is important to find ideal value of this parameter because 

small number of decision trees can lead to small classification power. In case of big 

number of decision trees, the algorithm can suffer from slow computation performance 

caused by thousands of trees. Therefore, we implemented simple iterative procedure to 

find the smaller value of this parameter in combination with the biggest classification 

accuracy. This procedure builds initial FRF consists of 3 FDTs. On the start of each 

iteration, one decision tree is added to FRF and accuracy is evaluated. This procedure 

finishes when classification accuracy stops growing. 



 

5 Evaluation of classifiers 

After preliminary data transformation we obtained data described by 8 fuzzy input at-

tributes and one output attribute. According to this data, we create fuzzy classifiers. In 

this section is described, how classification performance of used classifiers was 

evaluated. To evaluate classification performance of implemented classifiers, we used 

three metrics: accuracy, sensitivity, and specificity. Sensitivity and specificity are 

important in case, when data is not evenly distributed into classes. The definition of 

used metrics is showed in the table below. 

Table 2. Metrics for evaluation of classification performance 

Accuracy Sensitivity Specificity 

𝑇𝑃 + 𝑇𝑁

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

where TP stands for true positive, TN is true negative, FP is false positive, and FN 

is false negative. True positive and true negative results are obtained after correct clas-

sification while false negative and false positive stands for misclassification results. To 

evaluate classifiers, we divide data into training and testing set in ratio 70:30. Training 

set was used to create classifier and testing set was used to evaluate it. We repeated this 

for 10 000 times for each training set.  

FRF needs to have defined an exact number of trees. Therefore, we analyzed how 

number of trees can affect classification accuracy of FRF. In this analysis, the forest 

from 3 trees was created and its accuracy was evaluated. Then, the number of trees was 

increased by one, and performance was re-evaluated. Adding of trees was repeated 

while the accuracy of the forest was raising. 

5.1 Evaluation of Algorithms for Classification of EEG Signals using Fuzzy 

Classifiers 

Evaluation of used classifiers was performed by two experiments. In the first experi-

ment, the classification was aimed to recognize patients who suffer from epilepsy. The 

goal of the second experiment was to find patients during epileptic’s seizure. To solve 

this task, the database was divided into two classes. In case of the first experiment, 

healthy persons and persons suffering from epilepsy (AB, CDE). In the second experi-

ment, we were aimed to separate persons during seizure activity and persons in seizure-

free interval (ABCD, E). For each experiment, the analysis of number of trees necessary 

for accurate prediction of FRF classifier was performed. Results obtained by proposed 

algorithm are shown in Table 3.   



 

Table 3. Table of obtained results 

Classifier Predicated Accuracy Sensitivity Specificity 

uFDT Seizure 0.991 0.996 0.986 

oFDT Seizure 0.980 0.992 0.966 

FRF Seizure 0.995 0.999 0.992 

uFDT Epilepsy 0.906 0.944 0.846 

oFDT Epilepsy 0.897 0.942 0.821 

FRF Epilepsy 0.894 0.946 0.818 

 

Implemented FRF requires to have a specified number of trees as input parameter. 

This parameter affects computational complexity of aforementioned FRF. In case of 

large number of trees, total time necessary for FRT induction can be large. Also, clas-

sification by thousands of trees can be complex. Therefore, the setting of this parameter 

to proper value is necessary. To find proper value of this parameter, the FRF from 3 

trees was inducted and its accuracy was estimated. Then, the number of trees was in-

creased by one, and performance was evaluated again. Adding of trees was repeated 

while the accuracy of forest was raising. The results obtained by this analysis are shown 

on plots bellow. There are shown four plots. The plots show classification accuracy of 

FRF depending on the number of inducted FDT. The x axes of these plots stand for 

number of trees. The y axes sands for classification accuracy. Plots on the left side show 

accuracy for FRF consisted of 3 to 100 trees. Plots on the right side are plots created 

from the same data, but these plots show the accuracy of FRF consisted from 82 to 100 

trees. 

  
Fig. 3. Plots show accuracy (y axis) of FRF depending on the number of inducted FDT (y axis) 

for epileptics’ seizure prediction.  
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Fig. 4. Plots show accuracy (y axis) of FRF depending on the number of inducted FDT (y axis) 

for epileptics’ detection.  

To compare results of our investigation with similar studies, we created the compar-

ison showed in Table 4. These tables include only studies which used the same data as 

we used. The classification of selected studies was targeted on prediction of occur-

rences of the epileptic’s seizures. Differences between selected studies are in its pre-

liminary data transformation and classification methods, eq. attribute extraction, di-

mensional reduction or classification algorithm. The comparison is shown in Table 4, 

where the first column contains first authors of studies and the reference to the paper, 

the second describes used methods in preliminary data transformation, third columns 

tells which classifier was used and the last column shows acquired classification accu-

racy. 

Table 4. Table of results from other studies for epileptic’s seizure detection 

Study 
Preprocessing meth-

ods 
Classifier Accuracy 

K. Polat and S. Güneş [12] DWT C4.5 98.76% 

L. Guo, D. Rivero [40] DWT MLPNN 97.77% 

M. A. Naderi, H. Mahdavi-

Nasab [9] 
FFT, PCA MLPNN 100%  

U. Orhan, M. Hekim [7] DWT  
K-means and 

MLPNN 
96.67% 

N. Nicolaou, J.G. Kios [11] Permutation Entropy SVM 94.38% 

K.Polat and S.Güneş[20] FFT, PCA AIRS classifier 99.81% 

J. B. Jian, B. Goparaju [41] CEEMD domain RF 98.00% 

This study 
Welch, PCA, Fuzzifi-

cation 
FRF 99.48% 
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Conclusion 

In this paper, the algorithm for EEG signal classification based on fuzzy logic was 

proposed. Previously, we solve task of EEG signals FDTs in [14] and [15], where the 

analysis of different fuzzification techniques was performed in detail. In this paper, the 

algorithm based on fuzzy entropy according to [32] was used. Involving of fuzzy logic 

permits to take into account the ambiguity of data that can arise in step of preliminary 

transformation (the feature extraction and the dimension reduction). The modification 

resulted in adding of fuzzification as new step in the preliminary data transformation. 

According to data obtained after preliminary data transformation, we compare three 

type of fuzzy classifiers: oFDT, uFDT, and FRF. These classifiers were inducted based 

on estimation of the cumulative mutual information [33]. In case of FRF, the impact of 

number of trees to classification accuracy has been analyzed. Results shows, that usage 

of proposed preliminary transformation can improve the classification accuracy of the 

EEG signals. Therefore, involving of fuzzy logic can be considered as recommended 

step for future development in EEG classification. 

In future development of proposed classification algorithm, the impact of another 

classifier can be evaluated. Also, the modification of preliminary data transformation 

is possible. There are numerous ways to provide spectral transformation, dimensional 

reduction or fuzzification. The crucial goal of this development is increasing the clas-

sification accuracy of EEG signals. 
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