
 

 

 

 

 

 

410 
 

Solving of logic functions systems using genetic algorithm 

V G Kurbanov
1,2 

and M V Burakov
1
 

1 
Chair of control system of Saint-Petersburg State University of Aerospace Instrumentation, 

Bolshaya Morskaya, 67, St. Petersburg, Russia 
2  

Institute of Problems in Mechanical Engineering, Russian Academy of Sciences, 61 Bol’shoi 

pr., Petersburg, Russia 

Abstract. The problem of solving a system of logical functions that occurs in the analysis and 

synthesis of intelligent control systems for nonlinear dynamic plants is considered. The 

arithmetic of logical functions is proposed by using the Zhegalkin basis and the evolutionary 

solution of the system of logical functions by means of a genetic algorithm. The given 

examples show that the offered algorithm can be successfully used in practice. 

1. Introduction 

When analyzing and synthesizing intelligent control systems for nonlinear dynamic plant that function 

in unsteady, extreme conditions with given quality indicators, one of the most important tasks is the 

problem of logical inference and decision making for a system of logical functions written in symbolic 

form. The solution of such a problem in a symbolic form encounters fundamental difficulties and only 

in the simplest cases is achieved by methods of directed search. In more complex cases, the main 

methods for solving it are heuristic methods, in which intuition and knowledge in solving similar 

problems and previous practical experience play a big role. 

This knowledge in expert systems is used by the so-called logical inference machine, i.e. a program 

that operates with a knowledge base and draws conclusions. One of the variants of the inference 

engine is the system of production rules (product system), which is most often used in expert systems 

[1]. 

The work of the production system can be considered as the following sequence of operations: 

finding all the rules, the conditions of which are met; the choice of one of these rules and the 

implementation of the actions prescribed by it. The disadvantages of heuristic methods of obtaining 

solutions in logical inference systems are: the lack of guarantee of a solution for a finite number of 

steps in the algorithm, the randomness in choosing the most rational way of finding a solution, the low 

speed of the number of logical inferences per unit time, the excessive complexity of interpreting the 

structural properties of the solver. Therefore, interest in the problems of equivalent symbolic 

transformations of logical functions (LF) and the systems of logical equations (SLE) that they form is 

steadily growing, they underlie the solution of such problems of artificial intelligence as logical 

inference and decision making [2], regardless of to which application area the data decisions apply. 

In this paper, we propose a version of the description and solving of the SLE 

2. Arithmetization of systems of logical equation 

The symbol representation of LF and SLE for large dimensions of logical problems is cumbersome 

and inconvenient, therefore it is actual to search for other forms of representation of LF and SLE, for 

example, those in which their arithmetic properties are used. 
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There are methods when for an ordered set a Cartesian product is constructed, which elements are 

lexicographically ordered and there is no need to write explicitly all its terms, but it is sufficient to 

know how any one of them is calculated. In this case, due to the arithmetic properties of LF and SLE, 

which they display when they are presented in the form of algebraic structures according to mod2, that 

is, in the algebra of Zhegalkin [3], it turns out possible to reduce logical problems to arithmetic or 

similar arithmetic ones. In general, this allows us to represent logical systems as linear structures 

which equations do not contain conjunctive elements, and to analyze and synthesize their structural 

properties, use the mathematical apparatus of vector-matrix algebra. 

Then for such systems, the logical inference is represented as a procedure for inversion of [0, 1] - 

matrices, and the decision making is a repetition of this procedure after changing the initial conditions. 

The basic vector of a logical system is an ordered set of logical variables that cannot be 

decomposed into simpler ones, that is, they cannot be produced by other variables: 

x
T
 = < x1, x2, …, xn >, 

where symbol 
T 

means transposing of vector x. 

The fundamental vector of a logical system is the ordered set of elements of the Cartesian product 

of the basis vector x, augmented by 1 in place of the last element: 

S
T
 = <x1, x2, ..., xn, x1x2, x1x3, ..., x1x2x3, ..., x1x2 ·, ..., · xn, 1>. 

The dimension of this vector is ns = 2
n
. 

The identification line of the LF is a line consisting of zeros and ones of the form: Ci = <1, 1, 0, 1, 

1, 0, 1, ..., 1>. Units in this line identify the elements of the vector S, which in the i-type LF add up 

according to mod2. If the last element of the identification line is 1, then it means the negation of fi. 

This form of the LF task (representation) allows you not to enter additional identifiers, for example, 

strikethroughs, to denote the logical connective of negation NOT. 

The idea of the arithmetic symbolic logics belongs to I.Zhegalkin; based on J. Boole's algebra, he 

simplified the laws of operating with logical addition and multiplication and reduced these operations 

to actions that are subject to the arithmetic laws of associativity, commutativity and distributivity. In 

this case, according to I. Zhegalkin, the logical connection "or" can be used only in a strictly 

separative sense, as the connection "either." Obviously, this restriction puts forward an additional 

requirement to the process of forming knowledge bases of the subject domain. 

One of the most important properties of the algebra of logics introduced by I. Zhegalkin is that in it 

the logical content of the symbols "1" and "0" corresponds always to the true or false function, and the 

negation operation is replaced by the operation of adding one to the logical variable: 

.1 xx  

A distinctive feature of the LF representation in the Zhegalkin (ZhB) Basis is that when performing 

their transformations, LFs can be considered as algebraic expressions in symbolic form, and 

manipulation operations with them are algebra operations. Such operations are: addition, 

multiplication, transfer of expressions from the left to the right, and vice versa, the compilation and 

solution of systems of equations, including matrix methods, substitution of some functions into others, 

reduction of similar terms. And a t the same time, they do not contradict the axioms of ZhB. 

Thus, when solving systems of logical equations, their arithmetization is easily accomplished by 

transferring the LF from the Boolean Basis to the ZhB, and when interpreting the solutions obtained, it 

is back to the Boolean Basis. Therefore, the solution and analysis of logical problems are reduced to 

the analysis and solution of the system: 

AS = b     (1) 

where A is a rectangular binary matrix of dimension [n, m], n> m; S is the fundamental vector of a 

logical system of dimension n; b is a binary vector of dimension n. 
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The main task is to find a matrix that is pseudo-inverse to matrix A. The solution of system (1), in 

which the variables are greater than the equations, leads to a set of solutions. Therefore, the pseudo-

inverse matrix is not unique. Their complete set defines all admissible solution vectors. 

3. Solution of the system of logical equations 
One of the methods of solution is a method analogous to the method of elimination of  K. Gauss when  

solving linear systems of algebraic equations with real numbers. The essence of the method consists in 

adding equations to exclude the variables entering into these equations. The effect of absorption of the 

terms of the equations as a result of their addition according to mod 2 is connected with the fulfillment 

of one of the axioms of Zhegalkin's algebra: 

x  x = 0. 

The procedure consists in transforming the matrix A so that as a result of adding rows of the matrix 

according to the rules of elementary transformations according to mod 2, the resulting matrix would 

have a minimal number of non-zero elements. This is the solution. 

If by the condition of the problem it is required to find among the possible admissible solutions one 

that is the best, then its solution, as a rule, is connected with optimization problems. Optimization 

tasks are possible only when there is some measure for the vector S. This measure is hidden in the 

attributes of S, since the vector itself is logical. Therefore, it is necessary to introduce a definition of 

its measure (norm), which requires the metrizability of a set of attributes, which unfortunately, is not 

always easy, and sometimes impossible to get. The optimization problem is most easily solved if the 

indicated measure has a scalar type. 

In the simplest case, the scalar measure, for example, can be the Euclidean norm, that is, the sum of 

the non-zero elements of the vector S which weight is conditionally taken to be unity. Here we can see 

an analogy with the code distance in the R. Hemming theory. Finding the minimum of this sum is a 

task of combinatorial optimization. It is known that minimization of the Euclidean norm of a linear 

system with real numbers 

AaSa = ba 

is approachable if the following condition is met: 

  .
1

min
a

T
aa

T
aа bAAAS


     (2) 

A solution is similar in which S contains the minimal number of non-zero components, that is, if A 

~ is a pseudo-inverse matrix, then the solution of equations (1) has the form: 

A
~
AS = A

~
b. 

If A
~
A = E – a single matrix then 

S = A
~
b. 

In system (1), matrices and vectors have a binary data type, and in expression (2), the elements are 

assigned a real type, and the optimization problem goes to the attribute area. If, by the condition of the 

problem, only admissible solutions are required, that is, the entire set of pseudo-inverse matrices, then 

the solution of the optimization problem is not required. However, the most studied and often 

encountered optimization problem is finding an admissible solution with the maximum value of its 

probability, which is typical for fuzzy problems of making a decision of the logical-probabilistic type. 

Suppose that the following rules for working with data are given, for example from a sensor of 

some dynamic plant: 

If (xij = 1 ^ yij = 1 ^ zij = 1 ^ uij = 1 ^ vij = 1 ^ wij = 1), then qij = 1  (3) 
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The rules of the form (3) are implicit in the language of the algebra of logic or Boolean algebra: 

xij ^ yij ^ zij ^ uij ^ vij ^ wij  → qij     (4) 

The expressions of the form (4) can be transformed into the form of the Zhegalkin algebra or into 

equivalent algebraic equations according to mod 2 [2]. 

s ij  sij * qij  1= bij, 

where:  - a sign of addition according to mod 2, * - a sign of multiplication according to mod 2, bij – 

0 or 1 (bij   (0,1)  and 

sij = xij * yij * zij * uij * vij * wij. 

Then the resulting system of logical equations can be written in the matrix form according to 

mod 2 [3, 4]: 

   AF = B      (5), 

where: B is a binary vector of dimension n, F is a fundamental vector of a logical system of dimension 

n, constructed from combinations of logical variables xij, yij, zij, uij, vij, wij, qij, supplemented by 1 in 

place of the last element, A is a rectangular binary matrix of dimension [n, m]. 

The procedure for obtaining the system of equations (5) is easy to formalize. For this, we can first 

construct a fundamental vector F of the system: 

F
Т
 = [s11,s12,…,s1n,s21,…,smn,s11*s12,..., s11*s12*…*smn, s11*q11,…, s11*s12*…*smn*q11*…*qmn, 1] 

The following algorithm is used: 

 all the logical variables of sensory data are listed; 

 after, all combinations of two of the logical variables of sensory data are listed; 

 then, all combinations of three of the logical variables of the sensory data are listed; 

 then, all combinations of four of the logical variables of the sensory data are listed, 

 and so on, the product of all the logical variables of the sensory data is placed at the end. 

After, the fundamental matrix A of the system is constructed: 
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The algorithm for constructing the matrix A is as follows:  
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 the first line in the first column is set to 1, and in the remaining 0  

 in the second row, the second column is set to 1, and in the remaining 0  

 and so on, until there is 1 in the last column,  

 then put 1 in the first two columns, and in the remaining 0,  

 - then put 1 in the first and third columns, and in the remaining 0,  

 - then put 1 in the first and fourth columns, and in the remaining 0, 

 - and so on, until there are two in the last two columns,  

 - then put 1 in the first three columns, and in the remaining 0,  

 - then put 1 in the first, third and fourth columns, and in the remaining 0,  

 - then put 1 in the first, fourth and fifth columns, and in the remaining 0,  

 - and so on, until there are three in the last three columns,  

 - and so on, until there are 1 in all columns 

Naturally, the matrix system of equations according to mod 2 of the form (4) obtained in this way 

will have a large dimension. However, in real problems, not all components of this equation (not all 

combinations of logical variables) are physically realizable and can be discarded. As a result of this 

reduction, we obtain a matrix system of equations according to mod 2 of smaller dimension [3]: 

CR = G. 

Thus, an optimization problem arises, in which it is necessary to choose the most acceptable or 

suboptimal solution from a variety of solutions. This problem can be attributed to the class of global 

optimization problems, for which currently popular methods are widely used, such as the genetic 

algorithm implemented in the Optimtool Simulink MatLab package [5]. 

4. Using the genetic algorithm 

The genetic algorithm (GA) is a subject-independent mechanism of global optimization, modeling the 

basic principles of evolution [6]. For example, in [7, 8] are considered the questions of genetic training 

of nonlinear PID regulators. 

To use GA in a specific task, it is necessary to solve two questions:  

 Describe the fitness function F, which will characterize each solution of the problem. The 

optimization problem is considered as the minimization of F. 

 Select the method for coding the solution, i.e. describe the chromosomes which population 

will be modified by the action of genetic operators. 

In the problem under consideration, the chromosome is a bit line of length n equal to the number of 

logical equations. Elements of the line are interpreted as logical variables. 

The fitness function can be described as follows: 


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    (6) 

where R = [r1, r2, r3,…,rn]
T
. 

The value of Fb in (6) is a large positive constant, which serves to reject false decisions. 

Thus, when the function (6) is used, the solutions with the greatest number of non-zero components 

have the best suitability. 

5. Modeling example 

Consider a system of 5 logical equations from 8 variables: 
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To find the solution, the following MatLab-function is used:  

 

function z=kurbanov1(X) 

A=[false false true false false true true false; 

     true true false true false false true true; 

     false true false false true false false false; 

     false true true false false true true false; 

     true false true false true false false true]; 

  

B = [true false true true false]; 

  

for i = 1:5 

P(i)=and(A(i,1),X(1)); 

 for j =2:8 

    P(i)=xor(P(i),and(A(i,j),X(j)));  

 end; 

end; 

S=0; 

for i=1:5  

 if (B(i))==(P(i)) S=S+1; end;  

end;     

 if S~=5 z=200; end; 

 if S==5  

     z=0;  

     for i=1:8  

      if X(i)~=0 z=z+1; end;  

     end;     

     z=1/(1+z);      

 end; 

end 

 

Table 1 shows the state of the population at the second iteration. 
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Table 1. Status of the population 

 chromosome Fitness 

function 

1 1 0 1 1 1 1 1 1 0,125 

2 1 0 0 1 1 1 0 0 0,2 

… … … 

41 1 0 1 1 1 1 1 1 0.125 

42 1 1 0 0 1 0 1 0 200 

43 0 0 0 0 1 0 1 1 0,25 

44 0 0 1 1 1 1 1 0 0,166 

… … … 

100 0 0 1 0 1 0 0 0 0.33 

 

 

It takes only a few dozen iterations to find a solution by used Optimization Toolbox Graphical User 

Interface MatLab (Figure 1). 

 

 

 

Figure 1. Illustration of GA work 

6. Conclusion 

The practical use of logical inference systems in intelligent systems is associated with the solution of 

systems of logical equations that can have a large dimension. The number of variables in this case 

usually exceeds the number of equations, which leads to the non-uniqueness of the solution. The use 

of the Zhegalkin algebra makes it possible to perform the algebraization of the problem, so that the 

scalar measure of the quality of the solution can be the Euclidean norm. The genetic algorithm is in 

this case an effective tool for finding a suboptimal solution. 
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