

79

Software interfaces for interaction of intelligent fuzzy and

neuro-fuzzy models in an end-point software risk-

management system

A V Senkov
1
 and Yu A Senkova

1

1
 Computers department, National Research University Moscow Power Engineering Institute,

Smolensk branch, Smolensk, Russian Federation

Abstract. In this work a software interface for interaction of intelligent fuzzy and neuro-fuzzy

models is proposed. It includes an intelligent models design pattern, consisting of an intelligent

model pattern, a pattern for implementing hybrid models and a pattern for working with

numbers of different nature; a pattern of the database structure that supports the intelligent

model design pattern. An example of a system implemented using the designated patterns is

given. The implemented system has provided the variability of the use of different models, and

provided the opportunity to change the set and sequence of model calls without involving a

programmer. The proposed software interface, firstly, is universal and provides software

implementation of various types of intelligent models. Secondly, it provides all the main types

of hybridization of intelligent models. Thirdly, the interface allows to build highly adaptable

intelligent systems, including systems that are built by a user without involving a programmer.

Fourthly, this interface provides ample opportunities for the exchange of best practices, which

is understood as the ability not only to transmit facts of the knowledge base, but also

knowledge base models or rules.

1. Introduction

Now, a significant number of intelligent models and systems have been developed that solve both

individual problems and complex problems characterized by inaccuracy and uncertainty of system and

external parameters, for example [1, 2, 3]. As a rule, such works are aimed at solving particular cases

of problems. However, the world around us is characterized by a high degree of variability, which

results in models and software that recently performed the assigned tasks effectively becoming

obsolete and not suitable for solving new interpretations of such problems, or solving problems in new

conditions. Thus, it is obvious that modern intelligent systems should provide the possibility of

flexible adaptation, restructuring under changing conditions.

One of the modern approaches to creating flexible efficient intelligent systems with a high degree

of adaptability is the approach based on hybridization of neural network and fuzzy models. The

following main types of hybridization of such models were considered in [4-6]:

 hybridization with functional substitution - one technology (model) is taken as the dominant

one, and its individual components are replaced by components of other technologies

(models);

 hybridization with interaction - technologies (models) are used relatively independently, and

while exchanging information, they perform various tasks to achieve a common goal;

80

 polymorphic hybridization - one technology (model) is used to simulate and implement the

function of another.

Thus, modern intelligent systems, in addition to the requirement of effective solution of the

assigned task, must meet the following requirements:

 having a high degree of adaptability to changing external conditions of the model application

and changing structure and functions of the object within which they are used;

 providing ample opportunities for hybridization of neural network and fuzzy models.

The task of such a scale can be solved only by developing common "rules of the game" in the

software implementation of intelligent models, namely, development of a designing pattern [7-9] of

intelligent models, including the intelligent model software interface and the typical database structure

that ensures the functioning of such a model.

2. Intelligent model design pattern

2.1. Interface for implementing intelligent models

Generally, an intelligent model can be represented as a tuple:

,R I O  ,

where I is a vector of the intelligent model inputs;

 O is a vector of the intelligent model outputs.

The input and output vectors of intelligent models define the list of public properties of the

intelligent model interface. Figure 1 shows an intelligent model interface.

Figure 1. Intelligent model interface.

Thus, all models based on the interface IIntelligentModel will have the following common

methods.

 GetInput – a method that receives input parameters for the model. As a result of the method

execution, the requesting system receives a set of parameters that can be used as inputs of the

model. This set includes all the parameters that you need to define for calculating the model.

These parameters include the input parameters of the model itself, as well as all the input

parameters of the related models, the results of which are used as inputs for the model in

question.

 SetOutput – a method that defines the output parameters of the model. As a result of this

method, a set of parameters that must be calculated and used as model outputs is specified for

the model. This list of output parameters can be further used as inputs for other models.

 Execute – a method that allows calculating the output parameters of a model using the defined

input parameters.

81

 Setting – a method that allows for learning or setting up models. This method, as a rule,

should call a separate user interface for setting up the model. Typically, the configuration is

carried out in 3 stages. Firstly, the structure of the model is constructed. To do this, a source

file, presented in a standard format (for example, in the format of graphical risk notation

proposed in [10] or notation of fuzzy business processes [11]) must be forwarded to the input

of the method. The source data is converted into the model structure as a result of applying the

learning method or constructing a programmatically implemented model. Secondly,

optionally, the graphic adaptation of the model is carried out (if assumed by the model itself).

The model image is brought by the user into a human-readable view. Thirdly, if necessary,

operational simulation is performed. For this, the user forwards test data to the model input

and compares the actual result with the expected result. If necessary, the model can be further

developed (trained, or re-trained).

2.2. Class for implementing hybrid models

The hybrid model should also be built on the basis of the developed interface to ensure compatibility

with other models.

The hybrid model class may be specified the following way (figure 2).

The class HybridModel has the following properties:

 ListInput – input parameter list;

 ListOutput – output parameter list;

 ListMathModel – list of mathematical models used in the hybrid model in the order of their

launch.

In addition to the interface methods already discussed, the class defines the method

AddMathModel, which allows you to add another model to the hybrid model.

Based on the presented class, models using the following types of hybridization can be defined:

with functional substitution, with interaction, and polymorphic hybridization.

Figure 2. Definition of hybrid model class.

2.3. Pattern for presenting clear and fuzzy numbers
Another important element in defining the interface for hybridization of intelligent models is the

pattern of presentation of clear and fuzzy numbers. Different models can often operate simultaneously

with both clear and fuzzy numbers. In order to unify the data exchange, it is necessary to develop an

appropriate design pattern.

For these purposes, the universal class NumberContrainer has been developed, which has the

following properties:

82

 ValueTypeId - defines the number type (clear / fuzzy);

 ValueString - the string in which the serialized object - a descendant of the abstract class

BaseNumberValue - is stored.

 Number - deserialized object - an instance of a descendant of the abstract class

BaseNumberValue.

The class NumberClear describes a clear number and contains only the value of the clear number

Value.

The class NumberFuzzy describes a fuzzy number with a membership function of trapezoidal or

triangular type and contains the following fields describing it:

 A - left value of the carrier;

 B - right value of the carrier;

 Alpha – the value of the left border of a fuzzy number;

 Beta – the value of the right border of a fuzzy number.

In a similar way, classes of fuzzy numbers can be developed that are defined by membership

functions of an arbitrary kind, such as parametric (Gaussian, Z-shaped, S-shaped, U-shaped), as well

as piecewise-analytic membership functions and membership functions that are defined pointwise (by

sets of points).

Use of such a pattern ensures the model independence while working with both clear and fuzzy

numbers. A diagram of the pattern classes is shown in figure 3.

Figure 3. Pattern class diagram for presenting clear and fuzzy numbers.

3. Pattern of the database structure for implementation of intelligent models

The proposed pattern of intelligent model design should be supported by the pattern of the database

structure. A typical database structure for implementation of intelligent models is shown in figure 4.

83

Figure 4. Database structure pattern for implementation of intelligent models.

In the presented structure, the table MathModel stores information about all models as a whole, as

well as their type (for example, fuzzy fault tree). This table also stores information about which

models are used in the hybrid model, and the sequence of their execution. The table

ElementMathModel stores information about all elements of mathematical models (elements,

concepts, rules, terms, etc.). The table ElementMathModelType stores the decoding of the model

elements names, and the table MathType stores the decoding of the models names. The table

MathModelPatametr stores information about all parameters of the mathematical model (parameter

type, unit, value type). The table ElementMathModelParametr stores information about the parameters

of specific model elements, and the table ElementValueMathModelParametr stores information about

parameters for specific values (terms) of mathematical models elements. The table MathModelLink

stores information about all links between model elements, namely from which element the link

comes, to which element the link arrives, as well as the link weight, if any.

4. Approach to hybridization of models

The above software interface for hybridization of intelligent fuzzy and neural-fuzzy models ensures

implementation of all the previously listed hybridization types.

Hybridization with functional substitution is implemented by building new models using old ones

in its structure. An example of such hybridization is shown in figure 5.

Hybrid model

 Model R1

I1

I2

In

I1
1

I2
1

Ik
1

O1
1

O2
1

Ol
1

O1

O2

On

84

Figure 5. Example of a hybrid model with functional substitution.

Hybridization with interaction is implemented by forming a complex model linking inputs of some

models with outputs of other. The complex model itself is built in the image and likeness of base

models, which allows to build multi-level hierarchical structures of models (figure 6).

Hybrid model

 Model R1
I1

1

I2
1

In
1

O1
1

O2
1

Oi
1

 Model R2

I1

I2

Ij

O1
2

O2
2

Ok
2

 Model R3
O1

3

O2
3

Oz
3

I1
2

I2
2

Ib
2

O1

O2

On

Figure 6. Example of a hybrid model with interaction.

Polymorphic hybridization, as well as hybridization with functional substitution, is implemented

through building new models by changing the functioning algorithms of older models.

5. Approbation of the software interface for hybridization of intelligent fuzzy and neural-fuzzy

models

The presented software interface was tested in the implementation of a decision support system for

preliminary management of operational risks of a computational cluster. Within the framework of this

project, the following models were successfully implemented:

 fuzzy fault tree;

 fuzzy Bayesian network;

 fuzzy cognitive map;

 fuzzy production model;

 neuro-fuzzy classifier.

The hybrid model was built through hybridization with functional substitution and interaction. The

general scheme of the hybrid model is shown in figure 7.

85

Hybrid model for a preliminary risk management of a Mainframe

Fuzzy Bayesian net Fuzzy fault tree

Fuzzy kognitive map

Fuzzy inference

Neuro-fuzzy classifier

Figure 7. Hybrid neuro-fuzzy model, based on proposed software interface.

The developed system provides decision support for preliminary risk management with regard to

the three main aspects of risks [12]: process, structural and systemic. In addition, the system

implements all the main stages of risk management: identification, analysis, evaluation and

development of management decisions.

The developed system provides the user with the possibility of using various models. So, at the

final stage of management, either a fuzzy production model or a neural-fuzzy classifier could be used.

In addition, the system allows, without involving a programmer, to change the set and sequence of

model calls. As unchangeable or basic (due to a number of functional limitations), a fuzzy cognitive

map model was chosen.

6. Conclusion

Thus, the proposed software interface, firstly, is universal and provides software implementation of

various types of intelligent models having extremely different methods of application (both static

models and dynamics models). Secondly, it supports all the main types of hybridization of intelligent

models. Thirdly, the interface allows you to build intelligent systems with a high degree of

adaptability, including systems that are built by a user without involving a programmer. Fourthly, such

an interface provides ample opportunities for the exchange of best practices, which is understood as

the possibility not only to transmit facts of the knowledge base in terms of D. Pospelov between

intelligent systems, but also to transfer models (transfer of knowledge base rules).

7. References

[1] Denisenkov M A 2013 Application of adaptive fuzzy situation networks for solving

analytical problems of decision support Computer mathematics systems and their

applications 14 pp 72-75

[2] Kozlov P Yu 2017 Methods of automated analysis of short unstructured text documents

// Software products and systems 1 pp 100-105

[3] Zakharov A S 2014 Temporal conclusion using fuzzy Bayesian networks Smolensk

State University Bulletin 1 (25) pp 417-439

[4] Averkin A N and Prokopchina S V 1997 Soft calculations and measurements Intelligent

systems 2, 1-4 pp 93-114

[5] Borisov V V 2014 Hybridization of Intellectual Technologies for Analytical Tasks of

Decision-Making Support Journal of Computer Engineering and Informatics Vol. 2 Iss.

1 pp 148-156

86

[6] Komartsova L G 2003 Research of neural network and hybrid methods and

technologies in intellectual systems of support of decision-making (Kaluga branch of

Moscow State Technical University. N.E. Bauman)

[7] Grady Booch 2007 Object-oriented analysis and design with examples of applications

(Williams)

[8] Gamma E, Helm R, Johnson R and Vlissides D Methods of object-oriented design.

Design Patterns (Peter)

[9] Teplyakov S 2016 Patterns of designing on the .NET platform (Peter)

[10] Senkov A V 2016 Graphical notation for the presentation of the process of managing

complex risks Modern high technology № 12-1 pp 72-81

[11] Sorokin E V, Senkov A V, Margolin M S 2016 Formal language for describing fuzzy

business processes Scientific almanac № 10-3 (24) pp 278-284

[12] Senkov A V 2016 Risk management: intellignet models, methods, tools (Universum)

Acknowledgments

The reported study was funded by RFBR, according to the research project No. 16-37-60059

mol_a_dk.

