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Abstract. In this work a software interface for interaction of intelligent fuzzy and neuro-fuzzy 

models is proposed. It includes an intelligent models design pattern, consisting of an intelligent 

model pattern, a pattern for implementing hybrid models and a pattern for working with 

numbers of different nature; a pattern of the database structure that supports the intelligent 

model design pattern. An example of a system implemented using the designated patterns is 

given. The implemented system has provided the variability of the use of different models, and 

provided the opportunity to change the set and sequence of model calls without involving a 

programmer. The proposed software interface, firstly, is universal and provides software 

implementation of various types of intelligent models. Secondly, it provides all the main types 

of hybridization of intelligent models. Thirdly, the interface allows to build highly adaptable 

intelligent systems, including systems that are built by a user without involving a programmer. 

Fourthly, this interface provides ample opportunities for the exchange of best practices, which 

is understood as the ability not only to transmit facts of the knowledge base, but also 

knowledge base models or rules. 

1. Introduction 

Now, a significant number of intelligent models and systems have been developed that solve both 

individual problems and complex problems characterized by inaccuracy and uncertainty of system and 

external parameters, for example [1, 2, 3]. As a rule, such works are aimed at solving particular cases 

of problems. However, the world around us is characterized by a high degree of variability, which 

results in models and software that recently performed the assigned tasks effectively becoming 

obsolete and not suitable for solving new interpretations of such problems, or solving problems in new 

conditions. Thus, it is obvious that modern intelligent systems should provide the possibility of 

flexible adaptation, restructuring under changing conditions. 

One of the modern approaches to creating flexible efficient intelligent systems with a high degree 

of adaptability is the approach based on hybridization of neural network and fuzzy models. The 

following main types of hybridization of such models were considered in [4-6]: 

 

 hybridization with functional substitution - one technology (model) is taken as the dominant 

one, and its individual components are replaced by components of other technologies 

(models); 

 hybridization with interaction - technologies (models) are used relatively independently, and 

while exchanging information, they perform various tasks to achieve a common goal; 
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 polymorphic hybridization - one technology (model) is used to simulate and implement the 

function of another. 

 

Thus, modern intelligent systems, in addition to the requirement of effective solution of the 

assigned task, must meet the following requirements: 

 

 having a high degree of adaptability to changing external conditions of the model application 

and changing structure and functions of the object within which they are used; 

 providing ample opportunities for hybridization of neural network and fuzzy models. 

 

The task of such a scale can be solved only by developing common "rules of the game" in the 

software implementation of intelligent models, namely, development of a designing pattern [7-9] of 

intelligent models, including the intelligent model software interface and the typical database structure 

that ensures the functioning of such a model. 

2. Intelligent model design pattern 

2.1. Interface for implementing intelligent models 

Generally, an intelligent model can be represented as a tuple: 

 

,R I O  , 

 

where I is a vector of the intelligent model inputs; 

 O is a vector of the intelligent model outputs. 

The input and output vectors of intelligent models define the list of public properties of the 

intelligent model interface. Figure 1 shows an intelligent model interface. 

 

 

Figure 1. Intelligent model interface. 

Thus, all models based on the interface IIntelligentModel will have the following common 

methods. 

 

 GetInput – a method that receives input parameters for the model. As a result of the method 

execution, the requesting system receives a set of parameters that can be used as inputs of the 

model. This set includes all the parameters that you need to define for calculating the model. 

These parameters include the input parameters of the model itself, as well as all the input 

parameters of the related models, the results of which are used as inputs for the model in 

question. 

 SetOutput – a method that defines the output parameters of the model. As a result of this 

method, a set of parameters that must be calculated and used as model outputs is specified for 

the model. This list of output parameters can be further used as inputs for other models. 

 Execute – a method that allows calculating the output parameters of a model using the defined 

input parameters. 
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 Setting – a method that allows for learning or setting up models. This method, as a rule, 

should call a separate user interface for setting up the model. Typically, the configuration is 

carried out in 3 stages. Firstly, the structure of the model is constructed. To do this, a source 

file, presented in a standard format (for example, in the format of graphical risk notation 

proposed in [10] or notation of fuzzy business processes [11]) must be forwarded to the input 

of the method. The source data is converted into the model structure as a result of applying the 

learning method or constructing a programmatically implemented model. Secondly, 

optionally, the graphic adaptation of the model is carried out (if assumed by the model itself). 

The model image is brought by the user into a human-readable view. Thirdly, if necessary, 

operational simulation is performed. For this, the user forwards test data to the model input 

and compares the actual result with the expected result. If necessary, the model can be further 

developed (trained, or re-trained). 

2.2. Class for implementing hybrid models 

The hybrid model should also be built on the basis of the developed interface to ensure compatibility 

with other models. 

The hybrid model class may be specified the following way (figure 2). 

The class HybridModel has the following properties: 

 

 ListInput – input parameter list; 

 ListOutput – output parameter list; 

 ListMathModel – list of mathematical models used in the hybrid model in the order of their 

launch. 

 

In addition to the interface methods already discussed, the class defines the method 

AddMathModel, which allows you to add another model to the hybrid model. 

Based on the presented class, models using the following types of hybridization can be defined: 

with functional substitution, with interaction, and polymorphic hybridization. 

 

 

Figure 2. Definition of hybrid model class. 

2.3. Pattern for presenting clear and fuzzy numbers 
Another important element in defining the interface for hybridization of intelligent models is the 

pattern of presentation of clear and fuzzy numbers. Different models can often operate simultaneously 

with both clear and fuzzy numbers. In order to unify the data exchange, it is necessary to develop an 

appropriate design pattern. 

For these purposes, the universal class NumberContrainer has been developed, which has the 

following properties: 
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 ValueTypeId - defines the number type (clear / fuzzy); 

 ValueString - the string in which the serialized object - a descendant of the abstract class 

BaseNumberValue - is stored. 

 Number - deserialized object - an instance of a descendant of the abstract class 

BaseNumberValue. 

 

The class NumberClear describes a clear number and contains only the value of the clear number 

Value. 

The class NumberFuzzy describes a fuzzy number with a membership function of trapezoidal or 

triangular type and contains the following fields describing it: 

 

 A - left value of the carrier; 

 B - right value of the carrier; 

 Alpha – the value of the left border of a fuzzy number; 

 Beta – the value of the right border of a fuzzy number. 

 

In a similar way, classes of fuzzy numbers can be developed that are defined by membership 

functions of an arbitrary kind, such as parametric (Gaussian, Z-shaped, S-shaped, U-shaped), as well 

as piecewise-analytic membership functions and membership functions that are defined pointwise (by 

sets of points). 

Use of such a pattern ensures the model independence while working with both clear and fuzzy 

numbers. A diagram of the pattern classes is shown in figure 3. 

 

Figure 3. Pattern class diagram for presenting clear and fuzzy numbers. 

3. Pattern of the database structure for implementation of intelligent models 

The proposed pattern of intelligent model design should be supported by the pattern of the database 

structure. A typical database structure for implementation of intelligent models is shown in figure 4. 
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Figure 4. Database structure pattern for implementation of intelligent models. 

In the presented structure, the table MathModel stores information about all models as a whole, as 

well as their type (for example, fuzzy fault tree). This table also stores information about which 

models are used in the hybrid model, and the sequence of their execution. The table 

ElementMathModel stores information about all elements of mathematical models (elements, 

concepts, rules, terms, etc.). The table ElementMathModelType stores the decoding of the model 

elements names, and the table MathType stores the decoding of the models names. The table 

MathModelPatametr stores information about all parameters of the mathematical model (parameter 

type, unit, value type). The table ElementMathModelParametr stores information about the parameters 

of specific model elements, and the table ElementValueMathModelParametr stores information about 

parameters for specific values (terms) of mathematical models elements. The table MathModelLink 

stores information about all links between model elements, namely from which element the link 

comes, to which element the link arrives, as well as the link weight, if any. 

4. Approach to hybridization of models  

The above software interface for hybridization of intelligent fuzzy and neural-fuzzy models ensures 

implementation of all the previously listed hybridization types. 

Hybridization with functional substitution is implemented by building new models using old ones 

in its structure. An example of such hybridization is shown in figure 5. 
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Figure 5. Example of a hybrid model with functional substitution. 

Hybridization with interaction is implemented by forming a complex model linking inputs of some 

models with outputs of other. The complex model itself is built in the image and likeness of base 

models, which allows to build multi-level hierarchical structures of models (figure 6). 
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Figure 6. Example of a hybrid model with interaction. 

 

Polymorphic hybridization, as well as hybridization with functional substitution, is implemented 

through building new models by changing the functioning algorithms of older models. 

5. Approbation of the software interface for hybridization of intelligent fuzzy and neural-fuzzy 

models 

The presented software interface was tested in the implementation of a decision support system for 

preliminary management of operational risks of a computational cluster. Within the framework of this 

project, the following models were successfully implemented: 

 

 fuzzy fault tree; 

 fuzzy Bayesian network; 

 fuzzy cognitive map; 

 fuzzy production model; 

 neuro-fuzzy classifier. 

 

The hybrid model was built through hybridization with functional substitution and interaction. The 

general scheme of the hybrid model is shown in figure 7. 

 



 

 

 

 

 

 

85 
 

Hybrid model for a preliminary risk management of a Mainframe

Fuzzy Bayesian net Fuzzy fault tree

Fuzzy kognitive map

Fuzzy inference

Neuro-fuzzy classifier

 

Figure 7. Hybrid neuro-fuzzy model, based on proposed software interface. 

The developed system provides decision support for preliminary risk management with regard to 

the three main aspects of risks [12]: process, structural and systemic. In addition, the system 

implements all the main stages of risk management: identification, analysis, evaluation and 

development of management decisions. 

The developed system provides the user with the possibility of using various models. So, at the 

final stage of management, either a fuzzy production model or a neural-fuzzy classifier could be used. 

In addition, the system allows, without involving a programmer, to change the set and sequence of 

model calls. As unchangeable or basic (due to a number of functional limitations), a fuzzy cognitive 

map model was chosen. 

6. Conclusion 

Thus, the proposed software interface, firstly, is universal and provides software implementation of 

various types of intelligent models having extremely different methods of application (both static 

models and dynamics models). Secondly, it supports all the main types of hybridization of intelligent 

models. Thirdly, the interface allows you to build intelligent systems with a high degree of 

adaptability, including systems that are built by a user without involving a programmer. Fourthly, such 

an interface provides ample opportunities for the exchange of best practices, which is understood as 

the possibility not only to transmit facts of the knowledge base in terms of D. Pospelov between 

intelligent systems, but also to transfer models (transfer of knowledge base rules). 
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