
355

Semantic features of processing hybrid dynamic workflows of

design

A N Afanasyev
1
, N N Voit

2
 and S Yu Kirillov

3

1
 Doctor of Engineering, First vice-rector, vice-rector of distance and further education,

Ulyanovsk State Technical University, 32, Severny Venets, Ulyanovsk, 432027, Russia
2
 Ph. D., associate professor of «Computer engineering», Ulyanovsk State Technical

University, 32, Severny Venets, Ulyanovsk, 432027, Russia
3
 PhD.student of «Computer engineering», Ulyanovsk State Technical University, 32, Severny

Venets, Ulyanovsk, 432027, Russia

Abstract. The article examines the semantic peculiarities of grammatical processing models of

visual languages like RC ASCON-Volga, BPMN and eEPC as denotative and significative

semantics. It is offered author's structure of the denotation and significata. Methods of control,

analysis of qualitative and quantitative characteristics of workflows, transformation and

interpretation of workflows are proposed by authors. A temporary automatic grammar of RC

ASCON-Volga, BPMN and UML AD visual languages is proposed by authors for semantic

processing of hybrid dynamic workflows, as well as for analysis and control of denotative and

significative semantic errors.

1. Introduction

The paradigm associated with the hybrid dynamic nature of their nature is increasingly dominating in

the creation of project workflows. Hybridity is defined not only as the development of models using

different diagram bases (for example, UML AD [1], BPMN [2], IDEF0 [3]), but also as the

composition of orchestration and choreography [4, 5] in the form of an ensemble. Dynamism is

determined by the need for immediate response to emerging production requests and contains the

concept of «time», so the elimination of errors in the flow of work is a significant scientific and

technical problem. Under treatment refers to the analysis, control, transformation, and interpretation

workflows, and analysis and control diagrammatically models of the error associated with denotative

and significative the semantics. Denotative semantics of diagram models is represented by a sequence

of temporal words of the formal automaton language in the form of traces and defines antonymy,

synonymy of these words in order to identify errors in the events of diagram models. The significative

semantics of diagram models reveals the relations of isomorphism, homomorphism of these traces for

the purpose of localization of structural errors in diagram models, and also for their subsequent

transformation. Changing the design of the diagram models is possible with the identified synonyms,

antonyms of graphic words, isomorphic traces and the possibility of combining such traces into a

single track. A necessary condition for the transformation of the flow of design work is the presence of

a semantic error. Detection of such errors is possible with the help of step-by-step automated

interpretation (tracing) of the project work flow in debug mode. Automata-based grammars allow you

to present a diagram model of the flow of design work in the form of a graph with vertices, arcs and in

a visual form to represent the process of interpreting the flow of design work as a system of

transitions. The methods of analysis can be used to study the qualitative and quantitative

characteristics of project work flows. Under qualitative characteristics refers to the logical-algebraic

correctness of workflows, formalized using graph theory, networks, workflows, matrix matching,

graphical modeling languages, including Unified Model Language, Business Process Management

Notation, IDEF0 and eEPC, etc., and also the evolutionary approach, logic statements, etc.

Quantitative characteristics represent the effectiveness of the execution of the workflow in the

356

parameters, such as average service time, the utilization rate of production capacity (downtime), etc.

The efficiency of workflows is evaluated using simulation modeling (Petri nets), Markov chains and

Queuing theory (Queuing systems).

In this paper, the authors developed a temporary automatic grammar of visual languages of RC

ASKON-Volga, BPMN and eEPC, as well as denotative and significative semantics of diagram

models of visual languages as a general structure for semantic processing of diagram models of hybrid

dynamic design workflows. Processing will reduce the time, improve the success and quality of

charting models. The mathematical apparatus of processing of diagram models of hybrid dynamic

flows of design work allows to simulate the process of workflows in the form of a finite state machine.

The work contains an introduction, the author's description of denotative and significative semantics of

workflows in the visual languages of RC ASCON-Volga, BPMN and eEPC. The review of qualitative

and quantitative methods for estimating the characteristics of workflows presents mathematical tools

for the analysis, control and modeling of workflows. In the section of the Temporal automaton RVTI-

grammar author presents automata-based temporal grammar for visual language RC ASKON-Volga,

BPMN and UML AD. In the section Transformation the author's method of transformation of

diagrammatic models of workflows by means of the developed author's temporal automatic grammar

is offered. In conclusion, briefly concludes the work and identifies future directions of work.

2. Related work

The authors investigate some works that consider the specification of document flow, verification and

translation. Several papers focused on the definition of formal semantics and validation methods for

workflows using Petri nets, process algebra, abstract state machine, see for example [6-16]. In [12,

13], Decker and Weske propose a Petri net-based formalism for determining choreographies,

properties as realizability and local applicability, and a method for verifying these two properties.

However, they consider only synchronous communication and does not explore the association with

languages modeling of interaction of a high-level BPMN. Bultan and Fu [17] determine a sufficient

condition for analyz-ing the feasibility of choreographies defined using UML collaboration diagrams

(CD). In [18], Salaün and Bultan modify and extend this work with the feasibility analysis method by

adding a synchronization message among peers. This method controls the realizability of CDs for

bounded asynchronous communication. The feasibility problem for Message sequence diagrams

(MSCs) has also been studied (e.g. [19, 20]). In [20], the authors offer bounded MSCS graphs which

are bound-ed by BPMN 2.0 because branching and looping behavior are not supported by CDs and

MSCs (there is no selection in CDs, there are no some looping behaviors in MSCs, and only Self-

loops in CDs). In [21] BPMN behavior is studied from the semantic point of view and several BPMN

patterns are proposed. This work is not theoretically justified and is not complete, it discusses only

some of the laws. Lohmann and Wolf [22] propose to analyze existing patterns and control them with

compatible patterns. In [23], the authors focused on the translation of BPMN into the algebra of

processes for the analysis of choreography using model checking and equivalence. The main limitation

of these methods is that they do not work when there are different types of diagrams at the same time,

which means that in some cases the input diagrams cannot be analyzed. There are the following

paradigms of analysis and control of quality characteristics of work flows: model checking;

equivalence check; deductive verification (Prolog language). The model checking approach is

intended for the analysis, control of workflows by means of formal check of whether the given logical

formula is executed on the given structure (whether the given logical formula f will be true for the

given system of transitions M, i.e. whether M will be model f). The main disadvantage of the campaign

is the study of the model, not the system itself, so the question arises about the adequacy of the model

to the system, and the complexity of the solution of the above problems is exponential. Deductive

verification involves checking the correctness of the workflow, which is reduced to proving theorems

in a suitable logical system with the help of axioms and inference rules (for example, with the help of

the Prolog language, automatic grammars, etc.). This very complex procedure can not be fully

automated, it requires the participation of a person acting on the basis of assumptions and guesses,

using intuition in the construction of invariants and non-trivial choice of alternatives. The equivalence

test determines the equivalence of formal models of specification, implementation and execution

357

(behavior) of workflows based on the algebra of processes (Calculus of interacting systems).

Simulation modeling is a flexible approach to analysis and is applied almost always to the analysis of

workflows, which is reduced to determining the path in the reachability graph, taking into account the

probability of distribution. Multiple execution of workflows using a computer provides «ease» of

understanding of the functional people who do not have mathematical training. Visual representation

and analysis of workflows is available in many tools for modeling workflows. Usually use Petri nets in

the modeling and analyzed the following properties: reachability (reachability) – which sets out that

the final state of the system is reached when any sequence of transitions from positions i. This

property also implies that upon reaching the final position of the network there are no chips in the

intermediate positions; security (safety), establishes that the processes do not exist hangs (deadlocks),

looping dead ends; vitality (liveness) – specifies that the system does not contain unnecessary items

that will never be fulfilled. The lack of liveliness means either redundancy of the business process in

the designed system, or indicates the possibility of loops, deadlocks, locks. Flow rate, transmission

rate, waiting time, service time, and capacity utilization can be calculated using queue theory. If we

are interested in the formation of a separate queue to multiple resources of the same type, it is

necessary to confine the system with a single queue. When considering the entire flow, Queuing

systems are best used. The main models used in Queuing theory are single-and multi-channel Queuing

systems (QSOS). The most simple model of the workflow to determine complexity of the

corresponding phase can be obtained if we accept the assumption about the absence of consequences

in the process, meaning that the next job in the flow depends only on the current state and does not

depend on previous States. In this case, the flow of work becomes a Markov process determined by a

variety of inherent conditions and the matrix of transition probabilities, and a probability distribution

of states in the initial moment of time.

3. Denotative and significative semantics of diagram models of visual languages of RC ASCON-

Volga, BPMN and eEPC

Denotative semantics [24-26] of any visual language is represented by denotates in the form of

graphical objects (words). The denotate of a word in the theory of visual languages is understood as an

instance of a class with specific values of properties characterizing the belonging of a word to a

subject. The authors have developed a general structure of the denotation and significata graphic

words. The general structure of the graphical class instance of a word is displayed in listing 1.

Listing 1. Generalized structure of the graphic denotation of the word.
The class name class=start

beginning

property 1=value 1

property 2=value 2

property n=value n

end

The structural units of the parameters (properties) of the graphical word represent the signature of

the word, and the properties themselves are combined into a class (listing 2).

 Listing 2. Generalized structure of significata graphic words.
Class name: text

beginning

property 1: type 1

property 2: type 2

property n: type n

end

The description of denotates and significations in the set-theoretic language has the following form.

 , (1)

358

where is the name of the denotation (class instance) the graphic word;

 is the value of the first property of the graphic word; is

the value of the second property of the graphic word; is the value of the third

property of the graphic word; is the value of n-th property of a graphical word.

 , (2)

where is the name of significata (class) graphic words; is structure of the

first property of the graphic word; is structure of the second property of the graphic word;

 is structure of the third property of the graphic word; is structure of n-th

property of a graphical word.

The difference between the significate and the denotate is that the denotate is an instance of the

significate, i.e. the properties (structure) of the denotate have specific values. Further in tables 1, 2, 3

denotative and significative semantics of grammatical models of hybrid dynamic streams of design

works of visual languages of RC ASKON Volga, BPMN, eEPC are presented [27-35].

Table 1. Denotative and significative semantics of the visual language of RC ASCON-Volga.

Graphic

word

Concept Class Class

properties

The values of class properties

A collapsed subprocess that can be called multiple times.
Has only one inbound link of type «go to procedure»

Procedure Input
Algorithm

Output

Input=work thread
Algorithm=ishodnyh

Output=Potocari

Collapsed subprocess, the action is required to be
performed by the user

Task Input
Text of task

Output

Input=work thread
Textpane=scriptside

Output=work thread

Collapsed subprocess, the implementation of which is
required repeatedly

Iteration Algorithm Algorithm=source code

Used in conjunction with «go to procedure» and

«procedure» block

Procedure call Adres call

procedure

Adres call procedure=number

Used in conjunction with «go to procedure» and
«procedure» block

Thread creation Name
Adresie

Name=stream_name
Adresie=number

The operation performed by the user No transit opcode

operand address 1

operand address 2

opcode=number

operand address 1=number

operand address 2=number

Automated (automatic) execution of operations The script (auto
operation)

Algorithm Algorithm=source code

It has only two outgoing connections. True and False,
respectively

Branching Condition Condition=source code

Allows you to connect parts of the chart at different

levels of nesting. In fact a connection

Phantom From level

Against the level

Isorena=numerowana

Karouny=numerowana

Used in conjunction with «waiting». Three incoming,

one of them «Synchro action», notifying about the event.

Event Time Time=number

Used in conjunction with «waiting». Three incoming,

one of them «Synchro action», notifying about the
beginning and completion of events.

Semaphore Beginning

Completion

Start=number

Completion=number

Has two outgoing branches, one of them «Synchro

action», notifying «Event» on successful completion of
the event

Activate Output Output=Boolean

It has two outgoing branches, one of them «Synchro

action», which monitors the status of the event. Skips the
stream only if the event succeeds

Expectation Duration Duration=number

It has two outgoing branches, one of them «Synchro

action», notifying «Semaphore» about the beginning of
the event execution

Increment With

On
Step

C=the number

By=number
Step=number

It has two outgoing branches, one of them «Synchro

action», notifying «Semaphore» about the completion of
the event

Decrement From

To
Step

From=number

Up=number
Step=number

359

Table 2. Significative and denotative semantics of the visual language of BPMN.

Graphic

word

Concept Class Class

properties

The values of class

properties

Has no incoming threads Starting event Output Output=work thread

Only one incoming and outgoing stream Intermediate event Input

Operation

Output

Input=work thread
Operation=algorithm

Output=work thread

Can be a trigger Intermediate event

«Message»
Input
Event

Output

Input=work thread
Event=algorithm

Output=work thread

Has no outgoing streams Final event Input Input=work thread

 Incoming stream Action Input

Procedure
Output

Input=work thread

Procedure=algorithm
Output=work thread

Only one outgoing branch is allowed to flow Exclusive gateway Input

Condition
Output

Input=work thread

Condition=algorithm
Output=work thread

It can be only one trigger event Gateway the Event-

based

Input

Event
Output

Input=work thread

Event=algorithm
Output=work thread

Activated only if there is a thread on each incoming

branch

Parallel gateway Input 1

Input 2
Input 3

Input s
Output

Input 1=work stream

Input 2=work stream
Input 3=work stream

Input=work thread
Output=work thread

Can connect to any flow element by association Data object Document Document=text

The relationship between the graphical objects A regular relationship From

To
From=graphical object
To=graphical object

 Allows you to monitor an invalid sequence of elements Event-based gateway

communication

From

To

From=graphical object

To=graphical object

 Associative relationship between graphical objects by key Association From

To

From=graphical object

To=graphical object

Table 3. Significative and denotative semantics of the visual language eEPC.

Graphic

word

Concept Class Class

properties

The values of

class properties

It is the fact of accomplishment of something, and

not having duration in time, or this time to aspire

to zero (or does not matter)

Event Time Number

Execution of a function always ends with the event Function Function The

function=algorithm

Workflow direction Through a process From

To
From=work thread

To=work thread

The object reflects the various organizational units

of the enterprise

Unit Name Name=text

A logical operator that defines the relationship

between events and functions within a process.

Allows you to describe the branching process

exclusive or
From

To

From=work thread

To=work thread

A logical operator that defines the relationship

between events and functions within a process.

Allows you to describe the branching process

OR
From

To

From=work thread

To=work thread

A logical operator that defines the relationship

between events and functions within a process.

Allows you to describe the branching process

AND
From

To

From=work thread

To=work thread

The object reflects the media Information (Material) Document Document=text

Core business process Main process From

To From=graphical object
To=graphical object

Structural and functional element Component Name Name=text

Area of research Subject area Name Name=text

A set of simple processes, collected on the same
basis and solve the same problem

Process group Name Name=text

The relationship between the graphical objects Dynamic connection line From

To From=graphical object

To= graphical object

360

Semantic errors of grammatical models of work flows include the following errors [36]. Synonym

mismatch (denotative error). Temporal words of visual language

 and

 are synonyms if

and only if

 and indicated synonymy of the words as

 . The

identical equality of the word determines the similarity (similarity) of the structure and values of

denotate features. A mistake is the situation when the name of the denotates of words in two temporal

traces of the graphical language are similar, but the values of other features are very different. In

practice, this situation is presented as follows: the analysis of the grammatical model of the visual

language reveals the structural similarity of words and names of denotates, but the values of other

features of denotates of words are different. To present variants of the composition of products under

different conditions: in versions, substitutability and interchangeability, in this situation, the

implementation of interchangeability of such words in the diagram model of the visual language is a

mistake of non-conformity of synonyms. Discrepancy of antonyms (denotative error). Temporal words

of visual language

 and

 are antonyms if and only if

 and is denoted by

antonyms to words as

 . Identical to the opposite of the two words defines the

similarity (similarity) of the structure and the opposite (inversely) characteristic value of the

denotation. Generally, the words «Beginning» and «End» in charting are antonyms of the graphical

language. A mistake is the project situation when the name of denotates of words in two temporal

traces of graphic language are opposite (inverse), but the values of other signs are very similar. In

practice, this situation is presented as follows: when analyzing the diagram model of the visual

language, structural similarity of words and inversion of denotate names are revealed, but the values of

the other signs of denotate words are similar. In this situation, the interchangeability of such words in

the diagram model of the visual language is a mistake of discrepancy of antonyms. Conversionist

relations is to bind antonyms diagrammatically models of visual languages that describe the same

design situation, but with different roles. Error conversionist relations is significative, i.e. structural

(structural), and is defined as the lack of these relations between antonyms diagrammatically models

describing the same design situation, but with different roles. The inconsistency of the objects is

significatively mistake. Is the absence of a relationship between dependent temporal words.

4. Temporal automata-based RVTI grammar

The temporal automaton RVTI grammar of the language L (G) is called the ordered eight of non-

empty sets , where  , 1 . eV e L is auxiliary alphabet (the alphabet

of operations on internal memory, represented by the store or elastic band); is

alphabet of graphic symbols (objects); is quasi-terminal alphabet, which is an

extension of the terminal alphabet ∑; is clock ID (counter);

 is a lot of timestamps, and ; is temporal aspect ratio

 , where variable c (ID hours), the ratio), describing the condition of the

occurrence of an event lt ; is scheme of grammar G (the set of names of products

of complexes, each complex ir consists of a subset products'); is the

axiom of RVTI-grammar (name of the initial complex of products), is the final set of products.

Product have the form

 , where is n-ary ratio, which

determines the type of operation on the internal memory, depending on (1 – write, 2 –

read, 3 – a comparison), and ;

 is words as a pair of quasi-symbol and timestamp;

 is name of the successor product complex. The language of this grammar contains words of

the form

 and and

 and , represents the alignment

 . In tables 4 and 5 present the temporal grammars for specific language RC ASKON Volga

and language BPMN.

361

Table 4. Temporal RVTI grammar language RC ASKON Volga.

Complex-source Quasi term The complex receiver The memory operation

r0,t0 A0 r3,t3  /E

r1,t1 return r2,t4 w2(b
4m)

r2,t2 vA r1,t1 w1(s
1m,t4m), CALL vA/E

 vIT r1,t1 w1(s
1m,t4m), CALL vIT/E

 Ak r4,t4 

 Akm r5,t5 w1(1
t(1),it(2))/w2(e

t(1))/E

 _Akm r5,t5 w1(inc(mt(1)))/w3(m
t(1)<kt(2)-1),E

 Akme r4,t4 w1(inc(mt(1)))/w3(m
t(1)=kt(2)-1),E

 CL r6,t6 w1(t
4m)

 TH r6,t6 w1(1
t(7), it(8), t4m)

 SC r3,t3 

 SCm r5,t5 w1(1
t(3),it(4))/w2(e

t(3)),E

 _SCm r5,t5 w1(inc(mt(3)))/w3(m
t(3)<kt(4)-1),E

 SCme r3,t3 w1(inc(mt(3)))/w3(m
t(3)=kt(4)-1),E

 C r7,t7 w1(t
2m)

 EV r3,t3 w1(0
t(5), 0t(9),0t(11))/w2(e

t(5)),E

 S r3,t3 w1(0
t(6), 0t(10),0t(12))/w2(e

t(6)),E

 F r11,t11 w1(t
3m)

 W r9,t9 w1(t
3m)

 IN r11,t11 w1(t
3m)

 D r12,t12 w1(t
3m)

r3,t3 rel r2,t2 

r4,t4 no_label r17,t17 *

r5,t5 labelC r2,t2 w2(b
2m)

r6,t6 prel r13,t13 

r7,t7 nrel r2,t2 

r8,t8 PHsp r6,t6 

r9,t9 arel r14,t14 

r10,t10 PHsa r9,t9 

r11,t11 airel r15,t15 

r12,t12 adrel r16,t16 

r13,t13 vPR r1,t1 w1(s
1m), CALL(vPR)/E

 PHep r8,t8 

r14,t14 THa r2,t2 w1(inc(mt(7)))/w3(m
t(7)<kt(8)),E

 PHea r10,t10 

 EVa r2,t2 w1(1
t(9)), w2(b

3m)

 Sa r2,t2 w1(1
t(10)), w2(b

3m)

r15,t15 EVa r2,t2 w1(inc(mt(5)), 1t(11)), w2(b
3m)

 Sa r2,t2 w1(inc(mt(6)), 1t(12)), w2(b
3m)

r16,t16 Sa r2,t2 w1(dec(mt(6)), 1t(12)), w2(b
3m)

Table 5. RVTI grammar for BPMN.

Complex-

source
Quasi term The complex receiver The memory operation

r0 A0 r1 Ø

r1 rel r3 Ø

r2 labelEG r3 W2(b
1m, bt(6))

 labelPG r3 W2(b
2m, bt(6))

r3 Ai r1 Ø

 Aim r1 Ø

 Ait r1 W1(ts
t(6))

 Akl r2 Ø /W3(!e
1m, !e2m)

362

Complex-

source
Quasi term The complex receiver The memory operation

 Ak r4 Ø

 A r1 W1(ts
t(6))

 Ait r3 W1(ts
t(6))

 EGc r1 W1(

)/W3(k = 1)

 EG r2 W1(1
t(1), kt(2))/W3(e

t(2), k != 1)

 _EG r2 W1(inc(mt(1))/W3(m
t(1) < kt(2))

 _EGe r1 W1(

)/W3(m
t(1)=kt(2), p != 1)

 _EGme r1 o/W3(m
t(1)=kt(2), p = 1)

 PGf r1 W1(

)/W3(k = 1)

 PG r2 W1(1
t(3), kt(4))/W3(e

t(3), k != 1)

 _PG r2 W1(inc(mt(3))/W3(m
t(3) < kt(4))

 _PGe r1 W1(

)/W3(m
t(3)=kt(4), p != 1)

 _PGje r1 W1(

)/W3(m
t(3)=kt(4), p = 1)

r4 no_label r5 *

r5

An instance of the diagram model (table 4, table 5) can be used to construct an ontology [27, 30],

the classes of which are words (concepts) and have the following form:

 , where a couple

 is a temporal word. Classes have

properties, which, for example, are represented as follows:

 , where is the name of the field

(inherited from the name of the notation diagrammatically model); is the start time

of the stream; is the duration of the thread.

5. Transformation

Dynamic reconfiguration of business process need to have a mechanism for transformation of

diagrams reaching flexibility, improving a functional and an efficiency of enterprise’s business

process. In work [19-21] the problem of reconfiguration has been researched both theoretical and

practical. Authors offer applying the structure transformation of a diagram with help procedures:

delete, insert and replace with saving a connection during an interval of time. It is necessary all

graphic element have a timed label where we can define time of the transformation. As rule BPMN,

eEPC, IDEF0, UML AD etc. graphic elements contain a description (notes in UML AD) which can be

define as a timed variable. Let’s see an example of UML AD diagram (figure 1).

A0

Ak

A1 (t1)

A2 (t1)

A3

Figure 1. UML AD diagram with t1 timed label.

Graphic elements A1 and A2 have t1 timed labels. This means that a current element will be

transform at t1 time with help operations: (1) Insert, (2) Replace, (3) Delete. Reasoning to suppose that

only one operation cab be performed at one element. Therefore, timed label is assigned to a tape where

an element has their variants: number 1 – Insert, number 2 – Replace, number 3 – delete. Additional

information when Insert and Replace saved at extended tape allowing to save both numbers and quasi-

terms. Additional Insert() function is used for the operation 1 allowing to get needed information from

extended tape and form inserted fragment. Operation 2 is a complex operation that represents an

363

aggregate of removing and inserting operations. Replace() additional function is brought for ease.

Deleting is considered in a start. The diagram has a form in t1 time (figure 2).

A0

Ak

A3

Figure 2. Deleting elements at diagram.

The chain including deleting element can be infinite size. Authors suggest the approach to perform

deleting. If we meet element with timed label, then timed label is put in a stack. Next step an

automaton follows about elements while not getting element with absent timed label. In this case it

perform change_rel() special function that pop up from the stack timed label at deleting element and

assign its with a current element. This algorithm is shown in figure 3. In order not to leave deleting

elements suspended in a diagram when to pass deleting quasi-term delete() function perform that

delete elements from the diagram. delete_with_link() function performs deleting elements with an

enter link.

A0

Ak

A1 (t1)

A2 (t1)

A3

Figure 3. Assignment of links where deleting an element.

The grammar for that diagram is shown in table 5.

Table 5. Timed RVTI-grammar for UML AD.

Prev.

state

Quazi-term Next

state

Operation

r0 A0i r1 insert()/W3(k
t(1)==1)

 A0 r1 o

r1 rel r2 o

r2 Ai r1 insert()/W3(k
t(1)==1)

 Ar r1 replace()/W3(k
t(1)==2)

 Ad r3 (delete(), W1(l
1m))/ W3(k

t(1)==3)

 A r1 o

 Ak r5 o

r3 drel r4 o

r4 Ai r1 (change_rel(),insert())/W3(k
t(1)==1)

 Ar r1 (change_rel(), replace())/W3(k
t(1)==2)

 Ad r3 delete_with_link()/W3(k
t(1)==3)

 A r1 change_rel()

 Ak r5 change_rel()

r5 no_label rk *

6. Conclusion

The semantic features of hybrid dynamic design processes are analyzed in terms of their denotative

and significative representations using the visual languages RC ASCON-Volga, BPMN and eEPC. The

mathematical description of denotations and significative diagrammatically models of visual

languages is given by authors, as well as the table description of denotations and significative

364

diagrammatically models of visual languages RC ASKON-Volga, BPMN and eEPC. The authors have

expanded the list of semantic errors that occur in the workflow, four types of errors such as Synonym

mismatch (denotative error), Discrepancy of antonyms (denotative error), Error conversionist relations

(significative error), The inconsistency of the objects (significative error). Paradigms of the analysis

and control of qualitative and quantitative characteristics of workflows are investigated. The author

has developed automata-based temporal grammar for visual language RC ASKON-Volga, BPMN and

UML AD, analysing and controlling these structural and semantic errors. The method of workflow

transformation on the example of visual language UML AD is presented. In future works it is

supposed to carry out researches of dynamic model of representation of processes of the automated

systems on the basis of the temporal automatic grammar providing the mathematical description of

hybrid dynamic design workflows for the analysis, control, transformation and interpretation that will

allow to define the place of an error in diagram model.

7. References

[1] Booch G, Jacobson I, Rumbaugh J 1998 The Unified Modeling Language User Guide Addison-

Wesley

[2] Model B P 2011 Notation (BPMN), v. 2.0 OMG www.omg.org/spec/BPMN/2.0

[3] Mayer R J, Painter M K, de Witte P S 1994 IDEF family of methods for concurrent engineering

and business re-engineering applications College Station, Tex, USA: Knowledge Based Systems

[4] Samuilov K E, Serebrennikova N V, Chukarin A V, Yarkina N V 2008 Osnovy formal'nyh

metodov opisaniya biznes-processov Ucheb. posobie. M.: RUDN 130 s (in Russian)

[5] Bock C 2008 Introduction to business process and definition metamodel U.S. National Institute

of Standard and Technology. Manufacturing Engineering https://www.nist.gov

[6] Poizat P, Salaün G, Krishna A 2016 Checking business process evolution In International

Workshop on Formal Aspects of Component Software Springer Cham pp 36-53

https://hal.inria.fr/hal-01366641

[7] Martens A 2005 Analyzing web service based business processes In International Conference

on Fundamental Approaches to Software Engineering Springer Berlin Heidelberg pp 19-33 doi:

10.1007/978-3-540-31984-9_3

[8] Raedts I, Petkovic M, Usenko Y S, van der Werf J M E, Groote J F, Somers L J 2007

Transformation of BPMN Models for Behaviour Analysis MSVVEIS pp 126-137.

[9] Dijkman R M, Dumas M, & Ouyang C 2008 Semantics and analysis of business process models

in BPMN Information and Software technology 50(12) pp 1281-1294 doi:

10.1016/j.infsof.2008.02.006

[10] Wong P Y, & Gibbons J 2008 A process semantics for BPMN In International Conference on

Formal Engineering Methods Springer Berlin Heidelberg pp 355-374 doi: 10.1007/978-3-540-

88194-0_22

[11] Wong P Y, & Gibbons J 2008 Verifying business process compatibility (short paper) In Quality

Software QSIC'08 The Eighth International Conference on IEEE pp 126-131 doi:

10.1109/QSIC.2008.6

[12] Decker G, & Weske M 2011 Interaction-centric modeling of process choreographies

Information Systems 36(2) 292-312 doi: 10.1016/j.is.2010.06.005

[13] Decker G, & Weske M 2007 Local enforceability in interaction petri nets In International

Conference on Business Process Management Springer Berlin Heidelberg pp. 305-319 doi:

10.1007/978-3-540-75183-0_22

[14] Güdemann M, Poizat P, Salaün G, & Dumont A Verchor 2013 A framework for verifying

choreographies In International Conference on Fundamental Approaches to Software

Engineering Springer Berlin Heidelberg pp 226-230 doi: 10.1007/978-3-642-37057-1_16

[15] Mateescu R, Salaün G., & Ye L 2014 Quantifying the parallelism in BPMN processes using

model checking In Proceedings of the 17th international ACM Sigsoft symposium on

Component-based software engineering pp 159-168 doi: 10.1145/2602458.2602473

365

[16] Kossak F, Illibauer C, Geist V, Kubovy J, Natschläger C, Ziebermayr T, Schewe K D A 2014

Rigorous Semantics for BPMN 2.0 Process Diagrams In A Rigorous Semantics for BPMN 2.0

Process Diagrams pp 29-152 Springer Cham doi: 10.1007/978-3-319-09931-6_4

[17] Bultan T, & Fu X 2008 Specification of realizable service conversations using collaboration

diagrams Service Oriented Computing and Applications 2(1) pp 27-39 doi:

10.1109/SOCA.2007.41

[18] Salaün G, & Bultan T 2009 Realizability of choreographies using process algebra encodings In

International Conference on Integrated Formal Methods Springer Berlin Heidelberg pp 167-

182

[19] VBPMN Framework https://pascalpoizat.github.io/vbpmn/

[20] Alur R, Etessami K, & Yannakakis M 2005 Realizability and verification of MSC graphs

Theoretical Computer Science: Automata, Languages and Programming 331(1) 97 doi:

10.1016/j.tcs.2004.09.034

[21] Lotos I S O 1989 A formal description technique based on the temporal ordering of

observational behaviour ISO8807, 1XS989

[22] Lohmann N, & Wolf K 2009 Realizability is controllability In International Workshop on Web

Services and Formal Methods Springer Berlin Heidelberg pp 110-127 doi: 10.1007/978-3-642-

14458-5_7

[23] Poizat P, & Salaün G 2012 Checking the realizability of BPMN 2.0 choreographies In

Proceedings of the 27th Annual ACM Symposium on Applied Computing pp 1927-1934 doi:

10.1145/2245276.2232095

[24] Kotcova E E 2002 Leksicheskaya semantika v sistemno-tematicheskom aspekte Arhangel'sk

Pomor. gos. un-t p 203 (in Russian)

[25] Krongauz M A 2005 Semantika: uchebnik dlya stud. lingv. fak. vyssh. ucheb. zavedenii 2-e izd.

ispr. i dop M Izdatel'skii centr «Akademiya» p 171 (in Russian)

[26] Kobozeva I M 2004 Lingvisticheskaya semantika URSS (in Russian)

[27] Klein M 2001 Combining and relating ontologies: an analysis of problems and solutions IJCAI-

2001 Workshop on ontologies and information sharing pp 53-62

[28] Volkova G A 2013 Sozdanie «ontologii vsego». Problemy klassifikacii i resheniya Novye

informacionnye tehnologii v avtomatizirovannyh sistemah 16 (in Russian)

[29] Mitrofanova O A, Konstantinova N S 2015 Ontologii kak sistemy hraneniya znanii (in Russian)

[30] Euzenat J et al. 2007 Ontology matching Heidelberg Springer 18

[31] Mizoguchi R 2000 Shag v napravlenii inzhenerii ontologii Novosti iskusstvennogo intellekta 1-2

S11- 36 (in Russian)

[32] Malinovkskii V P 2005 Ispol'zovanie ontologicheskogo podhoda pri modelirovanii zhiznennogo

cikla znanii v sisteme korporativnoi pamyati organizacii Novosti iskusstvennogo intellekta 3 S

pp 31- 41 (in Russian)

[33] Fischer L Workflow Handbook 2005 Workflow Management Coalition

[34] Karpov Yu G 2010 MODEL SHECKING. Verifikaciya parallel'nyh i raspredelennyh

programmnyh system SPb BHV Peterburg p 560 (in Russian)

[35] Kalyanov G N 2006 Modelirovanie, analiz, reorganizaciya i optimizaciya biznes-processov

Uchebnoe posobie M Finansy i statistika p 240 http://www.twirpx.com/file/2204790/ (in

Russian)

[36] Afanasyev A N, Voit N N, Kirillov S Y 2017 Development of RYT-grammar for analysis and

control dynamic workflows International Conference on Computing Networking and

Informatics (ICCNI) pp 1-4 Lagos doi: 10.1109/ICCNI.2017.8123797

Acknowledgments

The reported study was funded by RFBR according to the research project № 17-07-01417 and

Russian Foundation for Basic Research and the government of the region of the Russian Federation,

grant № 18-47-730032.

