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Abstract. The paper deals the problem of remote technical diagnostics of complex objects. 
This allows detecting failures not only during testing of equipment, but also during operation. 

One effective way of non-contact measurement of technical state of the test object is to obtain a 

thermogram their surface. The article describes the structure of the information-measuring 

system, which includes a measuring channel with a thermal imager. Method thermography 

analysis using the comparison of measured data with the calculated temperature fields is 

proposed. To solve the incorrectness of the inverse heat conduction problem, it was suggested 

to use a two-branch artificial neural network. The structure of such a convolutional neural 

network is described. The influence of neural network parameters on the quality of detection of 

defective thermograms was studied. It is shown that such a technique allows increasing the 

detection accuracy of failures and defects of electronic devices during remote monitoring. 

1.  Introduction 

Technical diagnostics of complex objects develops in the direction of operational control of technical 

states using remote measuring instruments. This allows detecting failures not only during testing of 

equipment, but also during operation. In many cases, controlled technical objects have a set of 

measurable parameters that can identify their technical state [1]. However, it is not always possible to 

build measurement channels for continuous monitoring of these parameters. Often, access to 

measurement is impossible due to closed design, restrictions on the weight and volume of the object to 

be monitored. Furthermore, the measuring procedure may contributions distortion in the object 

operation process. In this connection, the methods of contactless remote monitoring with the help of 

infrared thermography are promising  [2, 3]. 

In this case, a channel for remote measurement of the temperature field of the object should be 

organized, including a thermal imager, a thermogram processing unit and a temperature field analysis 

unit, in which a decision is made on the operability of the object, and the failure facts are 

differentiated. 

The problem of technical diagnostics using thermograms is as follows: 

 The set of obtained thermograms of the object and the set of inoperative states do not have a 

one-to-one correspondence. Different faults and inoperative states can correspond to the same 

temperature distribution on the object surface. Essentially, we are incorrect inverse heat 

conduction problem, which is necessary to find the location and intensity of the internal heat 

sources in the test object.    

 A large number of thermograms that are to be analyzed leads to complex algorithms for 

selecting the desired thermal images of the object. 
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In the report, to solve this problem, it proposed to use a hybrid intellectual model based on a 

convolutional neural network and a fully connected neural network. 

2. The information-measuring system for remote technical diagnostics 

In [4, 5], an information-measuring system IMS for remote monitoring of electronic devices in ground 

tests have been described. Figure 1 shows a block diagram of a system that consists of measuring 

channels: 

 Determining environmental parameters via Termohigrometr Poly MI 6401;  

 Measuring of the temperature field of the surface based on the thermal imaging NEC R500; 

 Measuring of the device electrical parameters using a digital oscilloscope GDS-2104. 

Control of test modes of devices is carried out using a computer and SPS-3610 and FPGA 

XC3S500E units. 

The main idea is based on a set of mathematical models of the thermal state of the device 

corresponding to the failures in it. Classes, corresponding to different defects in the electronic device, 

differentiate these models. In this case, the decision on the operability of the electronic device was 

made by comparing the measured thermogram with the set of calculated thermograms obtained with 

the help of mathematical models. However, as noted above, it was not always possible to classify the 

inoperative state due to the incorrectness of the inverse heat conduction problem. 

 

 

Figure 1. Structure of information-measuring system for electronic devices testing. 

To solve this problem, the development of this approach with the use of intelligent tools for 

measuring information analysis is proposed. 
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3.  Hybrid intelligent model 
It is known that the artificial neural network ANN effectively recognize complex images [6, 7]. There 

are a large number of ANN applications for analyzing information under uncertainty [8, 9]. In this 

report, we propose an approach to the regularization of incorrect inverse problem of recognition of 

diagnostic images, which is based on the combined use of two neural networks. 

For each type of technical object, mathematical models of the thermal state of its surface are 

developed depending on the behaviour of internal heat sources: 

( , ),M

i iT F x y  
when ;i I I   an index set of technical states corresponding to various defects and failures. 

The developed mathematical models of the thermal state and history of previous tests of objects are 

used to form the fact base and the rule base that are components of the knowledge base. They are used 

in the expert system with a forward chaining on the production rules. 

Thermal states of technical objects are characterized by thermograms obtained with the thermal 

imager ( , ), 1, ,jT x y j J J   number of thermograms in the knowledge base of IMS. Standing heat 

sources ( , ), 1, ,iQ x y i I I  number of sources inside the object is used to determine the object's 

performance. We define the set of states  ( , ) , 0 , ,nD x y n N  in which a technical object can be 

located (one of failures or a working state). In this case, we assume that to all serviceable states there 

will correspond one state 0D . Figure 2 shows a graph model of the technical object states. 

 

 

Figure 2. Graph model of the technical object states. 

In general, we have incorrect inverse problem, since the same surface thermograms may 

correspond to multiple heat sources states. Consequently, the one-to-one mapping of thermograms and 

inoperative states of the object is violated. We use an additional vector of measured process 

parameters, where , 1, ,mV m M M   is the number of parameters monitored by measuring means. 

This may be, for example, input and output voltages of the electrical signals, supply voltages, 

frequency, and phase of the signals, and others. We carry out a regularization of the problem using 

more information on the connection of electrical parameters with thermal conditions. Thus, the inverse 

problem becomes correct by narrowing the infinite set of solutions to finite compact sets 

corresponding to the chosen defects. 

We require the following condition: for any pair of classes lT and  , , 1,2,..., ,kT l k N l k   , 

there is at least one pair of elements , ,l k

j i l kT T j J i J   or  , ,l k

m r l kV V m M r M   . 
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Consequently, the separation of thermograms with the help of the vector V into subsets 

( , , )n

nT x y V D  puts them in a one-to-one correspondence with the inoperative states of the 

controlled object. Thus, the set of classes is formed:    ( , ), ; , 0, ,n n n

j m n nT T V j J m M n N     

where Jn  and   Mn - index sets of thermograms and vectors of the object parameters included in the     

n-th class (Figure 3). 

 

 

 Figure 3. Separation signs of inoperability classes. 

The implementation of the proposed approach is to build a convolutional neural network ANN 1, 

which is trained on a set of calculated thermograms, obtained using mathematical models. Another 

network ANN 2 is a fully connected neural network that processes the vector of additional parameters. 

In figure 4 the structure of the hybrid intellectual model is shown. 

 

Figure 4. Structure of the hybrid intellectual model.  

4. A measuring channel with a convolutional neural network 

The thermal imager and the convolutional neural network ANN 1 form the main measuring channel. 

The organization of the convolutional network is based on the Y. LeCun approach [6] also combines 

some feature which were introduced in [10, 11] and is presented in figure 5. The network uses batch 

normalization, which was first introduced in [12]. 
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Figure 5. Neural network with two branches used in the experiments. 

Proposed artificial neural network consists of two branches. The main branch is well known 

convolutional neural network. It consists of several convolutional layers united in feed-forward neural 

network. Thermograms are used as input for this branch.  

Thermograms as any other image can be presented as an 3D array in which every value represents 

colour of the corresponding pixel. The width and height of the array is the same as width and height of 

the image (in pixels) and the depth of the array is 3, one for each of three (red, green, blue) channels. 

The size of thermograms used in our experiments were 30x30 pixels. 

The first convolution layer’s receptive field size is 5x5, padding is 3 and stride 1 pixel. The number 

of feature maps produced with the layer is equal to 6. The output of the first convolution layer is fed to 

max pooling layer with receptive field 2x2 and stride 2. This layer’s output conveyed to the input of 

another convolutional layer which receptive field size is 5x5 and the stride is equal to 1. At this layer 

number of produced feature maps is 16. After the layer max pooling layer is used. The receptive field 

of the layer is 2x2 and stride is equal to 2. This reduces size of the feature maps with factor of 2. The 

output is fed to the third convolutional layer with receptive field of 6x6. Because size of the feature 

maps used as input for the layer is also 6x6 this layer can be considered as fully-connected. The output 

of this layer is vector which length is 120. Output of this convolutional layer is output of the whole 

first branch.  

As easy to see, parameters of the convolutional layers, such as receptive field, stride and padding, 

were chosen so that with application to the given size of thermograms output of the last convolution 

layer is a vector.  

In order to take into account signals from the controlled unit’s build-in sensors an auxiliary branch 

of ANN was introduced. This branch consists of fully connected neurons layer. Input for the branch is 

a vector with normalized data from the sensors which length is equal to 6. Output of the layer is also a 

vector of length 2. The vector is merged with output vector of the main branch and result vector gotten 

after the merge is passed in as input for neurons layer that performs softmax or two-staged linear [13] 

normalization. This layer is the output layer of the whole ANN and performs categorization of failure 

in controlled unit. 

ANN was used for categorization of four major and critical failures in controlled device. Therefore, 

output layer contains five neurons (one per each failure category and one corresponds to the normal 

condition of the unit). 

Additional details of the network, such as number of trainable params per layer and some 

additional information, is presented in table 1. 
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Table 1. Neural network’s summary. 

Type 

Input 

height/ 

width 

Recept

ive 

field 

Stride Padding 

Output 

height/ 

width 

Neurons 

Depth 

 per 

 layer 

Feature 

maps 
Weights Params 

the main branch 

conv 30 5 1 3 32 6144 1 6 25x6 156 

max 

pool 32 2 2 0 16 

 

1 6  

 
conv 16 5 1 0 12 2304 6 16 150x16 2416 

max 

pool 12 2 2 0 6 

 

1 16  

 
conv 6 6 6 0 1 120 16 120 576x120 69240 

the auxiliary branch 

fc 

     

2 

  

6x2 14 

the common part of neural network 

Y-junc-

tion 

        

 

 
fc 

     

3 

  

122x5 615 

     

Total 

8570 

  

Total 

71826 

 

Some recent papers [14] consider in details application of some architectures that allow emulating 

sparsity in connections in neural networks. In our experiments we didn’t use some of those techniques 

and used sparsity explicitly in similar manner as it was used in [6], retrieving different sub-set of 

feature maps for input of the third convolution layer. And as for neurons in convolutional layer each of 

them connected to the input within its receptive field. 

Considering the fact that the main branch of our neural network is widely used convolutional 

network the weights for the layers can be initialized with weights of some pre-trained convolutional 

network which parameters compatible with our network. Although we didn’t use this approach and 

initialized all the parameters with random value from range (-2, 2) and trained the network from 

scratch. But using pre-trained weights can reduce the training time in cases when it’s important. 

In our experiments we trained our network using back-propagation technique [15] with learning 

rate 0.001 using 100 epochs. Achieved precision of thee network is 99%. For training we used model 

thermograms generated programmatically for each of classified failure and for case when controlled 

unit is operating normally.  

Although traditionally neural networks are trained on dataset that comprises subset of samples 

which network will process during its exploitation we trained the network on model thermograms, not 

on thermograms taken from some controlled unit. In our case we considered the problem from 

metrological point of view. Similar to any other metrological instrument it first passes its calibration 

on standard data in laboratory and then it is used in field. In similar manner we collected network's 

training dataset from thermograms that were generated programmatically based on mathematical 

model of surface temperature field of our control device. In practice even thermograms of two unit of 

the same model can differ slightly. By mean of using model thermograms we reduce influence of such 

variations. 

Some sample thermograms used in network’s training are shown on figure 6. 
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Figure 6. Some of the thermograms used in the experiments (best viewed in electronic version). 

 

Figure 7. Dependency of networks’ precision from number of parameters.  

In addition to the experiments described above also some comparisons of precision of networks 

that differ in number of their params were made. Using conceptually the same network we vary 

number of used feature maps in convolutional layers and number of neurons in fully-connected layers. 

So that we achieved several networks with similar architecture but with different number of params. 

After we have trained each of them on the same dataset with thermogram we compared their precision. 

The discovered dependency of the networks’ precision from number of their params is shown on 

Figure 7. The dependency is pretty much what would be expected to get: precision increases with 

number of params up to the certain point and after that point network tend to get overfit and precision 

decreases. In spite of that the dependency well known in case of metrology application this 

information can be used for sizing network by precision. It is essential that with number of parameters 

computation cost of feeding forward signal through network increases. In some cases calculation 

expensive network is not an option but refusing some amount of precision is allowed, so using 

diagrams similar to the one on figure 7 network sizing to some particular application can be 

performed. 

5. Conclusion 

Described approach can be easily generalized to application with wide range of units which technical 

state is controlled via thermograms and some auxiliary data. Using artificial neural network for 

interpretation thermograms and signals has many advantages. One of them is that even to unit of the 

same model can in practice have slightly different thermograms that corresponds to their state. 

Comparing (which is implicitly done during signal processing in network) thermograms of such unit 

with just canonical model sample not gives as good results as comparing thermograms taken from this 

particular instance of unit. And the latter is easily achievable with network fine-tuning on a given 
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controlled unit. This kind of fine-tuning is nothing more like the same training with back-propagation 

but on thermograms from the given instance of controlled unit. 

And the architecture of network can be easily corrected to take into account some additional signals 

as long as training dataset for the network is available. 
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